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Abstract: Despite major advances in pharmacotherapy and interventional procedures, coronary
artery disease (CAD) remains a principal cause of morbidity and mortality worldwide. Invasive
coronary imaging along with the computation of hemodynamic forces, primarily endothelial shear
stress and plaque structural stress, have enabled a comprehensive identification of atherosclerotic
plaque components, providing a unique insight into the understanding of plaque vulnerability and
progression, which may help guide patient treatment. However, the invasive-only approach to
CAD has failed to show high predictive value. Meanwhile, it is becoming increasingly evident that
along with the “vulnerable plaque”, the presence of a “vulnerable patient” state is also necessary to
precipitate an acute coronary thrombotic event. Non-invasive imaging techniques have also evolved,
providing new opportunities for the identification of high-risk plaques, the study of atherosclerosis
in asymptomatic individuals, and general population screening. Additionally, risk stratification
scores, circulating biomarkers, immunology, and genetics also complete the armamentarium of a
broader “vulnerable plaque and patient” concept approach. In the current review article, the invasive
and non-invasive modalities used for the detection of high-risk plaques in patients with CAD are
summarized and critically appraised. The challenges of the vulnerable plaque concept are also
discussed, highlighting the need to shift towards a more interdisciplinary approach that can identify
the “vulnerable plaque” in a “vulnerable patient”.

Keywords: coronary disease; atherosclerosis; coronary plaque; myocardial infarction; imaging;
shear stress

1. Introduction

Despite significant advances in the prevention, diagnosis, and management of coro-
nary artery disease (CAD), cardiovascular disease remains one of the leading causes of
morbidity and mortality worldwide. CAD accounts for approximately 20% of all deaths
in Europe and the United States every year [1], while it is estimated that approximately
20.1 million Americans have CAD. Furthermore, CAD is an underlying cause of death in
approximately 1 out of every 5 deaths in the U.S. [1,2].

In the past decades, the quest to recognize high-risk patients (i.e., “vulnerable pa-
tients”) as well as “vulnerable plaques” has generated much interest [3]. Fissures and
erosions on the intima of coronary arteries were initially described as the origin of throm-
bosis in the 1960s [4], while the association of myocardial infarction with the rupture or
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erosion of an atherosclerotic plaque was noted [5–7]. The primary cause of coronary plaque
ruptures is a lesion called thin-capped fibroatheroma (TCFA). Intracoronary imaging stud-
ies in humans using a variety of imaging tools, including intravascular ultrasound (IVUS)
and optical coherence tomography (OCT), have proved to be particularly useful in the
in vivo identification and visualization of TCFAs and other high-risk plaque characteris-
tics [8]. Invasive imaging showed that other than TCFAs, plaque erosion and calcified
nodules may also give rise to thrombotic events [9–11]. However, results of studies that
have been published lately and have used invasive imaging techniques for “vulnerable
plaque” identification have failed to demonstrate high prognostic performance or clinical
utility of plaque imaging, thereby indicating that additional information is needed beyond
the “vulnerable plaque” concept to identify vulnerable patients [12,13].

Currently, research is shifting towards a holistic approach of identifying the “vulnera-
ble patient” and indicating the “burden” of disease as a major predictor of cardiovascular
risk [14]. To this end, risk stratification scores, circulating biomarkers, antibodies, and
genetic scores can also provide valuable insight into distinguishing patients at risk of an
acute coronary event. Further, assessment of invasive and non-invasive coronary hemody-
namic indices has been associated with adverse outcomes, while the use of non-invasive
technology, including coronary computed tomography angiography (CCTA), is being pro-
posed as a screening modality to exclude obstructive CAD, even in low-to-moderate risk,
asymptomatic individuals, in whom more invasive techniques cannot be performed.

Here, available diagnostic modalities used for identifying high-risk plaques and
detecting the progression of atherosclerosis in patients with suspected or diagnosed CAD
are reviewed. In addition, contemporary challenges of the “vulnerable plaque”-only
concept are discussed, and alternative strategies for identifying the “vulnerable plaque”
occurring in a “vulnerable patient” are summarized.

2. Pathophysiology of Coronary Atherosclerosis

Plaque morphology goes through various phases before leading to an acute thrombotic
event [15,16]. The earliest change is intimal thickening and includes layers of smooth muscle
cells (SMCs) as well as extracellular matrix without lipid deposits, foam cells (lipid-laden
macrophages), and thrombosis. An intimal xanthoma or fatty streak is a lesion primarily
consisting of abundant foam cells interspersed within an SMC- and proteoglycan-rich
intima [17,18]. Pathologic intimal thickening (PIT) represents the earliest stage of progressive
atherosclerosis and is distinguished by the dispersion of surface SMCs and a proteoglycan
matrix with lipid accumulation and focal deposits of calcium [19]. Notably, macrophage
infiltration of the lipid-rich pool together with the death of these cells results in the conver-
sion of the lesion to a more advanced one called fibroatheroma [20]. Fibroatheroma lesions
are divided into “early core” and “late core”, depending on the stage of necrosis (early
or late) of their cores. Early necrotic cores typically have cholesterol clefts, macrophages,
and proteoglycans or collagen, while late cores usually consist of numerous cholesterol
clefts and cellular debris with a characteristic absence of extracellular matrix [21,22]. As
the fibroatheroma lesion progresses, hypoxia, oxidative stress, and macrophage-induced
inflammation can promote the production of vascular endothelial growth factor (VEGF),
leading to neovascularization. These neovessels inherently lack SMCs and gap junctions
in the endothelium and, thus, are prone to leak, resulting in intraplaque hemorrhage (IPH),
necrotic core expansion, and, ultimately, plaque rupture [23].

