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Abstract: The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world’s health and economy.
Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be
completely eradicated. Most likely, the disease will become an endemicity. The rapid development of
vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral
drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19’s
impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with
the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a
pressing need for developing more effective antiviral drugs to fight against the disease. Plants have
provided a promising production platform for both bioactive chemical compounds (small molecules)
and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive
compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which
are a rich source of countless antiviral compounds. Plants can also be genetically engineered to
produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented
opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because
of its potential advantages, such as low cost, safety, and high production volume. This review
summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses
the prospects and challenges of the plant-based production platform for antiviral agents.

Keywords: coronavirus; COVID-19; antivirals; vaccines; plant production; molecular farming;
recombinant proteins; secondary metabolites

1. Introduction

The outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China in late De-
cember 2019 has posed a serious global public-health emergency [1]. The disease is caused
by a highly transmissible and pathogenic coronavirus, named severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2), which causes respiratory disease associated with
high fever, difficulty breathing, and pneumonia, etc. [2,3]. As of 14 February 2023, more
than 677 million people have been infected by SARS-CoV-2 globally, of which around
6.78 million lives were claimed (Worldometers.info). Equally damaging has been the global
economic shutdown for fear of the threat of SARS-CoV-2 transmission. With the recent
lifting of the “Zero-COVID Dynamics” policy in China, many more people will be infected,
and mortality will continue to increase [4].

SARS-CoV-2 is an enveloped RNA virus with a single-stranded, positive-sense genome
of ~29.9 kB in size (Figure 1) [5]. The virus consists of four major structural proteins, named
spike (S), nucleocapsid (N), envelope (E), and membrane proteins (M) [1,2]. The S protein
which is present as a crown-like spike on the outer surface of the virus plays a major role
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in viral entry into mammalian cells [6]. Specifically, the virus uses the receptor binding
domain (RBD) on the S protein to interact with human angiotensin-converting enzyme
2 (ACE2) receptor as a critical initial step to enter target cells [3,7]. Therefore, both the
S protein of the virus (particularly RBD) and the ACE2 of human cells have a potential
target to develop therapeutics to prevent SARS-CoV-2 infection [8–11]. Since the start of the
pandemic three years ago, the circulating SARS-CoV-2 virus has been constantly mutating
with the emergence of multiple variants (Alpha, Beta, Gamma, Delta, Omicron) [12], which
makes the control of the COVID-19 pandemic more difficult. The Omicron variant, after
first being identified in South Africa in November 2021, has rapidly spread worldwide,
outcompeting other variants, and becoming the predominant one for the time being [13].
The BA.5 subvariant of Omicron, which was the most prevalent coronavirus strain world-
wide in 2022, has been found to escape the majority of existing SARS-CoV-2 neutralizing
antibodies [12]. Fortunately, infections by Omicron were significantly less severe than those
caused by Delta and other previous variants [13]. However, its immune evasiveness and
high transmissibility pose a great threat to the global healthcare system [14]. Towards the
end of 2022, three Omicron subvariants, BQ.1 and BQ.1.1, and then XBB.1.5 became the
dominant strains in the USA, overtaking BA.5 [15]. Therefore, effective prevention and
treatments of COVID-19 disease, particularly for people with risk factors for serious illness,
are still essential.
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Great efforts have been made in the past 2 to 3 years to counteract the spread of
the virus through development of vaccines [16], immune-based therapy [17], antiviral
therapy [18], and natural remedies [19]. Pharmaceuticals of two general types, including bi-
ologics or “big molecules” (e.g., nucleic acids, monoclonal antibodies, therapeutic peptides,
etc.) and antiviral chemical compounds or “small molecules” (e.g, Remdesivir, Olumiant,
and Paxlovid, etc.) have been developed to prevent and treat COVID-19 (Figure 1). So far,
COVID-19 vaccines based on messenger RNA (mRNA) (Pfizer/BioNTech, USA/Germany
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and Moderna, USA) [20], adenovirus vectors (Johnson & Johnson, USA; AstraZeneca,
UK and Sputnik V) [21], subunit protein vaccine (Novavax, USA) [22], and inactivated
virus (Sinopharm/Sinovac, China) [23] have been approved or granted Emergency Use
Authorization (EUA) by the Food and Drug Administration (FDA) for vaccination in
the USA and other countries. These vaccines have been effective at protecting people
from getting seriously ill, being hospitalized, and even dying [24]. Almost at the same
time, five anti-SARS-CoV-2 monoclonal antibodies (mAbs), including bamlanivimab plus
etesevimab (Eli Lilly, USA), casirivimab plus imdevimab (Regeneron, USA), sotrovimab
(GlaxoSmithKline, UK and Vir Biotechnology, USA), tocilizumab (Genentech, USA), and
bebtelovimab (Eli Lilly, USA) were developed in the USA and have received EUA from
the FDA for treating mild-to-moderate COVID-19 [25,26]. Among them, bebtelovimab is
the only one that has shown remarkably preserved in vitro activity against all SARS-CoV-2
variants, including the Omicron subvariants BA.4 and BA.5 (but is not effective for BQ.1
and BQ.1.1. subvariants) [27]. In December 2022, tocilizumab became the first monoclonal
antibody fully approved by the FDA for COVID-19 treatment. On the other hand, some
traditional chemical drugs (small molecules) have been re-evaluated or re-purposed for
their potential as an antiviral drug candidate against SARS-CoV-2. Remdesivir (Gilead,
USA) [28] and Olumiant (baricitinib) (Eli Lilly, USA) [29] represent the first and second
drugs fully approved by the FDA for treatment of hospitalized COVID-19 patients. Early
in 2022, the FDA issued an EUA for the emergency use of Paxlovid (Pfizer, USA) and
molnupiravir (Emory University, Ridgeback Biotherapeutics, and Merck, USA) for the
treatment of mild-to-moderate COVID-19 in adults [30].

