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Abstract: The endocannabinoid system consists of several phytocannabinoids, cannabinoid receptors,
and enzymes that aid in numerous steps necessary to manifest any pharmacological activity. It is
well known that the endocannabinoid system inhibits the pathogenesis of the inflammatory and
autoimmune disease rheumatoid arthritis (RA). To the best of our knowledge, no research has been
done that explains the network-pharmacology-based anti-rheumatic processes by focusing on the
endocannabinoid system. Therefore, the purpose of this study is to further our understanding of the
signaling pathways, associated proteins, and genes underlying RA based on the abundant natural
endocannabinoids. The knowledge on how the phytocannabinoids in Cannabis sativa affect the
endocannabinoid system was gathered from the literature. SwissTarget prediction and BindingDB
databases were used to anticipate the targets for the phytocannabinoids. The genes related to RA
were retrieved from the DisGeNET and GeneCards databases. Protein–protein interactions (high
confidence > 0.7) were carried out with the aid of the string web server and displayed using Cytoscape.
The Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis was used to
perform enrichment analyses on the endocannabinoid–RA common targets. ShinyGO 0.76 was used
to predict the biological processes listed in the Gene Ontology (GO) classification system. The binding
affinity between the ligand and the receptors was precisely understood using molecular docking,
induced-fit docking, and a molecular dynamics simulation. The network pharmacology analyses
predicted that processes like response to oxygen-containing compounds and peptodyl-amino acid
modification are related to the potential mechanisms of treatment for RA. These biological actions are
coordinated by cancer, neuroactive ligand–receptor interaction, lipids and atherosclerosis, the calcium
signaling pathway, and the Rap1 signaling pathway. According to the results of molecular docking,
in the context of RA, phytocannabinoids may bind to important target proteins such PIK3CA, AKT1,
MAPK9, PRKCD, BRAF, IGF1R, and NOS3. This entire study predicted the phytocannabinoids’
systemic biological characteristics. Future experimental research is needed, however, to confirm the
results so far.

Keywords: cannabis; Cannabis sativa; endocannabinoid system; inflammation; network pharmacology

1. Introduction

Although inflammation is a typical reaction to tissue damage, it can become out of
control and cause further problems. Specific soluble pro-inflammatory mediators, including
cytokines or chemokines, prostaglandins, and leukotrienes, are produced as a result of an
inflammatory reaction [1]. Many acute and chronic disorders are made worse by persistent
inflammation. Rheumatoid arthritis (RA) is just one of the many chronic inflammatory
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disorders that continues to be a major global health issue. One to two percent of the
world’s population suffers from the chronic inflammatory disease known as arthritis. It
is characterized by immune-mediated inflammatory sinusitis, which causes hyperplasia,
vasculogenesis, pannus formation, cartilage and bone destruction, joint malformation, and
functional impairment [2]. Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently
used to treat the unpleasant inflammatory diseases, either systemically or by applying
topical versions locally. The most prevalent side effects of systemic medications, notwith-
standing their effectiveness, are gastrointestinal bleeding and peptic ulcers [3], whereas
topical medications simply treat symptoms and do not cure the condition. Therefore, it
is necessary to research and validate plant-based/herbal anti-inflammatory drugs from
traditional and complementary systems of medicine that have been used clinically for
decades and are thought to be safe with few to no side effects.

The endocannabinoid system consists of the numerous phytocannabinoids derived
from Cannabis sativa (family: Cannabaceae) as well as cannabinoid receptors and en-
zymes that aid in several steps to exhibit any pharmacological activity [4–6]. It is well
known that the endocannabinoid system inhibits the pathogenesis of the inflammatory
and autoimmune disease rheumatoid arthritis. For ages, people have used Cannabis sativa
(family: Cannabaceae) as a traditional medication for entheogenic and recreational uses.
Cannabis sativa, however, may be useful in the treatment of pain, dysmenorrhea, muscle
spasms, anorexia, etc., according to earlier research [7,8]. Recently, the tale of these illegal
narcotics being used as herbal medicine has grown increasingly intriguing. California and
various countries have allowed the use of chemotherapy-diversified phytocannabinoids
due to their medical benefits [9]. Furthermore, Canada approved the use of phytocannabi-
noids for medical and recreational uses in the years 1999 and 2018, respectively [10].
Cannabinoids consist of several phytocannabinoids derived from Cannabis sativa [11]. The
most prevalent components that have psychoactive properties are tetrahydrocannabinoids
(THC) [12]. For a long time, isoprenylated resorcinyl polypeptides known as cannabi-
noids have been utilized as medicines. Previous research established that various phyto-
cannabinoids target the peroxisome proliferator-activated receptor γ (PPARγ), transient
receptor potential ion channels, and protein-coupled cannabinoid receptors (CB1 and
CB2). The anti-arthritic properties of phytocannabinoids are due to their effects on the CB1
and CB2 cannabinoid receptors. However, the phytocannabinoids’ therapeutic situation
is far more complicated and involves several targets. The presence of a dibenzopyran
ring with a hydrophobic alkyl chain is a typical structural characteristic of the identified
phytocannabinoids [13,14].