TCFA, the reputed “vulnerable plaque” (i.e., a precursor of plaque rupture), is distin-
guished by the loss of SMCs, the lipid-rich extracellular tissue, and the abundant inflamma-
tory infiltrates (macrophage predominance). The extent of the lipid core, the fibrous cap
thickness, and its structure are indicators of plaque vulnerability; a cap thickness ≤65 µm
is considered thin. A representative TCFA with its corresponding IVUS and OCT image is
shown in Figure 1 [24].
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plaque and without dense calcium was observed at 10 o’clock (arrowheads). (B) A corresponding 
OCT image indicated signal-poor lesions with an overlying signal-rich band. The minimum fibrous 
cap thickness was 50 μm. (C) A corresponding histological image showing large necrotic cores cov-
ered by a thin (50-μm) fibrous cap (hematoxylin-eosin stain, scale bar = 500 μm).” Reprinted from 
Fujii K, et al. (2015) [24], with permission from Elsevier. 
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and smokers [26]. According to an in vivo OCT study, individuals with underlying plaque 
erosion are more likely to have delayed healing after stenting [27]. Finally, complicated 
calcified nodules account for a minority (<10%) of patients with ACS. These are character-
ized by fibrous cap disruption and thrombi with dense nodules of calcium. They appear 
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artery, where there is maximal coronary tortuosity. Additionally, they tend to occur in 
heavily calcified vessels of patients with advanced age or chronic kidney disease [28]. 

Although it has been well-established that these three distinct pathologies (plaque 
rupture, plaque erosion, and calcified nodule) can generate ACS, individuals with ACS 
are most commonly managed with coronary stenting. However, stenting can lead to com-
plications, such as stent thrombosis and restenosis, and thus, certain patients with ACS 
may benefit from tailored therapy with other interventional treatment modalities, such as 
isolated thromboaspiration and drug-coated balloons, based on the underlying patho-
physiological entity. To this end, several studies have indicated that, for example, ACS 
caused by plaque erosion could be treated with antiplatelet drugs rather than stent im-
plantation [29,30]. Additionally, in the EROSION study (“Effective Anti-Thrombotic Ther-
apy Without Stenting: Intravascular Optical Coherence Tomography–Based Management 
in Plaque Erosion”), selected individuals with ACS arising from plaque erosion that were 
prospectively enrolled and received antiplatelet therapy without stenting had favorable 
1-month and 1-year clinical outcomes [31,32]. These results confirmed the merits of a more 
customized therapy in patients with ACS, but due to the small sample size, further re-
search has to be conducted before this therapeutic paradigm is incorporated into clinical 
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Figure 1. “A Representative Case of OCT- and IVUS-Defined TCFA. (A) Grayscale IVUS showing a
plaque burden of 82% and a remodeling index of 1.31. Backward signal attenuation behind the plaque
and without dense calcium was observed at 10 o’clock (arrowheads). (B) A corresponding OCT image
indicated signal-poor lesions with an overlying signal-rich band. The minimum fibrous cap thickness
was 50 µm. (C) A corresponding histological image showing large necrotic cores covered by a thin
(50-µm) fibrous cap (hematoxylin-eosin stain, scale bar = 500 µm).” Reprinted from Fujii K, et al.
(2015) [24], with permission from Elsevier.

Although plaque rupture originating from TCFA accounts for most acute coronary
syndromes (ACS), ACS can also be generated from plaque erosion or a calcified nodule. As
mentioned above, plaques that rupture tend to have a thin fibrous cap, a large lipid core,
and abundant macrophages along with a fibrin-rich thrombus. On the contrary, plaque
erosion tends to occur in plaques that have little to no lipid core, many proteoglycans and
glycosaminoglycans, abundant neutrophils and SMCs, and a platelet-rich thrombi [25].
Additionally, the prevalence of plaque erosion is higher in young females and smokers [26].
According to an in vivo OCT study, individuals with underlying plaque erosion are more
likely to have delayed healing after stenting [27]. Finally, complicated calcified nodules
account for a minority (<10%) of patients with ACS. These are characterized by fibrous
cap disruption and thrombi with dense nodules of calcium. They appear to be located
predominantly in the mid-right coronary artery and left anterior descending artery, where
there is maximal coronary tortuosity. Additionally, they tend to occur in heavily calcified
vessels of patients with advanced age or chronic kidney disease [28].

Although it has been well-established that these three distinct pathologies (plaque
rupture, plaque erosion, and calcified nodule) can generate ACS, individuals with ACS
are most commonly managed with coronary stenting. However, stenting can lead to com-
plications, such as stent thrombosis and restenosis, and thus, certain patients with ACS
may benefit from tailored therapy with other interventional treatment modalities, such
as isolated thromboaspiration and drug-coated balloons, based on the underlying patho-
physiological entity. To this end, several studies have indicated that, for example, ACS
caused by plaque erosion could be treated with antiplatelet drugs rather than stent implan-
tation [29,30]. Additionally, in the EROSION study (“Effective Anti-Thrombotic Therapy
Without Stenting: Intravascular Optical Coherence Tomography–Based Management in
Plaque Erosion”), selected individuals with ACS arising from plaque erosion that were
prospectively enrolled and received antiplatelet therapy without stenting had favorable
1-month and 1-year clinical outcomes [31,32]. These results confirmed the merits of a more
customized therapy in patients with ACS, but due to the small sample size, further research
has to be conducted before this therapeutic paradigm is incorporated into clinical practice.