Various production platforms, mainly chemical synthesis and mammalian cell culture
were utilized to manufacture the aforementioned pharmaceuticals (small and big molecules)
to combat COVID-19. Plants have provided a promising alternative production platform
for both natural bioactive compounds and recombinant therapeutics [31]. Plants naturally
produce a diverse range of bioactive small molecules, such as alkaloids [32], flavonoids [33],
terpenoids [34], and phenolic compounds [35], which are the source of countless phar-
maceutical compounds for treating various diseases. Many bioactive compounds from
medicinal plants, for example, those extracted from Artemisia annua L., Curcuma longa
and Tripterygium wilfordii have been demonstrated to exhibit significant activities against
SARS-CoV-2 through interfering with every step of the interaction of the virus with its
host cells [36,37]. On the other hand, plants can also be genetically engineered to pro-
duce heterologous proteins (biologics) for therapeutic applications, termed “molecular
farming [38].” Plants bring advantages in safety, scalability, and cost over other eukaryotic
systems and have proven effective in mediating the post-translational processing required
for many complex proteins [38,39]. Additionally, molecular farming in plants could fa-
cilitate rapid production of biologicals at a large scale, as demanded in the case of the
COVID-19 pandemic. Extensive research has been performed to produce therapeutics
against SARS-CoV-2 in plant systems, including vaccines, antibodies and other immunoad-
hesins. Notably, in early 2022, Canada-based biotech company Medicago announced that
it had gained approval in Canada for its two-dose COVID-19 vaccine Covifenz®, an adju-
vanted plant-made virus-like particles (VLP) vaccine (www.medicago.com). It represents
the first COVID-19 vaccine produced by plant-based protein technology, and the promising
results from a Phase III study were recently published [40].

There are many recent reviews published on the use of plant-based agents for the
prevention and cure of COVID-19 [41–44]. However, these articles usually focus on one
specific type of plant-produced antiviral agent, particularly bioactive natural compounds
(small molecules). There is a lack of an updated review on the antiviral therapeutic proteins
(big molecules) produced by plant molecular faming. In addition, most of the review
articles are not up to date, because the SARS-CoV-2 virus has been mutating constantly
and the therapies for COVID-19 advance rapidly. This review summarizes the latest
advancements in plant-derived pharmaceuticals (both big molecules and small molecules)

www.medicago.com
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used to fight against SARS-CoV-2 and discusses the prospects and challenges of the plant-
based production platform for antiviral agents.

2. Plant Produced Biopharmaceuticals (Biologics) against SARS-CoV-2

Plant-based expression systems, or plant molecular farming, have emerged as a promis-
ing alternative for the production of biologics. As eukaryotic organisms, plant hosts are
able to perform correct post-translational modifications, such as glycosylation, allowing
the development of authentic biologics with their efficacy being similar to those produced
using other expression systems, such as mammalian or yeast-based cell cultures [38,39].
Plant-produced biologics are also regarded as safe because they do not pose the risk of
introducing human and animal pathogens into biopharmaceuticals [45]. In addition, plant
expression systems, particularly transient expression systems, could prompt rapid (4–8
weeks) manufacturing of target biologics on a large scale [46,47], which meet emergency
demands, such as in the case of the COVID-19 pandemic. Given the aforementioned
factors, plant-based expression systems have been actively adopted by pharmaceutical
manufacturers. A wide range of recombinant proteins, such as vaccines, antibodies, hor-
mones, cytokines, therapeutic enzymes, and nutritional proteins have been produced via
stable and transient expression in entire plants or plant cell cultures [45,48]. The first
plant-produced biologic for human use, taliglucerase alfa (Elelyso®), was approved by the
FDA in 2012 for the treatment of Gaucher disease [49]. In 2019, a plant-produced influenza
virus vaccine completed Phase III clinical trials with encouraging results [50]. In early 2022,
the plant-made COVID-19 vaccine, Covifenz®, won first approval in Canada [40]. These
successes have revived people’s interest in plant-based production of biologics for human
use. To combat COVID-19, plants have been used to produce vaccines [51], monoclonal
antibodies [52], and other biologics that block the interactions between ACE2 and the S
proteins, such as soluble ACE2 [53] and its fusion with the Fc region of human IgG1 (ACE2-
Fc) [54]. In addition, plant-produced antiviral lectin has also been tested for inhibition of
SARS-CoV-2 infection [55] (Figure 2).
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Figure 2. Schematic diagram of the plant-produced biologics functioning in preventing and treating
SARS-CoV-2 infection. Plant-produced vaccines (1), antibodies (2), ACE2-based biologics (ACE2-
immunoadhesin, ACE2-chewing gum) (3), and antiviral lectins (4) can be used to combat COVID-19.