RA is a condition with several diagnoses that is primarily characterized by chronic
synovial inflammation. The etiology of this illness involves the infiltration of inflammatory
cells, the growth of synoviocytes that resemble fibroblasts, elevated levels of proinflamma-
tory cytokines, and matrix metalloproteinases. These substances encourage angiogenesis
and osteoclast activity, which damage joints by altering the development of bone and
cartilage [15]. The endocannabinoid system negatively controls immunological reactions
and inflammation associated with RA. Negative side effects could result from continued
use of these drugs. The endocannabinoid system is a viable pharmacological target for
the treatment of RA, hence the treatment with such medications needs to be clarified [16].
The network pharmacology technique offers a platform for predicting the molecular mech-
anisms of the multi-components present in traditional herbal formulations. Selective
molecules may have poorer clinical effectiveness than multi-target medications due to
phenotypic resilience and network topology [17]. Many herbal formulations have been
analyzed for the probable mechanism in a disease through this approach [18–20]. Therefore,
using combined bioinformatics and network pharmacology methodologies, the goal of this
study is to further understand the signaling pathways, associated proteins, and genes that
cause rheumatoid arthritis based on the plentiful naturally occurring phytocannabinoids.
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2. Materials and Methods
2.1. Identification of Bioactive Compounds and Targets

The abundant phytocannabinoids of Cannabis sativa used in this investigation were
derived according to reports by Morales et al. [14]. In addition, the canonical forms
and 2D structures of the phytocannabinoids were retrieved from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/, accessed on 1 December 2022). The targets of the
phytocannabinoids were found using the web servers Swiss Target Prediction and Bind-
ingDB (https://www.bindingdb.org/bind/index.jsp, accessed on 1 December 2022). In
addition, the canonical forms and 2D structures of the phytocannabinoids were retrieved
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov, accessed on 1 December
2022). The RA targets were derived from two databases: DisGeNET (www.disgenet.org,
accessed on 1 December 2022) and GeneCards (www.genecards.org, accessed on 1 Decem-
ber 2022). The UniProt database (www.uniprot.org, accessed on 1 December 2022) was
utilized to standardize the target names into official gene symbols. The keywords “Rheuma-
toid arthritis” and the organism “Homo sapiens” were used to seek the targets, which
are verified by UniProt ID. To obtain the Venn diagram of the shared targets, Venny2.1.0
(https://bioinfogp.cnb.csic.es/tools/venny/index.html, accessed on 1 December 2022)
was used.

2.2. Collection of Protein–Protein Interaction (PPI) Data

The chosen targets were added to the STRING 11.0 database (available at https:
//string-db.org, accessed on 1 December 2022) to create a PPI network using “Homo
sapiens” as the species and “highest confidence > 0.7” as the minimal interaction threshold.
Additionally, the detached nodes were kept a secret. Cytoscape software was used to
visualize these networks. To identify PPI subnetworks and clusters with a high degree of
interconnection within the PPI network, we employed the Molecular Complex Detection
(MCODE) method (version 1.5.1). As threshold settings, we set the Cytoscape plug-in
MCODE’s maximum depth to 100, node score at 0.2, and K-score to 2 [21].

2.3. GO and KEGG Enrichment Analyses

The KEGG metabolic pathway analysis was used to perform enrichment analyses on
C. sativa and RA mutual targets, and ShinyGO 0.76 (available at http://bioinformatics.
sdstate.edu/go76/, accessed on 1 December 2022) was used to predict Gene Ontology
(GO) biological processes. The top 20 biological pathways and processes (False Discovery
Rate cut-off of 0.05) were selected based on fold enrichment, and they were then displayed
as bubble charts with the adjusted p-values, fold enrichment, gene counts, etc. The GO
analysis predicted the various biological processes, cellular components, and molecular
functions. A network was constructed using the key pathways obtained from the KEGG
analysis for the discovery of the important target proteins that play a significant role in the
treatment effects of C. sativa [22]. For the purpose of predicting the likely mechanism of
action of the bioactive components of C. sativa in RA, all the information on the important
targets and associated pathways was gathered through online software.

2.4. Molecular Docking Validation

Molecular docking studies of 13 phytocannabinoids were done using Glide XP (extra-
precision) implemented in the Schrödinger suite. The energy-minimized structures of the
ligands were docked with the crystal structure of PIK3CA (PDB ID: 4L23, resolution of
2.50 Å), AKT1 ((Gene: Akt1) (AlphFold)), MAPK9 ((Gene: MAPK9) (AlphFold)), PRKCD
((Gene: PRKCD) (AlphFold)), BRAF (PDB ID: 6P3D), IGF1R (PDB ID: 5FXS), and NOS3
(PDB ID: 6NH5) with validated grid parameters [23]. The RCSB protein data bank (PDB)
was used to download the X-ray crystal coordinates of different proteins. From the Al-
phaFold, the predicted structures of the proteins AKT1, MAPK9, and PRKCD were obtained.
We used the protein preparation wizard to prepare the proteins. The water molecules that
lacked three hydrogen bonds were eliminated. Then, considering the correct ionization
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states for both basic and acidic amino acid residues, hydrogen bonds corresponding to pH 7
were added. The force field OPLS3 (Optimized Potentials for Liquid Simulations 3) was
used to minimize the energy of the protein 3D structure. The optimum protein binding site
was identified using Sitemap analysis for proteins predicted by AlphaFold. Additionally,
the best binding site’s center was chosen to generate the grid box. The centroid of each
of the co-crystallized ligands for PIK3CA, BRAF, IGF1R, and NOS3 (X6K, 0LI, OZN, and
KLD, respectively) was chosen to create the grid box. Finally, docking of all low-energy
conformations into the Sitemap-predicted site was done using Glide in XP mode in the
absence of any constraints.