3. Identifying the Vulnerable Plaque
3.1. Invasive Imaging in Medical Practice

IVUS is considered the gold standard technique to assess plaque burden, and IVUS
virtual histology (IVUS-VH) uses radiofrequency signals to examine anatomic features of
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the “high-risk plaque”. However, IVUS has relatively low spatial resolution compared to
OCT, rendering it unable to measure the thickness of a fibrous cap over a lipid core, as well
as to verify plaque erosion. Moreover, IVUS has a relatively low ability to differentiate the
amount and distribution of the plaque lipid content.

The prognostic value of IVUS-VH in identifying plaque characteristics associated
with adverse events was studied in three clinical studies: “Providing Regional Obser-
vations to Study Predictors of Events in the Coronary Tree” (PROSPECT), “VH-IVUS
in Vulnerable Atherosclerosis” (VIVA), and the “European Collaborative Project on In-
flammation and Vascular Wall Remodeling in Atherosclerosis-Intravascular Ultrasound
Study” (AtheroRemo-IVUS). The PROSPECT study [13], the VIVA-VH study [33], and
the AtheroRemo-IVUS study [34] showed that (1) a minimum lumen area <4 mm2, (2) an
increased plaque burden (>70%), and (3) TCFA can identify lesions prone to progress and
lead to ACS (Figure 2). However, the positive predictive value (PPV) of these three charac-
teristics in identifying culprit lesions was low (18.2%) in the PROSPECT study. Although all
three studies indicated that there was an association between high-risk plaque features and
MACE, there are significant limitations: (1) in the PROSPECT study, the event rate was low,
and the vast majority of events consisted of rehospitalizations for unstable or progressive
angina; (2) the VIVA study had a small number of patients that undermines the reliability
of the results; and (3) in the AtheroRemo-IVUS study, IVUS-VH was performed only in
one vessel, as opposed to all-vessel imaging used in the PROSPECT and VIVA studies, and
correlations were made on an individual-level basis, as opposed to the specific-to-lesion
manner used in the PROSPECT and VIVA studies.
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Figure 2. “Kaplan-Meier plot of cumulative MACE Rates from the VIVA (VH-IVUS in Vulnerable
Atherosclerosis) study. (A) All lesions, (B) lesions with plaque burden (PB) 70%, (C) all non-calcified
virtual histology intravascular ultrasound thin-capped fibroatheroma (VHTCFA), (D) non-calcified
VHTCFA with PB 70%, (E) non-culprit lesions, and (F) culprit lesions. MACE: major adverse cardiac
event.” Reprinted from Calvert PA, et al. (2011) [33], with permission from Elsevier.
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OCT is broadly used for plaque characterization, especially for the detection of TCFA
and rupture [35]. OCT provides unsurpassed spatial resolution (10 times higher than IVUS)
and manages to discriminate plaque elements, and also captures macrophage accumula-
tions in the vessel wall [35,36]. Macrophages, in the context of a fibroatheroma, may be
depicted by intravascular OCT as regions of increased signal that are more intense than
the background noise [37]. Furthermore, OCT is currently the imaging modality providing
the highest accuracy for measuring fibrous cap thickness, which can help differentiate
among fibroatheromas using 65 microns as the cut-off. Studies with OCT technology have
indicated that a larger lesion and increased plaque burden (when visible by OCT) might
suggest an increased risk of acute coronary events. OCT can also estimate the therapeutic
effect of various agents on plaque characteristics. To illustrate, various studies have used
serial OCT to assess the effect of statins on plaque stabilization and fibrous cap thickness
(FCT) in patients with ACS [38,39]. Results from a systematic review and meta-analysis of
these studies have shown that statins can lead to an increase in FCT with the magnitude
of the effect varying with the different statins [40]. Similarly, the randomized, controlled
HUYGENS study was conducted to assess the impact of the proprotein convertase subtil-
isin kexin type-9 (PCSK-9) inhibitor evolocumab on atherosclerosis regression in patients
treated with the maximum statin dose (NCT03570697) [41]. The effect was determined us-
ing OCT measures of plaque composition, and the results showed that combining statin and
evolocumab contributes to plaque stabilization and regression [41,42]. Serial multimodality
intracoronary imaging, including OCT, IVUS, and near-infrared spectroscopy (NIRS), have
also been used to determine the effects of the PCSK-9 inhibitor alirocumab when added
to statin therapy for the treatment of ACS in the PACMAN-AMI double-blind, controlled,
randomized trial [43]. The results showed that the addition of alirocumab contributed to
atheroma regression in non-culprit arteries [44]. Another important aspect of OCT is that it
can identify microchannel networks within plaques that suggest the presence of neoangio-
genesis [45]. Neoangiogenesis augments blood flow, and thus increases inflammatory cells
and cytokines in the atheromas. However, in contrast to IVUS, one of the major limitations
of OCT technology is its limited depth of penetration, and thus imaging the outer vessel
wall or estimating plaque burden is rather problematic.