2.1. Plant-Produced Vaccines

Although traditional inactivated viral vaccines and the new adenovirus vector- and
mRNA-based vaccines haven been approved and widely used in the world to combat the
pandemic, other types of modern vaccines, such as the protein subunit [56] or virus-like
particle (VLP) varieties [57], have multiple advantages over currently used vaccines [24].
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The minimum requirement for either type of vaccine is the genetic sequence of a single
viral antigen rather than the genetic sequence of either virus [24]. This is safer for recipients
of the vaccine, because lone antigens cannot cause or spread disease, and safer for scientists
researching and manufacturing the vaccine, since no handling of live virus is required once
the antigen has been sequenced [58]. SARS-CoV-2 replicates by infecting human cells via
the interaction of the RBD on the viral S protein with ACE2 receptors on human cells [3],
therefore, the S protein, particularly RBD, has become the focus of vaccine development
efforts in the pandemic [24]. A full list of subunit vaccines and VLP vaccines that have
reached or passed Phase I human trials according to the COVID-19 vaccine tracker website
is available in Supplementary Table S1. Plants, either whole plants or cell suspension
cultures, are suitable for producing either type of vaccine [42]. A recent comprehensive
review of the use of plant-based vaccines for the prevention and cure of human viral
diseases can be found in the literature [44,47,59,60]. So far, a few plant-based subunit or
VLP vaccines have been developed and some of them have moved to clinical trials (Table 1).

Table 1. Plant-produced SARS-CoV-2 vaccines. Four of them have progressed to clinical trials.

Table Trade Name Antigen Plant Manufacturer Efficacy Commercialization
Progress Source

Virus-like
particles

Covifenz S protein N. benthamiana Medicago 69.5% to 78.8%
(Phase III)

Approved: Canada
Phase III Trials:

Argentina, Brazil,
United Kingdom,

USA

[40,61,62]

KBP-201 RBD N. benthamiana Kentucky
Bioprocessing

100%
(K18-hACE2

mice)

Phase I/II Trials:
USA [62–65]

IBIO-200,
IBIO-201, and

IBIO-202
S protein N. benthamiana iBio, Inc. n.d. Pre-clinical trials [44,66,67]

n/a S protein N. benthamiana n/a n.d. no [68]

Subunit

Baiya
SARS-CoV-2 Vax

1
RBD-Fc N. benthamiana Baiya

Phytopharm

100%
(K18-hACE2

mice)

Phase I Trials:
Thailand [62,69]

Baiya
SARS-CoV-2 Vax

2
RBD-Fc N. benthamiana Baiya

Phytopharm Unknown Phase I Trials:
Thailand [62,69]

n/a RBD-Fc N. benthamiana n/a n.d. no [51]
n/a RBD N. benthamiana n/a n.d. no [70–72]

n/a S protein,
RBD

Tobacco BY-2 and
Medicago

truncatula A17 cell
n/a n.d. no [73]

n/a: not applicable; n.d.: no data.

2.1.1. Plant-Produced Subunit Vaccines

In their simplest form, subunit vaccines require only a viral protein capable of eliciting
an immune response and an adjuvant. These proteins are capable of eliciting a response
from B cells, helper T cells, and cytotoxic T cells, but this response is weak relative to
traditional inactivated viral vaccines and necessitates the addition of an adjuvant [58]. A
subunit vaccine developed by Novavax (USA) has already been granted EUA by the FDA
in 2022 [22]. Studies have showed that this subunit vaccine was about 90% effective in
preventing SARS-CoV-2 infections [74](Centers for Disease Control and Prevention, CDC,
USA), which is similar to the efficacy of Moderna (94%) and Pfizer (95%) and better than
Johnson & Johnson (66%) [75].

Plant expression platforms, mainly transient expression with Nicotiana benthamiana,
have been used to produce subunit vaccines against SARS-CoV-2 (Table 1). The RBD alone
and its fusion with the Fc region of human IgG1 (RBD-Fc) are utilized as an antigen to
develop subunit vaccines. The recombinant RBD and RBD-Fc showed specific binding to
human ACE2 receptor [51,70–72]. In animal tests, the plant-produced RBD and RBD-Fc
antigens elicited potent neutralizing responses in mice and non-human primates [51,70]. In
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order to increase the immunogenicity of the antigen, RBD fused to flagellin of Salmonella
typhimurium (Flg), known as mucosal adjuvant, was also transiently expressed with N.
benthamiana using a self-replicating viral vector [76]. As an alternative to the transient
expression platform, tobacco BY-2 and Medicago truncatula A17 cell suspension cultures
were also used to stably express both full-length S protein and RBD [73]. The results showed
that recombinant S protein and RBD could be secreted into the culture medium, which
facilitated the subsequent purification and reduced the downstream processing costs. This
represents the first report on the stable expression of SARS-CoV-2 antigen protein with
plant cell culture system, though the bioactivity of the expressed proteins was not assessed.