2.5. Molecular Dynamics (MD) Simulation

The Desmond module of the Schrödinger software was used to simulate the docked
protein–ligand complexes in an explicit water environment. Using a system builder panel,
an orthorhombic box was constructed. The simulation of the bound ligand–protein complex
was performed using a simple point charge (SPC) model of water. The MD simulation was
performed using a constant-temperature, constant-pressure ensemble (NPT) at 310 K and
1.013 bar as an atmospheric pressure intended to last 100 ns. The Simulation Interactions
Diagram Report of the Desmond software was used to thoroughly examine the results of
the molecular dynamics research [24,25].

2.6. Induced-Fit Docking (IFD)

Induced-fit docking was carried out on the best binding energy-containing bioactives
with their respective receptors by employing the IFD panel of the Schrödinger suite [26].
Here, the IFD computations were carried out using the OPLS3 force field and the initial
sample methodology, which generated up to 20 docked complexes utilizing automatic
docking settings. The best poses produced during the standard Glide XP (extra-precision)
docking of bioactive substances with their corresponding receptors were used as the input
structures for IFD, and the centroid of the ligands was chosen to generate the grid box. No
additional constraints were applied. A ring-conformational sampling of the ligand was
done around a 2.5 kcal/mol energy window. Initial-glide docking was performed by setting
both the receptor and ligand’s van der Waals (vdW) scaling to 0.5. The amino acid residues
were also cleaned up using the Schrödinger Prime module within 5 Å of the ligand. The
Prime-refined receptor–ligand complexes within 30 kcal/mol were then redocked using
the Glide XP mode. The default settings for other parameters were maintained [27].

2.7. Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) Calculation

The binding free energy was calculated from the structural information of the MM-
GBSA method. These approaches employ the solvent accessibility method, molecular
mechanics, and the generalized Born model to evade the free energy simulations’ con-
volution [28]. The energy difference between the bound and unbound complex of the
protein–ligand complex was calculated with the help of MM-GBSA. The binding free
energies were computed by the equation as follows:

MM-GBSA ∆GBind = GComplex − (GReceptor + GLigand).

Here, the MM-GBSA calculation [29,30] was done by considering the VSGB solvation
model with OPLS3 Force Field with a minimized sampling method.

2.8. Physicochemical and ADME/T Studies

The QikProp module of Schrödinger suite (QikProp, 2017_2) [31] and SwissADME [32,33]
webserver (available at http://www.swissadme.ch/, accessed on 3 December 2022) were
used to determine the physicochemical and pharmacokinetic properties of all the phyto-
cannabinoids, which helps to determine the physicochemical significant descriptors and
pharmacokinetically important properties of the phytocannabinoids.

http://www.swissadme.ch/
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3. Results
3.1. Identification of Bioactive Compounds and Targets

A total of 13 phytocannabinoids, found in Cannabis sativa, were retrieved from the
literature [14]. A total of 140 targets of the various phytocannabinoids were identified using
the BindingDB (Supplementary Table S1) and SwissTargetPrediction (Supplementary Table S2)
databases. Additionally, it was discovered that there were 2723 and 4881 RA-related targets
predicted from two distinct databases, namely the GeneCards and DisGeNET databases
(Supplementary Tables S3 and S4). After eliminating the repeating gene symbols, 384 targets
linked to phytocannabinoids and 5728 targets associated to RA were obtained from these
databases. The intersection of targets linked to phytocannabinoids’ bioactive properties
and targets for RA yielded 244 similar targets (Supplementary Table S5) (Figure 1A).
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(A) Venn diagram of phytocannabinoids–rheumatoid arthritis common targets. (B) PPI network of
common targets originated from STRING. (C) Visualization of the PPI network in Cytoscape.

3.2. Phytocannabinoids–Rheumatoid Arthritis Target and PPI Network Analysis

The phytocannabinoids and common targets were added to Cytoscape 3.9.1 for
the construction of a network (Figure 1B,C). This constructed network demonstrated
the existence of many and intricate impacts of phytocannabinoids on RA. Based on the
gradation, the utmost common targets are mentioned in the Supplementary Material
(Supplementary Table S6). The results predicted that the most prominent RA-associated
genes were PIK3CA, PIK3CB, AKT1, AKT2, MAPK8, MAPK9, MAPK10, PRKCB, MAPK14,
IGF1R, BRAF, PRKCZ, PRKCA, and NOS3 due to interaction of phytocannabinoids. The
results of module analysis of the MCODE also predicted that the involvement of the above
genes which supports the present findings (Figure 2A–C). The phytocannabinoids–RA
target network constructed in Cytoscape (Figure 3A) predicted that there were 244 common
target genes between 13 phytocannabinoids and RA. Further, 20 nodes of the common
genes were found to be majorly involved as per the investigation of the topological network
in the Cytohubba plug-in (Figure 3B).
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3.3. GO and KEGG Enrichment Analyses