NIRS—a tool widely used to discover the composition of substances—has been in-
vestigated as a potential technique to ascertain the chemical constituents of coronary
plaques [46,47]. NIRS is capable of recognizing lipid components (lipid core plaque—a po-
tential clinical correlate of the “vulnerable plaque”), particularly lipid-rich TCFAs. Madder
et al. explored the relationship between large, lipid-rich plaques (LRPs) identified by NIRS
technology at non-culprit segments (locations of a culprit vessel that were not stented) and
future major adverse coronary and cerebrovascular events (MACCE) [48] (Figure 3). Large
LRP was defined as “a maximum lipid core burden index in 4-mm (maxLCBI4mm) ≥500”.
MACCE developed in 58.3% of individuals with large LRP as opposed to only 6.4% of
patients with a maxLCBI4mm of less than 500. NIRS’s greatest deficiency, though, is its
inability to provide information regarding the lumen, plaque anatomy, and morphology.
To this end, a hybrid NIRS-IVUS catheter has been developed, providing simultaneous
chemical and structural data [49]. Notably, NIRS-IVUS is unique in that it is the only
hybrid diagnostic intravascular technology that has been approved for use in clinical prac-
tice worldwide [50]. An OCT-NIRS device has also been developed at the Massachusetts
General Hospital in the U.S. [51]. This catheter is aimed to provide both OCT and NIRS
data with a single pullback, delivering both structural and chemical information for more
accurate identification of “vulnerable plaques” and “vulnerable patients”. A commercial
OCT-NIRS catheter is currently being developed by SpectraWAVE, Inc., and will soon be
available for clinical use [52].
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Figure 3. “Associations of short-term and long-term major adverse cardiac events in the
ATHEROREMO-IVUS study. p-values are obtained with the log-rank test. Overall p-value 0–6 months
is 0.009; overall p-value 6–12 months is 0.002. PB, plaque burden; TCFA, thin-cap fibroatheroma.”
Reproduced from Cheng JM, et al. (2014) [34], with permission from Oxford University Press.

3.2. Novel Invasive Imaging Modalities

To date, the value of invasive imaging modalities in predicting acute thrombotic events
remains low for clinical utility (Table 1). However, novel invasive modalities are emerging,
and aside from NIRS-IVUS technology, an abundance of other hybrid imaging tools have
also been introduced lately. The combination of near-infrared fluoroscopy (NIRF) with
OCT is a prosperous novel strategy to simultaneously assess molecular and morphological
aspects of atheromas in the coronary tree [53]. Molecular imaging is another novel field
that intends to capture molecular and biological aspects of organisms by injecting specially
designed imaging substances and then using matched imaging modalities. The hybrid
catheter (NIRF-OCT) aims to link structural data from OCT with NIRF data, and can
visualize in vivo lumen morphology and inflammation when used in animals [54].

Intravascular photoacoustic (IVPA) technology is a diagnostic technique particularly
useful for exploring how lipid accumulations are distributed in the coronary arteries [55].
Compared to NIRS, IVPA imaging has increased depth resolution and, thus, it can help
identify the specific location and volume of the lipid deposits within the atherosclerotic
plaque and its relation to the lumen border. Nevertheless, similar to other novel modalities,
there are technical and regulatory limitations that have to be surpassed before IVPA is
incorporated into medical practice.
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Table 1. A summary of studies that have assessed the value of invasive imaging modalities in
predicting adverse coronary events.

Modality Study * N Independent Predictor(s) Endpoint(s) Mean
Follow-Up Hazard Ratio p-Value

IVUS & VH

PROSPECT (“Providing
Regional Observations to

Study Predictors of Events in
the Coronary Tree”)

Stone et al. [13]

697

Plaque burden ≥ 70%

Non-culprit
MACE

3.4 years

5.03 (2.51–10.11) <0.001

Minimal lumen
area ≤ 4 mm2 3.35 (1.77–6.36) <0.001

Thin cap fibroatheromas 3.21 (1.61–6.42) 0.001

Inaba et al. [56] 697
Negative remodeling

index Non-culprit
MACE

3 years
2.39 (1.07–5.34) 0.033

Positive remodeling index 2.34 (1.00–5.44) 0.049

Zheng et al. [57] 697

Distance from ostium to
max necrotic core site

Plaque rupture NA

OR 0.86
(0.76–0.98) 0.02

External elastic membrane
area

OR 1.14
(1.11–1.17) <0.0001

Plaque burden OR 2.05
(1.63–2.58) <0.0001

Right coronary artery
location

OR 2.16
(1.25–3.27) 0.006

Calcium OR 0.09
(0.05–0.18) <0.0001

Radiofrequency
-IVUS

AtheroRemoIVUS (“The
European Collaborative Project
on Inflammation and Vascular

Wall Remodeling in
Atherosclerosis—Intravascular

Ultrasound Study”) [58]

581

Minimal lumen area ≤ 4 mm2 MACE
4.7 years

1.49 (1.07–2.08) 0.020

Plaque burden ≥ 70% Non-culprit
MACE 1.66 (1.06–2.58) 0.026

Angiography &
IVUS plus

CFD

PREDICTION (“Prediction of
Progression of Coronary

Artery Disease and Clinical
Outcome Using Vascular

Profiling of Shear Stress and
Wall Morphology”)

Stone et al. [12]

506
Plaque burden ≥ 58%

PCI 1 year 17.57 (3.67–84.20) <0.001

ESS < 0.98 Pa 3.18 (1.20–8.43) 0.020

NIRS AtheroRemo-NIRS
Oemrawsingh et al. [59] 203 LCBI ≥ 43% Non-culprit

MACE 1 year 4.04 (1.33–12.29) 0.01

IVUS & NIRS
ATHEROREMO-NIRS and

Integrated Biomarker Imaging
Study 3 (IBIS-3) studies [46]

286 Max LCBI4mm (per
100-unit increase)

Non-culprit
MACE 4.1 years 1.22 (1.10–1.35) <0.001

Spectrum NIRS-IVUS
registry [48] 202 MaxLCBI4mm (per

100-unit increase)
Target vessel

failure 3.5 years 1.6 (1.2–2.1) 0.0040

LRP (Lipid Rich Plaque)
Study [60] 1563 MaxLCBI4mm

(per 100-unit increase)
Non-culprit

MACE 2 years 1.21 (1.09–1.35) 0.0004

OCT, NIRS,
IVUS & VH

PREVENT
(“The Preventive Coronary

Intervention on Stenosis With
Functionally Insignificant

Vulnerable Plaque”,
ClinicalTrials.gov Identifier:

NCT02316886)