Plant-produced subunit vaccines have been moved to commercial development.
Of particular interest is the subunit vaccines developed by Baiya Phytopharm Co., Ltd.
(Bangkok, Thailand), trade names Baiya SARS-CoV-2 Vax 1 and Baiya SARS-CoV-2 Vax 2,
that utilizes a N. benthamiana-produced RBD as its antigen. A publication on preclinical
results states that the RBD protein has been modified by fusing it with the Fc region [51].
When used with alum as adjuvant, Vax 1 induced potent immunological responses in both
mice and cynomolgus monkeys [69,77,78]. Vax 1 was also reported to show 100% efficacy
against infection in K18-hACE2 mice [79]. The efficacy of, and adjuvant for, the Vax 2
variant has not been revealed so far.

2.1.2. Plant-Produced VLP Vaccines

VLP vaccines make use of one or more viral structural proteins that are capable of
self-assembling into nanostructures that mimic the size and shape of a virus [80]. The
building blocks of the particle may serve as viral antigens capable of eliciting an immune
response and the shape of the overall VLP may conform to a pathogen-associated molecular
pattern recognized by the immune system [81]. Where a true virus has a cavity that contains
its genetic material, VLPs have a hollow cavity that may be used to deliver small molecules
to further enhance the immune response triggered by the vaccine [82].

According to the COVID-19 Vaccine Tracker website (https://covid19.trackvaccines.
org/, accessed on 15 January 2023), maintained by scientists at McGill University, at the
time of writing only one plant-produced SARS-CoV-2 vaccine has been approved for use.
As detailed in Table 1, this VLP vaccine, with the trade name of Covifenz® (Medicago,
Canada), has only been approved for use in Canada and it is in Phase III trials in several
others. Three other plant-produced vaccines have reached the point of clinical trials, but
none of these have yet passed the Phase III trials. Medicago’s VLP vaccine utilizes the
recombinant, full-length S protein from an original SARS-CoV-2 strain. These proteins
associate into trimers within a lipid membrane from the cell membranes of the host N.
benthamiana cells. The protein contains modifications made to improve the stability of
the protein as well as increase the formation of VLPs [83]. According to Phase III human
trials, the vaccine efficacy was 69.5% against symptomatic infection and 78.8% against
infection with symptoms ranging from moderate to severe [40]. According to the Canadian
government, Covifenz® is administered in two doses 21 days apart and alongside the
adjuvant AS03 [61].

Kentucky Bioprocessing’s VLP vaccine, trade name KBP-201, utilizes a recombinant S
protein’s RBD and inactivated tobacco mosaic virus. The S protein’s RBD, serving as the
antigen, and tobacco mosaic virus, serving as the VLP’s structural component, are each
expressed in N. benthamiana, and chemically conjugated together following purification [65].
KBP-201’s RBD is fused with the Fc domain of human IgG1 to improve protein stability
and an N. benthamiana extensin peptide to allow protein secretion and folding in the host
species [65]. Preclinical trials with K18-hACE2 mice showed efficacies of 71.4% and 100%,
for one and two doses effectively, against lethal infection [64]. The combined Phase I/II
trial listed on ClinicalTrials.gov details a two dose regimen 21 days apart using cytosine
phosphoguanine as an adjuvant [63].

In addition to Covifenz® and KBP-201, more potential SARS-CoV-2 vaccines (VLP)
from iBio, Inc. (Bryan, TX, USA): IBIO-200, IBIO-201 and IBIO-202 have been reported as in

https://covid19.trackvaccines.org/
https://covid19.trackvaccines.org/
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pre-clinical trials in separate review publications [44,67]. However, tracking the progress of
potential SARS-CoV-2 vaccines that are still in pre-clinical stages poses certain challenges
that prevent us from providing accurate, current information on their status. While success
in benchtop and animal models may be publicized by academic labs, corporate labs may
restrict publications until entry into clinical trials. This is the case with iBio’s VLP vaccines.
The citations provided for the status were from iBio’s website (ibioinc.com), a news media
website, or another review publication over the same topic rather than a direct, peer
reviewed article from scientists responsible for the research. A press release by iBio, dated
after the publication of these reviews, has stated that the company will no longer continue
development of IBIO-202 and none of the three vaccines appear on the company’s public
pipeline [84,85].

2.2. Plant-Produced Antibodies

Rather than providing the long-term protection of a vaccine, therapeutic antibodies
can be used in the moment to treat people infected by a disease. mAbs targeting epitopes
on the virus or infected cells may, alone or as a cocktail, reduce the viral load and thereby
reduce the severity of symptoms experienced by the patient [86]. mAb-based therapeutics
against the S protein have been shown to be effective treatments for SARS-CoV-2 infection,
especially the original viral strain. Up to now, five kinds of FDA approved (EUA) antibodies,
either alone or as a mAb cocktail, have been developed to treat COVID-19. However, the
current mAbs produced in mammalian cells are expensive and might be unaffordable
for many [87]. Plants may provide a low-cost and safety-friendly alternative platform to
produce efficacious and affordable antibodies against SARS-CoV-2. As a new production
platform, plants have already been demonstrated to have the capability of producing mAbs
with quality and characteristics matching those produced in mammalian cells [88]. For
example, a plant-made anti-HIV mAb has been found to meet all regulatory specifications
for human application in a clinical study [89]. However, to the best of our knowledge,
at the time of writing no plant-based antibodies for the treatment of SARS-CoV-2 were
in clinical trials. The scope of this portion of the review has been restricted to antibodies
expressed within plant cells that have been demonstrated, either in vitro or in vivo, to have
a neutralizing effect on at least one variant of a SARS-CoV-2 lineage (Table 2).