A total of 4255 terms linked to the therapeutic effects of phytocannabinoids on RA
were found as a result of GO enrichment analysis on common phytocannabinoids–RA
targets. Figure 4A–C displays bubble charts for the top 20 terms in each of the three
categories—biological process, cellular component, and molecular function. The results
of the GO analysis showed that phytocannabinoids mainly suppressed cellular oxidation,
protein phosphorylation, and changes to peptidyl amino acids. The top 20 pathways, which
were ranked by the number of genes engaged in the expressed pathways (Figure 4D–F),
were identified by the KEGG pathway enrichment analysis and were found to be involved
in the interactions of phytocannabinoids to treat RA (Table S7). The findings indicated
that the primary pathways involved in the current study were those that were associated
with cancer, neuroactive ligand–receptor interaction, lipids and atherosclerosis, the calcium
signaling pathway, and the Rap1 signaling pathway. These pathways are primarily asso-
ciated with angiogenesis and inflammation, which are the defining characteristics of RA.
By selecting the top 10 signaling pathways based on the number of genes, this study was
able to identify the main primary targets of phytocannabinoids that are responsible for the
pathogenesis of RA. Additionally, PIK3CA, AKT1, MAPK9, PRKCD, BRAF, IGF1R, and
NOS3 were among the common target genes that were involved in reducing the severity of
RA when different phytocannabinoids were used as treatment. These genes are also known
to play a role in the pathogenesis of RA as shown by Cytohubba’s visualization of these
genes in Cytoscape.
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Figure 4. Results of GO analysis. (A) Dot plot of the biological process category terms from GO
enrichment analysis (the X-axis and Y-axis show the fold enrichment and full names of the processes,
respectively, and the color and size of each bubble represent the gene count and –log10FDR, respec-
tively; the subsequent bubble charts are presented similarly). (B) Dot plot of the cellular component
category terms from GO enrichment analysis. (C) Dot plot of the molecular function category terms
from GO enrichment analysis. (D) Dot plot of pathways highly relevant to the treatment effects of
phytocannabinoids. (E) Hierarchical clustering tree of the KEGG enrichment analysis. (F) Tree tab of
the KEGG enrichment analysis.

3.4. Molecular Docking Validation

Based on the Glidescores of the phytocannabinoids against PIK3CA (PDB ID: 4L23),
the top three phytocannabinoids were discovered to be cannabigerol (−8.309 kcal/mol),
∆9-tetrahydrocannabivarin (−7.334 kcal/mol), and cannabichromene (−7.314 kcal/mol)
(Supplementary Table S8). The phytocannabinoids cannabigerol and cannabichromene
formed H-bonds with amino acid residues, namely Val851 and Tyr836, respectively.
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Cannabigerol formed a π-π interaction with Tyr836. All three phytocannabinoids de-
veloped similar polar interactions with Ser854 and Thr856. From the superimposition of all
three phytocannabinoids, it was found that they fitted well into the common hydrophobic
binding pocket consisting of Met772, Trp780, Ile800, Tyr836, Ile848, Val850, Val851, Met922,
Phe930, and Ile932 (Supplementary Table S9).

In the case of AKT1 (Gene: AKT1), the top three phytocannabinoids were discovered to
be cannabitriol (−6.035 kcal/mol), cannabichromene (−4.599 kcal/mol), and cannabielsoin
(−4.466 kcal/mol). The phytocannabinoids cannabitriol and cannabichromene formed a
common H-bond with Asn279. Cannabitriol formed two additional H-bonds with Lys276
and Asp292. The phytocannabinoid cannabielsoin formed H-bonds with Lys158 and
Glu278. All three phytocannabinoids exhibited common polar interactions with Asn279
and Thr291. The superimposition of the three phytocannabinoids predicted that they all
easily fit into the Leu156, Val164, Ala177, Met227, Tyr229, Ala230, Met281, and Phe438
residues-based shared hydrophobic binding pocket.

In the case of MAPK9 (Gene: MAPK9), the top three phytocannabinoids were found
to be cannabinodiol (−7.664 kcal/mol), cannabichromene (−7.663 kcal/mol), and ∆8-
tetrahydrocannabinol (−6.751 kcal/mol). Cannabinodiol formed H-bond with Ile32 and
Ser155, whereas the phytocannabinoids cannabichromene and ∆8-tetrahydrocannabinol
formed H-bonds with Glu109 and Met111; and Lys55, respectively. All three phytocannabi-
noids formed common polar interactions with Ser34, Asn114, and Ser155. Through the
superimposition of all three phytocannabinoids, it was revealed that they fitted well into
the common hydrophobic binding pocket consisting of Ile32, Val40, Ala53, Ile86, Met108,
Leu110, Met111, Val158, and Leu168.

In the case of PRKCD (Gene: PRKCD), the top three phytocannabinoids were found
to be cannabitriol (−7.308 kcal/mol), ∆9-tetrahydrocannabinol (−5.123 kcal/mol), and
∆9-tetrahydrocannabivarin (−5.121 kcal/mol). All three phytocannabinoids formed two
common H-bonds with Val174 and Gln284, while cannabitriol formed an additional H-bond
with Leu279. All three phytocannabinoids formed four common polar interactions with
Ser173, Hie231, Asn283, and Gln284. It was discovered via the superimposition of all three
phytocannabinoids that they all fit comfortably into the same hydrophobic binding pocket
that is made up of the residues Val174, Cys175, Cys264, Met266, Leu279, Cys280, Ile282,
and Leu286.