1600 Target vessel
failure 2 years Recruiting

NIRS & IVUS

PROSPECT II
(“Providing Regional
Observations to Study

Predictors of Events in the
Coronary Tree”) [47]

898

High lipid content

Non-culprit
MACE

3.7 years

OR 3.80
(1.87–7.70) 0.0002

Plaque burden ≥ 70% OR 5.37
(2.42–11.89) <0.0001

MaxLCBI4mm ≥ 324.7
Plaque burden ≥ 70%

OR 11.33
(6.10–21.03)

* All three epicardial coronary vessels (left anterior descending, left circumflex, right coronary) were analyzed
in all of the studies included in the table. Abbreviations: CFD, computational fluid dynamics; ESS, endothelial
shear stress; IVUS, intravascular ultrasound; LCBI, lipid core burden index; MACE, major adverse cardiovascular
events; N, sample size; NA, not applicable; NIRS, near-infrared spectroscopy; OCT, optical coherence tomography;
OR, odds ratio; PCI, percutaneous coronary intervention; VH, virtual histology.

3.3. Biomechanical Regulators of Atherothrombosis

Hemodynamic forces, primarily endothelial shear stress (ESS), have a pivotal role
in cardiovascular pathophysiology and are inherently related to the focal nature of CAD.
Low local ESS imposes a multifactorial effect on the arterial endothelium and is associated
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with the development and progression of atherosclerosis [61]. In vivo ESS assessment
is accomplished by combining 3-D coronary imaging (e.g., coronary angiography with
IVUS or OCT) with computational fluid dynamics (CFD) [62,63]. High-risk plaque features
are typically associated with low ESS [64], while ESS is also an independent predictor of
atherosclerosis progression and ACS [12]. The PREDICTION study showed that low ESS
and plaque burden >70% can identify with a PPV of 41% which plaques are more likely
to progress and should be treated with percutaneous coronary intervention (PCI). A PPV
of 53% for identifying lesions prone to cause ACS has been shown when low ESS, a high
plaque burden, and a large necrotic core are all present [65] (Figure 4), indicating that a
combination of these predictors could improve prognostication of plaque vulnerability.
Additionally, results from a post hoc analysis of the PROSPECT study have shown that
low ESS at baseline provides substantial incremental value independent of aforementioned
traditional factors in predicting MACE over a 3-year follow-up (54.9% for non-culprit
lesions with baseline low focal ESS and high-risk anatomy vs. 19.5% for patients with
non-culprit lesions with low ESS without high-risk anatomy; p = 0.004) [66,67].
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Figure 4. Prognostic performance of IVUS-based imaging (large plaque burden [PB] and large
necrotic core [NC]) and hemodynamic (endothelial shear stress [ESS]) predictors of the occurrence
of percutaneous coronary intervention (PCI) for baseline luminal obstructions due to symptoms or
substantial lesion progression. The data on prevalence refer to one or more such baseline luminal
obstructions per patient. PV: predictive value. Adapted from Papafaklis M, et al. (2016) [65], with
permission from Elsevier.

Apart from ESS, blood flow also generates another hemodynamic force acting on
plaques: the plaque structural stress (PSS). Circumferential and axial stresses resulting from
blood pressure contribute to the total strain distribution within the vessel and are described
as novel aspects of vulnerable plaques [68]. More specifically, circumferential tension stems
from hydrostatic pressure, which applies an outward radial force on the arterial wall. The
distribution of this pressure relies on the mechanical characteristics and the organization
of the vessel components. Axial plaque stress (APS), on the contrary, derives from the
longitudinal expansion of vessels because of the cyclical blood flow and motion of the heart.
Analysis of these forces along the centerline isolates the longitudinal component of the
hemodynamic stress. Obstructions of coronary flow can create pressure gradients across
coronary plaques, causing an increase in axial tension and overall plaque stress, leading to
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plaque rupture. In a 3-D OCT study of patients presenting with ACS, culprit areas were
exposed to higher APS at the time of the event. Although the number of study participants
was small (only 15 patients), the multivariable analysis demonstrated that axial plaque
stress was one of the most significant independent predictors of the location of the culprit
lesions [69].

4. Challenges of the “Vulnerable Plaque” Concept

So far, published studies have failed to show significant clinical benefits for plaque
imaging. Despite the independent association of image-based findings with clinical events,
the highest positive predictive value achieved by intravascular imaging studies is only
53%. In patients with ACS, plaque rupture is often found far from baseline culprit lesions,
suggesting that vulnerability may be dispersed in the coronary arteries [70]. This indicates
that discerning a “vulnerable state” in a patient may be more important than identifying
focal sites of vulnerability [14].

Moreover, the introduction of statin therapy with an improvement of the lipid profile,
efforts to control tobacco abuse, and better management of insulin resistance/diabetes
and hypertension have reshaped and stabilized plaques through an increase in the fibrous
cap thickness, leading to a relative increase in superficial erosion compared to plaque
ruptures regarding ACS [7,42,71,72]. In addition, an increase in non-ST segment elevation
myocardial infarction (NSTEMI) has been observed [73]. These findings suggest a shift in
the pathological mechanisms and presentations of ACS mainly due to primary prevention
measures. Analysis of >1500 plaques showed that macrophage-rich (a classical component
of ruptured plaques) atheromas have significantly reduced, proving the claim that the
“vulnerable plaque” concept has receded in relevance [74].

“Vulnerable” characteristics of plaque morphology change over time with their sus-
ceptibility to rupture or erosion increasing or decreasing. Approximately 75% of TCFAs
transform into thick-cap fibroatheromas or fibrotic atheromas within a year due to processes
of rupture and healing, further supporting the concept of subclinical plaque alterations [75].
The final act of atherosclerosis, additionally, is regulated by numerous systemic factors such
as blood viscosity, platelet activity, fibrinogen levels, and the interaction between the coag-
ulation and fibrinolytic system, indicating once again the systemic nature of the disease.