Table 2. Plant-produced antibodies against the SARS-CoV-2 virus. Neutralizing capability is indi-
cated by neutralizing titer *, meaning the dilution factor needed to reduce antibody levels below
detectable limits; IC50

†, meaning half maximal inhibitory concentration; or NT100
‡, meaning com-

plete protection from cytotoxic effects of infection.

Antibody
Name Plant Affected

Lineages

Neutralizing Capability
(Neutralizing Titer *,

IC50 † or NT100 ‡)
Source

CR3022 N. benthamiana Original strain Fail to neutralize * [71]
B38 N. benthamiana Unidentified 640 at 0.492 µg/mL * [90]
H4 N. benthamiana Unidentified 40 at 5.45 µg/mL * [90]

H4-IgG1-4 N. benthamiana Unidentified 591 nM for H4-IgG3 ‡ [91]

CA1 N. benthamiana Original strain,
Delta

9.29 nM: Original †

89.87 nM: Delta † [87]

CB6 N. benthamiana Original strain,
Delta

0.93 nM: Original †

0.75 nM: Delta † [87]

11D7 N. benthamiana
Original strain,

Delta,
Omicron

25.37 µg/mL: Original †

59.52 µg/mL: Delta †

948.7 µg/mL: Omicron †
[46]

The first reported plant-made functional mAbs against SARS-CoV-2 were B38 and H4,
which were collected from blood sera of a convalescent patient [52]. These antibodies could
block binding between the RBD of the virus and the cellular receptor ACE2. Transient co-
expression of heavy- and light-chain sequences of both the antibodies in N. benthamiana by
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using a geminiviral vector resulted in rapid accumulation of correctly assembled mAbs in
plant leaves. Both mAbs purified from plant leaves demonstrated specific binding to RBD
of SARS-CoV-2 and exhibited efficient virus neutralization activity in vitro [90]. Before this,
the same research group tried to express another mAb CR3022 in N. benthamiana. However,
this plant-produced mAb was found to bind to SARS-CoV-2 but fail to neutralize the virus
in vitro [71]. These findings provide proof-of-concept for using plants as an expression
system to produce SARS-CoV-2 antibodies.

Plant-made H4 was then examined in greater detail by being expressed in the four
human IgG subclasses present in human serum (IgG1–4) [91]. Four constructs, each with
the same variable region but different heavy chain regions, were adapted for expression
in glyco-engineered N. benthamiana. H4-IgG3 demonstrated an up to 50-fold superior
neutralization ability compared to the other three IgG against live SARS-CoV-2 virus
in vivo. Complete protection from cytotoxic effects of infection (NT100) using Vero cells
was attained with an H4-IgG3 concentration of 5.91 nM.

Using a cocktail of mAbs that bind to complementary neutralizing epitopes represents
a strategy to prevent escape of the SARS-CoV-2 mutant from mAb treatment [87]. To
develop mAb cocktail-based therapeutics against SARS-CoV-2 in plants, two neutralizing
mAbs, CA1 and CB6 were expressed in N. benthamiana. The effectiveness of plant-produced
mAbs against the original SARS-CoV-2 virus and a member of the Delta lineage was
tested in vitro. Both mAbs retained target epitope recognition and neutralized multiple
SARS-CoV-2 variants [87]. The half maximal inhibitory concentration (IC50) of CA1 was
9.29 nM for the original strain and 89.87 nM against the Delta strain. The IC50 of CB6 was
0.93 nM for the original strain and 0.75 nM for the Delta strain [87]. Both also demonstrated
neutralizing potential against a mouse adapted strain of SARS-CoV-2 in vitro. It was also
shown that one plant-made mAb has neutralizing synergy with other mAbs developed in
hybridomas by the authors. A third neutralizing mAb, 11D7, which was a chimeric human
IgG, was then expressed in DeltaXFT N. benthamiana to produce a mAb with human-like,
highly homogenous N-linked glycans [92]. Plant-produced 11D7 was found to maintain
recognition against the RBD of original, Delta and Omicron strains and neutralizing activity.
Because 11D7 neutralizes SARS-CoV-2 through a mechanism not typical among currently
developed mAbs, it may be useful in providing additional synergy to existing mAbs
cocktails.