In the case of BRAF (PDB ID: 6P3D), the top three phytocannabinoids were found to
be cannabigerol (−9.484 kcal/mol), cannabinodiol (−8.076 kcal/mol), cannabichromene
(−7.522 kcal/mol). The phytocannabinoids cannabigerol and cannabinodiol formed H-
bonds and π-π interactions with Cys532 and Phe595, respectively. All three phytocannabi-
noids formed two common polar interactions with Thr529 and Gln530. It was discovered
via the superimposition of all three phytocannabinoids that they all fit comfortably into the
same hydrophobic binding pocket made up of the residues Ile463, Val471, Ala481, Val2,
Leu514, Trp531, Cys532, Phe583, and Phe595.

In the case of IGF1R (PDB ID: 5FXS), the top three phytocannabinoids were found to be
∆9-tetrahydrocannabinol (−8.569 kcal/mol), ∆9-tetrahydrocannabivarin (−8.402 kcal/mol),
and cannabigerol (−8.190 kcal/mol). All three phytocannabinoids formed an H-bond with
Met1082. They also formed one common polar interaction with Thr1083. It was discovered
by the superimposition of all three phytocannabinoids that they all fit comfortably into
the same hydrophobic binding pocket made up of the residues Leu1005, Phe1010, Val1013,
Ala1031, Leu1081, Met1082, Ile1156, and Met1160.

In the case of NOS3 (PDB ID: 6NH5), the top three phytocannabinoids were found to
be cannabinol (−8.888 kcal/mol), cannabichromene (−8.152 kcal/mol), and cannabigerol
(−8.080 kcal/mol). The phytocannabinoids cannabinol and cannabichromene formed
one common π-π interaction with Trp178. Cannabichromene formed one H-bond with
Ser354, while cannabigerol formed two H-bonds with Cys184 and Pro334. All three
phytocannabinoids formed two common polar interactions with Ser226 and Ser354. It
was discovered by the superimposition of all three phytocannabinoids that they all fit
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comfortably into the same hydrophobic binding pocket that is made up of the residues
Trp178, Ala181, Cys184, Leu193, Ala227, Pro334, Val336, Met339, Phe353, and Phe473
(Figures 5 and S1).
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3.5. Molecular Dynamics

The molecular dynamics simulations of protein–ligand complexes are thought to be
the best developed method for assessing the structure-to-function relationships of macro-
molecules in computer-aided drug design. To clarify the cannabinoid’s potency against
the six proteins associated with RA, an impartial molecular dynamics investigation was
conducted in the current study. The stability and viability of the best docked ligands against
all the target proteins were examined using MD simulation studies, which were run for
100 ns. The root mean square deviation (RMSD), the root mean square fluctuation (RMSF),
and protein–ligand interactions were generated with the production of 100 ns MD simula-
tions, and their relevance in the solidity of the protein–ligand complexes was thoroughly
examined. Protein–ligand interactions and protein–ligand RMSDs were investigated and
visualized during this period.

For the PIK3CA–cannabigerol complex, their RMSD for the first 50 nanoseconds was
more than 2.5 Å, and from 50 nanoseconds on, the ligand started to stabilize with the
protein at above 3.5 Å. It was discovered through protein–ligand contact analysis that
roughly 50% of the amino acids were responsible for the hydrophobic interactions with
cannabigerol. The remaining 50% were engaged in either the H-bond interactions or the
water bridges. Hydrophobic interactions with cannabigerol were largely caused by the
residues Met772, Pro778, Trp780, Ile800, Tyr836, Ile848, Val850, Met922, and Ile932, of
which Met772 and Ile932 were the most accountable at 0.15 ns and 0.20 ns fractions of the
interaction time, respectively. Glu849 and Val851 were responsible for the highest H-bond
contacts at 0.10 ns and 0.25 ns fractions, while Met772, Ser919, and Asn920 were responsible
for forming highest water bridge contacts at 0.20 ns and 0.35 ns fractions.

For the AKT1–cannabitriol complex, their RMSD for the first 60 nanoseconds was
stabilized at above 4 Å, while for the next 40 nanoseconds, both the ligand and protein
RMSDs were slightly fluctuating at 4.8 Å. Through protein–ligand contact analysis, it was
discovered that the residues Phe161, Val164, Ala177, Lys179, and Leu181 were highly
responsible for forming hydrophobic contact with cannabitriol, among which Val164 and
Lys179 were the most accountable ones at 0.3 ns and 0.6 ns fractions of the interaction time,
respectively. Glu234 and Asp439 were responsible for the highest water bridge forming
contacts at 0.3 ns and 0.5 ns fractions. Lys179 and Asp439 were the H-bonding residues,
whereas Glu234 and Asp439 were the residues forming ionic contacts.