A shift from the concept of the “vulnerable plaque” to the “burden of disease” through
non-invasive imaging, combined with conventional risk factors and reflecting a “patient-
centered” approach, is gaining ground lately [76–80].

5. Identifying the “Vulnerable Patient”
5.1. Risk Scores

A preventive approach or early prediction of CAD events in the asymptomatic popu-
lation was the main notion that evolved in the era following the Framingham study. Risk
scores have been developed to help physicians estimate the additive effect of different risk
factors, discover high-risk individuals, and implement treatment approaches.

The Systematic COronary Risk Evaluation (SCORE) project is an easy-to-use stratifi-
cation system focusing on the primary prevention of CVD in asymptomatic individuals
without established CAD [81]. Risk factors constituting SCORE include sex, systolic blood
pressure (SBP), dyslipidemia, smoking, and age. SCORE determines total cardiovascular
risk rather than solely coronary heart disease risk. Furthermore, the SCORE project focuses
only on fatal cardiovascular events rather than on the combined fatal and non-fatal events,
as non-fatal events are dependent on definitions and methods used in their confirmation.
Recently, the updated SCORE2 prediction model has been developed to estimate the 10-year
risk of fatal as well as non-fatal CVD events in European individuals without previous CVD
or diabetes aged 40–69 years [82]. Additionally, the SCORE2-Older Persons (SCORE2-OP)
algorithm has also been derived to estimate the risk for the combined outcome of both fatal
and non-fatal CVD events in adults aged 70 years or older in the next 5 and 10 years [83].
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The “ARIC Coronary Heart Disease Risk Calculation” score for coronary events
was based on the results of the Atherosclerosis Risk in Communities (ARIC) study [84].
Researchers assessed the prognostic value of several clinical variables. Low risk for
events was associated with non-smokers, those having total cholesterol <200 mg/dL,
high-density lipoprotein (HDL) > 60 mg/dL, SBP < 120 mm Hg, and not requiring
antihypertensive treatment.

The “AtheroSclerotic Cardiovascular Disease (ASCVD) Risk Estimator” estimates the
risk of ASCVD in the next 10 years. The estimator was developed using data from large,
diverse cohorts, including the ARIC [84], Cardiovascular Health [85], and the Coronary
Artery Risk Development in Young Adults (CARDIA) [86], as well as with the Framingham
Original and Offspring Study cohorts [87]. The ASCVD estimator accompanied the “2013
ACC/AHA Guideline on the Assessment of Cardiovascular Risk” [88,89] and the “2013
ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic
Cardiovascular Risk in Adults” [90]. The statistically significant variables included in
the equations are age, total cholesterol, HDL, SBP (with treatment status), diabetes, and
smoking. High risk is defined as ≥7.5%.

5.2. Biomarkers, Antibodies, and Genetics

Serological biomarkers have long been studied as potential predictors of CAD. Inflam-
mation has a key role in atherosclerotic disease [91] and it therefore comes as no surprise
that circulating levels of inflammatory markers including cytokines, such as interleukin-1β
and interleukin-6, have been shown to increase in atherosclerosis [92–95]. Additionally,
various studies have shown that adhesion molecules that mediate the recruitment of
leukocytes at sites of inflammation, such as endothelial-leukocyte adhesion molecule-1 (E-
selectin) and intercellular adhesion molecule-1 (ICAM-1), are increased in individuals with
atherosclerosis [96,97]. Among females in the Nurses’ Health Study and males participating
in the Health Professionals Follow-study, increased inflammatory biomarkers, particularly
C-reactive protein (CRP), indicated a higher risk of CAD [98]. Recently, a systematic review
of meta-analyses once again indicated that CRP can be a marker with strong predictive
potential along with fibrinogen, apolipoprotein (Apo) B, HDL, and Vitamin D [99].

Numerous other biomarkers have also been shown to increase in atherosclerosis.
Elevated homocysteine levels (>12 µmol/L) have been shown to predict the progression
of coronary plaque burden [100]. Furthermore, plasma amyloid-β (1–40) (Aβ40) has been
associated with the presence of subclinical CAD in individuals without clinically overt
CAD [101,102], arterial stiffness progression in young healthy individuals, as well as with
cardiovascular mortality and MACE in patients with CAD [103]. Baseline circulating levels
of Aβ40, as well as circulating cathepsin S levels, can predict mortality and improve risk
stratification of patients with NSTEMI after adjusting for the Global Registry of Acute
Coronary Events (GRACE) score [104,105]. Cathepsin S levels have also been associated
with vascular aging, arterial stiffening, and atherosclerotic disease development [106,107].

Fibroblast growth factors (FGFs) have been considered potential targets for the preven-
tion and treatment of cardiovascular events [108]. Patients with CAD have also been found
to have lower levels of FGF19 than those without CAD, adjusting for other factors, while
FGF19 was also an independent predictor of the extent of atherosclerosis. FGF23 is associ-
ated with CAD risk factors such as apolipoprotein A1 and HDL in subjects [109]. In stable
CAD, increased levels of FGF23 have also been associated with cardiovascular mortality
and heart failure [110]. FGF21 levels are strongly related to traditional CVD risk factors such
as dyslipidemia, hypertension, diabetes, and obesity [111,112]. FGF21 is an important regu-
lator in several metabolic pathways including glucose and lipid metabolism, suggesting a
potentially protective effect, contributing to cardiovascular risk reduction [113,114].