2.3. Plant-Produced ACE2-Based Biologics
2.3.1. Plant-Produced ACE2-Immunoadhesins

Although vaccines and antibodies have been developed to effectively combat COVID-
19 worldwide, the rapid emergence of SARS-CoV-2 variants with altered RBD can severely
affect the efficacy of such immunotherapeutic agents [14]. This problem seems to be espe-
cially pronounced with the Omicron variants that resist many of the previously isolated
monoclonal antibodies [93]. Immunoadhesins, which are antibody-like molecules, make
another class of immunotherapeutic agents that may complement the current therapy issue
with vaccines and antibodies [94]. Immunoadhesins consist of an engineered binding do-
main fused to an Fc region of an antibody [95]. In the case of SARS-CoV-2, the viral cellular
receptor ACE2 (extracellular domain) can serve as a binding domain for constructing such
immunoadhesins, which can then function as a decoy to block the interaction of the virus
with cellular ACE2 receptors [54,96]. Fusing ACE2 with the Fc region offers advantages
over the treatment with ACE2 alone. This is because the Fc domain can provide effector
functions, allowing the recruitment of some phagocytic immune cells and facilitating the
activation of the host antiviral immune response through triggering antibody-dependent
cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Furthermore,
the Fc domain can prolong the half-life, binding affinity and neutralization efficacy of the
binding domain [54,97,98]. So far, more than 13 Fc fusion proteins have been approved by
the FDA.
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In the past 3 years, many ACE2-based immunoadhesins, including the enhanced ACE2
for binding to S protein of SARS-CoV-2 were developed [8,94,96,99–105]. These ACE2-
immunoadhesins were effective in neutralizing multiple SARS-CoV-2 variants, including
the Delta and the Omicron variants, suggesting that immunoadhesins-based immunother-
apy is less prone to escape by the virus [94]. Again, plants can provide an economic
platform to rapidly produce these biologics.

With transient expression in N. benthamiana, ACE2-Fc was produced at up to 100 µg/g
fresh leaf. The recombinant ACE2-Fc exhibited potent anti-SARS-CoV-2 activity in vitro,
and dramatically inhibited SARS-CoV-2 infectivity in Vero cells with an IC50 value of
0.84 µg/mL. Furthermore, treating Vero cells with ACE2-Fc at the pre-entry stage sup-
pressed SARS-CoV-2 infection with an IC50 (half maximal inhibitory concentration) of
94.66 ug/mL [98].

Because ACE2 is heavily glycosylated and its glycans impact on binding to the S
protein and virus infectivity, the ACE2-Fc was also expressed in glycol-engineered N.
benthamiana. It was found that the recombinant dimeric ACE2-Fc was glycosylated with
mainly complex human-type N-glycans and showed function in peptidase activity, binding
to the RBD of the virus and neutralizing the wild-type SARS-CoV-2 virus [106].

2.3.2. Plant-Produced ACE2 and ACE2-Based Chewing Gum

Besides the ACE2-based immunoadhesins, ACE2 alone could also be developed
as a therapeutic to inhibit the virus spread, though there are limitations, such as short
circulating half-life [54]. Human soluble (truncated) ACE2 was reported to express in N.
benthamiana with a high-level yield (about ~750 µg/g fresh leaf). Plant-produced ACE2
could bind to the SARS-CoV-2 S protein. Both glycosylated and deglycosylated forms of
ACE2 demonstrated strong anti-SARS-CoV-2 activities in vitro, with an IC50 being ~1.0 and
8.48 µg/mL, respectively [53].

Of special interest is the ACE2-based chewing gum developed by Dr. Henry Daniell
and his colleagues at the University of Pennsylvania [107–109]. This virus-trapping gum
contains plant-made CTB-ACE2, which is ACE2 fused with non-toxic cholera toxin sub-
unit B (CTB). CTB-ACE2 is made in chloroplasts of transgenic lettuce. The lettuce was
then powdered and blended with cinnamon-flavored chewing gum. The CTB-ACE2 can
efficiently bind to both GM1 and ACE2 receptors, effectively blocking binding of the S
protein and viral entry into human cells. As oral epithelial cells are enriched with both
receptors, this gum was designed to trap and neutralize SARS-CoV-2 in the saliva and
diminish the amount of virus left in the mouth. The Phase I/II clinical trial of the chewing
gum started in June 2022 (ClinicalTrials.gov Identifier: NCT05433181). If the gum proves
safe and effective, it could be given to patients whose infection status is unknown or even
for dental check-ups to reduce the likelihood of passing the virus to caregivers [109].

2.4. Plant Produced Antiviral Lectins

Lectins from plants and algae, which are carbohydrate-binding proteins of non-
immune origin, were earlier found to inhibit several viral diseases, such as HIV, hepatitis C,
influenza A/B, herpes, Japanese encephalitis, Ebola, and SARS coronavirus that occurred
in 2003 [110–113]. Recently, some lectins have shown significant activity against SARS-CoV-
2 [114–116]. For example, Griffithsin, a red algae-derived lectin of 121 amino acids, is a high
mannose-specific lectin that has been recognized as a potential viral entry inhibitor [117].
Griffithsin was tested for SARS-CoV-2 entry and found that it could significantly inhibit
the SARS-CoV-2 infection in a dose-dependent manner. Remarkably, the IC50 of griffithsin
was 63 nmol/L, which is about 11-fold more potent than Remdesivir [55]. Other research
demonstrated that griffithsin could block the entry of SARS-CoV-2 and its variants, Delta
and Omicron, into the Vero E6 cell lines and IFNAR–/– mouse models by targeting the S
proteins of the virus [118]. Similarly, recent molecular docking studies have shown that a
banana-derived mannose-specific lectin could also neutralize SARS-CoV-2 infectivity [119].
Lectins are natural proteins which are cheap and easily accessible. They have been proven
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to be active against SARS-CoV-2. However, their clinical application is still hampered by
several obstacles. These include the high-cost purification, short stability in the body, po-
tential cytotoxicity and mitogenicity, and the possibility for eliciting deleterious responses
in the immune system [120]. Future investigations are needed to develop plant lectins as a
new antiviral agent against COVID-19.