The protein–ligand RMSD plots for the MAPK9–cannabinodiol complex showed that
RMSD was greater than 4 Å for the first few nanoseconds, increased to 12 Å after a while,
and then increased to 16 Å before stabilizing there. Through protein–ligand contact analysis,
it was found that the residues Val40, Ala53, Leu57, Ile86, Met108, Leu110, Val158, and
Leu168 were responsible for hydrophobic contacts with cannabinodiol, among which Val40,
Ala53, Val158, and Leu168 were the most accountable ones at 0.40 ns, 0.30 ns, 0.35 ns, and
0.30 ns fractions of the interaction time, respectively. Ile32 and Lys55 were responsible for
the highest water bridging at 0.35 ns, while, on the other hand, Ile32, Lys55, Asn114, Ser155,
and Asn156 were responsible for H-bonding contacts.

The RMSD for the PRKCD-cannabitriol complex was greater than 4 Å for the first
few nanoseconds before increasing to 8 Å and then stabilizing there. According to the
protein–ligand contact study, Ser173, Gln284, and Lys285 in H-bond interactions at 0.8,
1.0, and 0.8 ns of the interaction period, respectively, accounted for the majority of the
protein–ligand connections with cannabitriol. The remaining amino acid residues were in
charge of either creating water bridges or creating hydrophobic interactions.

The RMSD for the BRAF–cannabigerol complex was greater than 1.6 Å for the first
few nanoseconds before increasing to 2.4 Å, then 2.8 Å, and then stabilizing at that value.
Trp531, Phe583, and Phe595 were determined to be primarily in charge of hydrophobic
interactions with cannabigerol at 0.22 ns, 0.15 ns, and 0.14 ns fractions of the interaction
time, respectively, according to the protein–ligand contact study. The majority of the
residues either contributed to the formation of water bridges or H-bonds. Among these,
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Gln461 and Cys532 played a significant role in the formation of H-bonds. Ile463, Glu533,
and Gly534 played a significant role in the formation of water bridges.

The RMSD for the IGF1R-∆9–tetrahydrocannabinol complex was more than 3.0 Å for
the first few nanoseconds, but with time, it increased to 4.8 Å, where it stabilized. Based on
protein–ligand contact analysis, it was found that Met1082 was responsible for the highest
H-bond contact with ∆9-tetrahydrocannabinol at the 1.75 ns fraction of the interaction time.
The amino acid residues Leu1005, Val1013, Ala1031, Met1142, and Ile1160 were mostly
responsible for hydrophobic contacts. Leu1005 and Thr1157 were responsible for forming
water bridges (Figures 6 and S2).

The RMSD for the NOS3–cannabinol complex was higher than 2.4 Å for the first
few nanoseconds, then it increased to 2.8 Å, and ultimately it decreased to 2.4 Å and
stabilized there. The amino acid residues Trp178 and Phe353 were predicted to have the
most hydrophobic interactions with cannabinol based on the protein–ligand contact study.
Most of the water bridging was done by Gly186 and Val185. It was Cys184 that made the
H-bond interaction.

3.6. Induced-Fit Docking and MM-GBSA Calculation

IFD (Figure S3) of all the proteins with their best docked pose-forming phytocannabinoids
(obtained via standard XP-mode docking) predicted that almost all the proteins had improved
Glidescores, with the exception of PIK3CA and PRKCD (Supplementary Table S10). However,
for IFD of PIK3CA with cannabigerol, the number of H-bonds increased from one (in the
normal XP-mode Glide docking) to two (in the IFD-generated pose). From IFD of MAPK9
with cannabinodiol it was found that the number of H-bonds decreased from two (in the
normal XP-mode Glide docking) to one (in the IFD-generated pose). For IFD of PRKCD
with cannabitriol, the number of H-bonds increased from three (in the normal XP-mode
Glide docking) to five (in the IFD-generated pose). For IFD of BRAF with cannabigerol,
the number of H-bonds increased from one (in the normal XP-mode Glide docking) to
two (in IFD-generated pose). Similarly, from IFD of IFG1R with ∆9-tetrahydrocannabinol
it was found that the number of H-bonds increased from one (in the normal XP-mode
Glide docking) to two (in IFD-generated pose). In case of IFD of NOS3 with cannabinol,
the number of π-π stacking interactions increased from one (in the normal XP-mode Glide
docking) to two (in IFD-generated pose). Additionally, one H-bond interaction with Ala177
was observed from the IFD-generated pose which was absent in the normal XP-mode Glide
docked pose. Furthermore, the prime MM-GBSA binding free energies of the best five
docked complexes were calculated and are given in the Supplementary Material (Table S11).

3.7. Physicochemical and ADME/T Studies

Data generated by QikProp predicted that all the expected attributes for phytocannabi-
noids fell inside the acceptable range. The SwissADME-predicted data showed that the
phytocannabinoids had significant values for the studied attributes, and based on their
physicochemical features, they demonstrated drug-like qualities. All phytocannabinoids
obeyed Veber’s rule. The phytocannabinoids cannabigerol and cannabichromene failed to
pass/satisfy the blood–brain barrier (BBB) filter (Figure S4), but other phytocannabinoids,
such as cannabinol, cannabivarin, cannadinodiol, and cannabitriol, were discovered to be
P-glycoprotein (PGP) substrates. It was projected that the majority of phytocannabinoids,
except for cannabielsoin and cannabitriol, would be CYP450 enzyme inhibitors. Both
CYP2C9 and CYP2D6 subtypes were found to be inhibited by cannabielsoin; however only
CYP2D6 subtypes were found to be inhibited by cannabitriol (Supplementary Table S12).
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Figure 6. Molecular dynamics results of key target ligands. Two-dimensional representation
and protein–ligands contact analysis of PIK3CA–cannabigerol (A1,A2), Akt1–cannabitriol (B1,B2),
MAPK9–cannabinodiol (C1,C2), PRKCD–cannabitriol (D1,D2), BRAF–cannabigerol (E1,E2), IGF1R-
∆9–tetrahydrocannabinol (F1,F2), and NOS3–cannabinol (G1,G2) complexes.
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4. Discussion