The immune system can play pathological or protective roles in atherosclerosis [115,116].
Even though circulating immunoglobulins are not typically considered relevant to clinical
cardiovascular disease, there is significant evidence suggesting links with atherosclerosis.
A nested case-control study of the Anglo-Scandinavian Cardiac Outcomes Trial suggests
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that total serum IgG levels are strongly and independently associated with reduced risk of
cardiovascular events in individuals with hypertension and improve prediction beyond
traditional risk predictors, such as CRP [117]. Serum IgM level is also associated with
reduced risk of CAD events, but to a lesser extent than IgG.

Antinuclear antibodies (ANAs) are another independently associated predictor of
all-cause mortality, cardiovascular death, and ASCVD (cardiovascular death, myocardial
infarction, coronary revascularization, and stroke), as was shown in a representative,
multiethnic cohort [118]. ANAs, typically found in individuals with autoimmune disease,
can detect individuals at increased risk of death and ASCVD, independently of traditional
risk factors or the presence of autoimmune disease.

The genetic profile, the principal substrate of conventional risk factors and disease,
emerges as an additive tool in the quest to identify the “vulnerable patient”. Results from
numerous prospective and retrospective studies have shown that genetic risk scores (GRSs),
derived from the identification of single nucleotide polymorphisms (SNPs) related to CAD,
can be associated with adverse cardiovascular events. Numerous SNPs have been identified
as predictors of CAD, independent of self-reported family history (with the heritability
of CAD being well documented), and can thus be especially useful in young individuals’
profile characterization [119,120].

6. Non-Invasive Imaging
6.1. Indications

Even though invasive diagnostic tests are invaluable in identifying significant CAD
and prognosticating disease progression, they impose an intrinsic risk to patients due to
the invasive nature of coronary catheterization. For this reason, there is a clear clinical
need for non-invasive techniques that can provide insight into distinguishing “vulnerable
plaques” and prognostic stratification, particularly in asymptomatic individuals wherein
the use of invasive techniques is not suitable. To date, the most established non-invasive
diagnostic modalities include exercise stress testing, coronary calcium scoring, CCTA,
magnetic resonance coronary angiography, and positron emission tomography. Although
exercise stress testing is a low-cost, low-risk diagnostic method that has been validated,
it has limited sensitivity and specificity, and cannot identify the extent and location of
CAD [121]. As a result, although it is recommended for the evaluation of chest pain in
intermediate-risk patients, it is becoming increasingly replaced by other non-invasive
imaging modalities, such as CCTA.

In cases when ischemia is clinically suspected, non-invasive imaging modalities can
improve the detection of an obstructive plaque causing significant myocardial blood flow
compromise. Additionally, in asymptomatic individuals, non-invasive imaging can help
identify the risk of cardiac events. Non-invasive imaging modalities lie in the “grey zone”
between the plaque and the patient-centered concept, providing a less interventional
approach than IVUS or OCT technologies in the pursuit to find the “vulnerable plaque”
and a more advanced approach in the identification of the “burden” of disease than risk
scores and circulating biomarkers.

6.2. Subclinical Atherosclerosis

The BioImage Study aims to explore the associations between imaging analysis and
levels of biomarkers along with their capability to predict ACS in asymptomatic individ-
uals [122]. The diagnosis of subclinical atherosclerosis was established with one or more
of the following: (i) the presence of carotid plaque; (ii) abnormal carotid intima-media
thickness (IMT) (exceeding age-stratified cutoff values); (iii) abnormal coronary artery
calcification score (CACS) (Agatston score) defined as: “a value above the 75th percentile
adjusted for age and gender”; (iv) the presence of abdominal aortic aneurysm; and (v)
abnormal ankle-brachial index (ABI) (<0.9). This noninvasive screening can significantly
ameliorate the cardiovascular risk classification of the general population.
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6.3. Computed Tomography and Positron Emission Tomography

CACS refers to the assessment of coronary artery calcification performed on non-
contrast computed tomography scans of the heart. Calcium is defined as a lesion of more
than 1 mm2 with a density >180 Hounsfield units, and it is calculated using the Agatston
score, which takes into account both calcium density and distribution. In asymptomatic
low-to-moderate risk individuals, CACS has a good negative predictive value, but a
low positive predictive value, and, thus, additional imaging tests are often required. In
patients with suspected angina, CACS has an increased rate of false-negative results, which
is unsurprising since it is well-established that non-calcified plaques can also rupture,
resulting in MI. Even though numerous plaques do not contain calcium that can be detected
in CT, the total CACS of an individual can provide acceptable information for coronary
obstruction and overall plaque burden, and it thus provides an incremental predictive
value when added along with other clinical risk factors and biomarkers in well-established
risk estimators, including the Framingham score. This has been confirmed in large trials,
including the Multi-Ethnic Study of Atherosclerosis (MESA) trial [123,124].

Coronary computed tomography angiography (CCTA) is considered to be a first-line
diagnostic technique in patients with suspected CAD [125]. CCTA can detect luminal
stenoses and can improve clinical outcomes by improving the targeting of symptomatic
and preventative therapies. Additionally, coronary CTA can recognize high-risk plaque
characteristics associated with an increased risk of adverse events [126]. Characterization
of coronary geometry and plaque composition, quantification of plaque burden, as well as
3-D vessel reconstruction for blood flow simulation and estimation of hemodynamic forces
including ESS, is also feasible using CCTA. Identification of a high-risk plaque based on
CT findings, such as positive remodeling and low attenuation regions, can independently
predict the development of ACS [127] (Figure 5). Furthermore, a subgroup analysis showed
that CT-derived low ESS was associated with an increase in plaque burden and a decrease
in lumen area at follow-up [128,129], confirming the results of previous invasive imaging-
based studies [12].
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Figure 5. Prediction of acute coronary syndromes using computed tomography angiography. High-
risk plaque (HRP) using CTA is defined based on low attenuation (≤30 Hounsfield units) and/or
positive remodeling. In this study of 3158 subjects, 294 (9.3%) had HRP(+) and 2864 (90.7%) did
not have HRP [HRP(−)]. During follow-up (3.9 ± 2.4 years), 48 (16.3%) of the subjects with HRP
and 40 (1.4%) of the subjects without HRP developed acute events. Therefore, the event rate (left)
was substantially higher for HRP(+) compared to HRP(−) (green), but the total number of events in
the two groups was essentially the same (right). Additionally, serial CTA imaging showed plaque
progression from HRP(−) to HRP(+) leading to acute coronary events in some cases. While the
identification of HRP is important, these observations highlight the diffuse process and complex
evolution of atherosclerosis, which is responsible for acute events. Adapted from Motoyama S. et al.
(2015) [127], with permission from Elsevier.