2.5. Challenges in Commercialization of Plant-Produced Biologics against SARS-CoV-2

Numerous anti-SARS-CoV-2 biologics, including vaccines, antibodies, and other bio-
logics against the virus have been expressed in plant systems, as mentioned above. How-
ever, compared with other production systems, such as bacterial and mammalian cell
culture, plant systems suffer from a major disadvantage: low production levels of the
desired proteins [48]. Additionally, isolation and purification of the recombinant proteins
from plant tissues is quite expensive [38]. Although plant systems have proven effective in
performing glycosylation required for complex proteins [48,121], there is a major difference
in the plant and mammalian glycan structure. The N-linked glycans produced by plants
carry two plant specific residues, β-1,2-xylose and core α-1,3-fucose, which are absent
from mammalian cell produced proteins [122]. The immunogenicity and allergenicity of
plant-specific N-glycans has been a key concern in human therapy [122]. So far, there is
only one plant cell produced biopharmaceutical, taliglucerase alfa (Elelyso®), approved by
FDA. Concerted research efforts based on molecular biology strategies, such as enhancing
gene transcription and translation, minimizing post-translational degradation, and gly-
coengineering to humanize glycosylation, and engineering strategies, such as improving
bioreactor design and operation and optimizing the protein purification procedure, are still
needed for the commercial success of plant-based production platforms.

3. Medicinal Plant-Produced Metabolites (Small Molecules) against SARS-CoV-2

Although some vaccines and mAbs have been successfully developed in the past 2 to
3 years to combat COVID-19 disease, the lack of effective therapeutics against the virus
has prompted the shift of some interests toward plant-based therapy. This is because many
drugs in use are either plant materials or derived from their bioactive compounds. There is
a remarkable prospect of discovering anti-COVID-19 from medicinal plants [123].

Plant-produced secondary metabolites (PSMs) are a rich source of bioactive com-
pounds with a broad spectrum of antiviral activities [37]. Due to their high bioavailability,
relatively low cost, and potential for large-scale production, PSMs represent a promis-
ing field of study to find new treatments against SARS-CoV-2 [124–126]. The potential
of PSMs to treat COVID-19 is immense. They can be utilized as prophylactics, antivi-
rals, and even adjuvants to reduce morbidity during COVID-19 treatment [127]. Natural
medicines derived from PSMs are usually non-toxic, well-tolerated with minimum side
effects, and highly absorptive by the human body [128]. A list of 162 PSMs found in
medicinal plants that showed antiviral activity has been published earlier [37]. Among
them, around 76 PSMs from different plant species are effective against COVID-19 [37].
These PSMs can be generally classified as polyphenols, alkaloids, flavonoids, coumarins
and essential oils, which are able to inhibit main targets in the virus life cycle, including
the viral proteins, the lipid envelope and viral nucleic acids [129]. In addition, advanced
bioinformatics applications have opened a new arena in predicting PSMs as a potential
COVID-19 suppressor [128,130]. In silico analysis has revealed that PSMs could be one of
the most valuable drug targets against SARS-CoV-2 [37]. There are many recent review
papers published on the PSMs against SARS-CoV-2 [36,37,125,129,131–136]. A comprehen-
sive list of medicinal plants and their active compounds with inhibitory activity against
SARS-CoV-2 can be seen in the recent reviews [37,131,132,137]. In this section, we will
discuss the major antiviral mechanisms of PSMs against SARS-CoV-2 and summarize some
of the newly published data involving the application of PSMs in the prevention and
treatment of COVID-19 infections.
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3.1. Antiviral Mechanisms of PSMs

Many PSMs have broad-spectrum antiviral activity. They can inhibit multiple steps
in viral infection and replication and have been previously used in the treatment of SARS,
MERS, influenza, and dengue virus [131,138]. Specifically, PSMs may function in inhibiting
viral proteins, intercalating viral nucleic acids, blocking the ACE2 receptor, and modulating
the immune system (Figure 3) [129,132,135,138,139].
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Figure 3. Schematic illustration of anti-SARS-CoV-2 mechanisms of PSMs from medicinal plants.
Possible inhibition targets of PSMs during the viral life cycle are indicated by 1©: inhibition of viral
proteins; 2©: intercalation of nucleic acids; 3©: blocking of ACE2 receptor; 4©: Immune modulation.
TMPRSS2: Transmembrane protease, serine 2; PLpro: papain-like protease; 3CLpro: chymotrypsin-
like protease; Nsp13: Nsp13 helicase; RdRp: RNA-dependent RNA polymerase; NF-κB: nuclear factor
kappa-light-chain-enhancer of activated B cell; IRF3: interferon regulatory factor 3; ER: endoplasmic
reticulum; ERGIC: ER-Golgi intermediate compartment.