The chronic inflammatory condition known as arthritis is characterized by immune-
mediated inflammatory sinusitis, which causes hyperplasia, vasculogenesis, pannus devel-
opment, the deterioration of cartilage and bone, joint deformity, and functional impairment.
Many phytocannabinoids, cannabinoid receptors, and enzymes that are part of the endo-
cannabinoid system all contribute to the pharmacological activity of cannabis in different
ways. It is well known that the endocannabinoid system inhibits the pathogenesis of the
inflammatory and autoimmune disease RA. Due to the abundance of natural phytocannabi-
noids, the goal of this study was to build on the signaling pathways, associated proteins,
and genes that cause RA using integrated bioinformatics and network pharmacology. The
general workflow scheme of the present study is depicted in Figure 7.
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We gathered 2723 and 4881 predicted targets for phytocannabinoids from two distinct
databases, namely GeneCards and the DisGeNET database, respectively. Thirteen phy-
tocannabinoids and 244 common targets were obtained by the intersection of RA targets
and phytocannabinoids (with the aid of venny 2.1.0). The PPI enrichment analysis results
were reported with 244 nodes, 699 edges, highest confidence (0.90), and the PPI enrichment
p-value of <1.0 × 10−16. As would be predicted, the proteins interacted with one another
quite a bit. The results of the enrichment analysis showed that the proteins were, collec-
tively, at least loosely physiologically interconnected. For the hub PPI, we chose nodes
whose median edge count was greater than double that of all other nodes.

The results of the PPI network and GO analysis predicted that the key proteins in-
volved in the numerous phytocannabinoids–RA common targets were primarily those
involved in the pathways for cancer, neuroactive ligand–receptor interaction, lipids and
atherosclerosis, calcium signaling, and RAP signaling. In cancer, there is an abnormality in
the signaling of PI3K/Akt/mTOR due to which many types of research have been done
to find the inhibitors of PI3K/Akt/mTOR signaling which may act as anticancer agents.
RA is an autoimmune-mediated inflammatory disease where the abnormal proliferation
of immune cells, macrophages, monocytes, dendritic cells, and synovial fibroblasts may
significantly overlap with the abnormal growth of cancer cells. The results of some recent
studies in arthritis using PI3K signaling inhibitors suggest that small molecule inhibitor
strategies directed at PI3K signaling may be useful for immune-mediated arthritis [34].
The present study predicted that PIK3CA and AKT are the most common genes found
in the top pathways of phytocannabinoids to combat arthritis. A previous study sug-
gested that phytocannabinoids are responsible for the regulation of PI3K/AKT/GSK-3 in
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the brain [35]. Hence, PI3K and AKT may be the target of phytocannabinoids in RA. A
previous study revealed that MAPK9 causes an increase in cell proliferation, migration,
invasion, inflammatory response, facilitates apoptosis in RA patients, and promotes the
progression of fibroblast-like synoviocytes [36]. Protein kinase C like PRKCD is known to
have a crucial role in the pathogenesis of autoimmune diseases like RA [37]. The current
study suggested the involvement of MAPK and the protein kinase C pathway in combating
arthritis by phytocannabinoids. Previous in vitro studies in cell lines reveal that phyto-
cannabinoids cause cytotoxicity in leukemic cells through the MAPK pathway [38]. The
cannabinoid receptor 2 also has an inhibitory role in synovial fibroblasts in RA through
protein kinase [39]. These results support our current findings. The BRAF gene was found
to transform the rheumatoid synovial fibroblasts and lead to the destruction of articular
cartilage and bone in RA [40]. Previous studies revealed that IGF-1R signaling leads to
inflammation in RA due to the formation of various cytokines like IL-6 and activation of
T cells [41]. A previous study revealed that cannabinoid receptors promote the chronic
intermittent hypoxia-induced breast cancer metastasis via IGF-1R/AKT/GSK-3β. It indi-
cates that phytocannabinoids may ameliorate RA through cannabinoid-receptor-induced
IGF-1R and AKT. There is a common link of pathogenesis of RA and atherosclerosis. Pa-
tients with RA are at approximately 1.5-fold risk of atherosclerotic cardiovascular disease
(CVD) compared with the general population [42]. Pro-inflammatory cytokines such as
tumor necrosis factor alpha and interleukin-6, involved in the pathogenesis of RA, are
also independently predictive of subsequent cardiovascular disease (CVD). In RA, inflam-
mation alters HDL constituents and the concentration of LDL and HDL, thus facilitating
atherosclerosis and CVD events. On the other hand, the increase of oxidative processes,
frequently observed in RA, also induces atherosclerosis [43]. Cannabinoids were reported
to cause a decrease in inflammation during atherosclerosis [44] which correlates with the
current findings. A previous study reported that the alterations in calcium signaling may
cause the functional T cell abnormalities associated with RA [45,46]. The RAP signaling
pathway is also responsible for the occurrence of RA. RAP1 is deregulated in T lympho-
cytes, which leads to the overproduction of reactive oxygen species, which promotes the
hyporesponsiveness of synovial T lymphocytes, leading to inflammation [47]. A previous
study revealed that the cannabinoid receptor (CB1) causes neurite outgrowth through the
Rap1 pathway [48]. This indicates that phytocannabinoids may alter the RAP1 pathway
through the cannabinoid receptor (CB1). Nitric oxide is produced by nitric oxide synthetase
(NOS). Important cytokines produced in RA are IL-1 and TNF-α, which stimulate NOS
in inflammatory cells and increase the production of nitric oxides. There is an increase in
nitric oxide levels in arthritis, as shown in preclinical and clinical studies [49]. A previous
study reported that phytocannabinoids may prevent RA conditions by decreasing nitric
oxide levels and cytokines [50] which supports the current findings. The results of the
present studies correlate with the results of the previous similar studies that substantiate
the present findings [51,52].