More recent studies have focused on detecting coronary inflammation, a key medi-
ator of atherosclerosis. Inflammation-induced changes that can present even before the
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development of plaques can be quantified as perivascular attenuation gradients estimating
the CCTA-derived Fat Attenuation Index (FAI) [129]. The CRISP-CT (“Cardiovascular
Risk Prediction using Computed Tomography”) study showed that perivascular FAI has
incremental prognostic value beyond traditional risk factors [130]. Moreover, there is a
remarkable improvement in risk estimation for cardiac mortality and other causes of death
with the addition of FAI in CCTA interpretation. Therefore, perivascular fat could set the
scene for personalized risk assessment in primary and secondary prevention.

A combination of positron emission tomography (PET) and CCTA has been recently
introduced as a propitious non-invasive technology that combines functional imaging
with anatomical data [131,132]. In stable CAD, the radioactive tracer 18F-sodium fluoride
uptake, suggesting inflammation and macrophage accumulation, can help discriminate
coronary plaques with high-risk features identified using IVUS [133]. Consequently, PET-
CT methodology seems to help recognize active lesions that could ultimately result in
adverse cardiovascular events.

7. Challenges of the “Vulnerable Patient” Concept

Contrary to invasive imaging technologies that focus on patients diagnosed with CAD,
non-invasive strategies provide opportunities for identifying coronary atherosclerosis in
asymptomatic people [134]. In asymptomatic individuals, the event rate is significantly
lower, and, thus, regardless of whether future studies prove the prognostic importance of
imaging, the cost-effectiveness of such methods must be analyzed before incorporating
them in clinical practice [3]. The stepwise approach used in the BioImage study could
be an option. Assessment of risk using clinical scores and measurements of biomarkers
can be used at first to identify patients as intermediate/high-risk. Non-invasive imaging
will be offered to these individuals to decide if an ACS is likely and, thus, they need to
receive more aggressive treatment [3]. Meanwhile, the Danish Cardiovascular Screening
(DANCAVAS) trial, which is a population-based, randomized, controlled trial involving
46,611 males aged 65 to 74 years, showed that comprehensive screening for cardiovascular
disease did not manage to significantly reduce the risk of death from any cause in the first
5 years of the study [135].

8. Future Implications

A combination of invasive and non-invasive imaging modalities with modeling of
patient characteristics is likely to provide a more precise identification of “vulnerable
plaques” and “vulnerable patients” in the near future, promising a more tailored man-
agement personalized to each patient. Evidence suggests that, in patients with suspected
CAD, non-invasive imaging, serum analysis for biomarkers, and genetic assessment could
each separately help to identify the presence of CAD, and thus their combination could
potentially enhance the performance of risk stratification for future ACS. Additionally,
patients undergoing invasive coronary angiography due to ACS or due to the presence of
findings from non-invasive modalities that require further invasive interrogation may also
benefit from extensive imaging with intravascular diagnostic techniques and hemodynamic
profiling (e.g., ESS) of non-culprit lesions along with assessment of biomarkers and genet-
ics. This could provide an incremental value to risk assessment of future events arising
from mild or moderate lesions. Before such strategies are implemented in clinical practice,
further research investigating their clinical benefit as well as their cost-effectiveness is
needed. Future studies in well-selected target groups (e.g., patients with suspected CAD
and patients with known CAD) should evaluate the benefit of multilevel assessment to
identify “vulnerable plaques and patients” at risk for future cardiovascular events.

9. Conclusions

Despite striking developments in diagnosis and treatment, CAD is a principal cause
of mortality and morbidity globally. Finding individuals at risk as well as plaques prone to
lead to cardiovascular events is important for improving prognostication and optimizing
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treatment. The “vulnerable plaque” concept has proved invaluable in directing research ef-
forts and gaining knowledge of the underlying pathophysiology of ACS. Invasive imaging
tools (such as IVUS, OCT, and NIRS), and hemodynamic profiling provide unique insights
into plaque anatomy, and allow in vivo identification of TCFAs and other high-risk plaque
elements, such as lipid component, neovessels, plaque erosion, macrophage accumulation,
and low ESS, and have boosted our knowledge about coronary events. However, this
invasive-only approach towards ACS has failed to demonstrate high prognostic value, and
its clinical utility is called into question. Risk scores, identification of subclinical atheroscle-
rosis, biomarkers, antibodies, and genetic predisposition accompanied by non-invasive
imaging (MSCT, PET-CT) also hold the genuine promise of a safer, more time-efficient and
clinically broader (asymptomatic population included) approach to CAD. As the debate
is ongoing, the various diagnostic methods seem to complement each other, dealing with
different aspects of the disease, characterizing the “vulnerable plaque” occurring in a “vul-
nerable patient”, and contributing to a holistic understanding of the fundamental causes of
acute coronary events.
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