In light of the current findings of network pharmacology, PIK3CA, AKT1, MAPK9,
PRKCD, BRAF, IGF1R, and NOS3 were chosen as the seven key target proteins closely
related to the progression of RA. These proteins were further subjected to molecular
docking with phytocannabinoids. Negative binding energy indicates effective binding
to the target. Lower binding energy suggests a stable ligand–receptor complex better
explained as <−5 kcal/mol called good binding activity and <−7 kcal/mol called strong
binding activity. Except for AKT1 and PRKCD, the Glidescores of the top three compounds
against the other five proteins were in the range of −8.888 to −6.751 kcal/mol. The
top three active ingredients were shown to have a strong binding interaction with their
respective proteins. It entails unexpected bias from the materiality, which could hasten
the anonymous fallacy in in vitro or in vivo studies. However, the results of the molecular
docking experiment suggest the potential therapeutic approaches and could guide trials
in animals. Network pharmacology is currently used extensively for various traditional
medicines, such as Indian traditional medicine, traditional Chinese medicine, Kampo,
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traditional Korean medicine, etc. Network pharmacology research is being conducted
owing to its robust potential to investigate convoluted relationships among multiple targets.
Additionally, network pharmacology accelerates the modernization of the Indian traditional
system of medicine by usefully illuminating the synergistic effects of biochemical and
systemic biology methodologies. Researchers may identify prospective active ingredients
for upcoming in vitro and in vivo studies by using molecular docking to lay out an effective
binding mode of the active ingredients with disease-related important target proteins.
However, a number of the Ayurvedic formula’s constituents can have antagonistic and
synergistic effects on the body while being treated because they target the same protein. It
is important to consider these implications and to continue to assess them. The findings of
MM-GBSA (binding free energy) and IFD support the molecular dynamics findings that
the ligand is stable within the protein. One of the finest molecular dynamics results was
obtained with the Akt1-cannabitriol complex, despite its Glidescore of −6.035 kcal/mol.
Among the seven proteins, the phytocannabinoids cannabigerol, canabichromene, and
∆9-tetrahydrocannabivarin had the highest Glidescores and the most drug-like qualities, as
well as acceptable ADME/T profiles.

The present study evaluated the integrated bioinformatics and network pharmacology
to identify therapeutic targets and molecular processes involving the endocannabinoid sys-
tem in patients RA. The work used a combined bioinformatics and network pharmacology
approach to further examine signaling pathways, associated proteins, and genes that may
implicate naturally occurring phytocannabinoids in the pathogenesis of RA. The current
research findings suggest that the abundant phytocannabinoids can exert their curative
effect through a synergistic effect of multi-components, multi-targets, and multi-pathways
in the treatment of RA. However, due to the limitation of network pharmacology and
molecular docking, a more complete evaluation of the role of the endocannabinoid system
in the immune landscape in patients with RA and a comprehensive analysis of patients
with RA and normal controls would be necessary. Hence, further evaluation of in vitro and
in vivo studies needs to be carried out to validate the current findings, which is the future
scope of the present study. The probable mechanisms of phytocannabinoids in rheumatoid
arthritis are depicted in Figure 8.
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5. Conclusions

The network pharmacology analysis results predicted that the processes such as
response to oxygen-containing compounds and peptodyl-amino acid modification are
related to the potential treatment mechanisms for rheumatoid arthritis. These biological
actions may be coordinated by cancer, neuroactive ligand–receptor interaction, lipids
and atherosclerosis, the calcium signaling pathway, and the Rap1 signaling pathway.
According to the results of molecular docking, in the context of rheumatoid arthritis,
phytocannabinoids may bind to important target proteins such as PIK3CA, AKT1, MAPK9,
PRKCD, BRAF, IGF1R, and NOS3. Due to a lack of experimental validation, this study
has shortcomings, although it can inspire in vitro or in vivo studies. However, due to the
limitations of network pharmacology and molecular docking, a more complete evaluation
of the role of the endocannabinoid system in the immune landscape in patients with RA and
a comprehensive analysis of patients with RA and normal controls would be necessary. This
entire study predicted the phytocannabinoids’ systemic biological characteristics. Future
experimental research is still needed to confirm the results so far.
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