3.1.1. Inhibition of Viral Proteins

The major drug targets that have been identified for SARS-CoV-2 through host-virus
interaction studies include the SARS-CoV-2 main protease (Mpro), chymotrypsin-like pro-
tease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp),
helicase Nsp13 and S proteins [36]. These viral proteins are critically involved in the viral
replication and transcription process, and thus considered as the most promising targets for
drug discovery against SARS-CoV-2 [135]. Since the outbreak of the COVID-19 pandemic,
research has been conducted to screen for potential PSMs inhibiting the SARS-CoV-2 pro-
teases, RdRp and other viral proteins using molecular docking analysis. Possible PSM
inhibitors against major proteases and helicases of COVID-19 were summarized in recent
reviews [129,140]. For example, six FDA-approved antiviral compounds, including With-
aferin A, Nelfinavir, Rhein, Withanolide D, Enoxacin, and Aloe-emodin were discovered
as possible COVID-19 main protease inhibitors [141]. In other research, the binding of
a library of polyphenols with SARS-CoV-2 RdRp was assessed, and the study revealed
that epigallocatechin gallate and three theaflavin derivatives could strongly bind to the
active site of RdRp with high binding stability and with low toxicity, thus representing an
effective therapy for COVID-19 [142]. In addition, in an in vivo study using hamsters as a
disease model, extracts of Perilla frutescens and Mentha haplocalyx were found to be effective
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in inhibiting viral 3CL protease and RdRp [143], thus these compounds could be further
developed as plant-derived anti–SARS-CoV-2 agents.

3.1.2. Intercalation of Nucleic Acids

Some types of PSMs, particularly alkaloids, can directly interact with DNA or RNA
and hence stabilize those in single-stranded form. These DNA- or RNA-alkaloids conjugate
readily, inhibit their further replication, and consequently prevent viral replication [128].
The well-known alkaloids that have been found to intercalate viral nucleic acids include
berberine, emetine, sanguinarine, isoquinoline, beta-carboline, quinoline, paraquinine,
dictamine, skimmianine [129]. Due to this mechanism, plant-derived alkaloids represent
an important group of PSMs used to combat SARS-CoV-2.

3.1.3. Blocking of ACE2 Receptor

Because SARS-CoV-2 enters human cells through the ACE2 receptor, the simplest
way to prevent viral infection is through blocking this receptor. Several PSMs, such as
flavonoids, xanthones, proanthocyanidins, and secoiridoids have shown their binding
affinities towards ACE2, thus becoming potential natural drugs against COVID-19 [144].
For example, quercetin was found to efficiently inhibit ACE2 [145]; essential oils isolated
from lemon and Geranium could significantly downregulate the expression of the ACE2
receptor in human epithelial cells [146].

3.1.4. Immune Modulation

A growing body of clinical data has indicated that COVID-19 may cause a “cytokine
storm” in patients due to an extreme inflammatory response, which is also a crucial cause
of death from COVID-19. Certain PSMs have shown positive immunomodulation effects
against this “cytokine storm”. For example, alcoholic extract of hop (Humulus lupulus) and
bark of cinnamon (Cinnamum verum) was found to inhibit NF-κB (nuclear factor kappa-
light-chain-enhancer of activated B cell) which acts as a pro-inflammatory element [147].

3.2. Major Classes of PSMs against SARS-CoV-2

PSMs from three major classes: alkaloids, polyphenols and terpenoids/terpenes, have
shown activities in preventing and treating COVID-19 infections [123].

3.2.1. Antiviral Alkaloids

Alkaloids represent a large class of PSMs that contain at least one nitrogen atom.
According to their biosynthetic pathway alkaloids can be classified into several groups:
tropanes, quinolines, indoles, purines, isoquinolines, imidazoles, pyrrolidines, pyrrolizidines
and pyridines. The pharmacological effects of these alkaloid compounds include antioxi-
dant, antifungal, antimalarial, antibacterial, and antiviral activities. The antiviral activity
of some alkaloids, such as emetine, Ipecac, Macetaxime, tylophorine, and 7-methoxy
cryptopleurine, is shown by inhibiting viral proteases, RNA synthesis and protein syn-
thesis [37,124]. In silico screening analysis indicated that some alkaloid compounds, for
example 10-hydroxyusambarensine and cryptoquindoline isolated from African medicinal
plants, exert anti-SARS-CoV-2 activity through inhibition of 3CLpro [148]. In addition,
some alkaloids, such as tetrandrine, fangchinoline, cepharanthine, and lycorine, inhibit
the virus through intercalating into nucleic acid and inhibiting spike and nucleocapsid
proteins [149]. So far, the alkaloid compounds showing the greatest inspiring antiviral ef-
fects against SARS-CoV-2 are papaverine, caffeine, berberine, colchicine, cryptospirolepine,
deoxynortryptoquivaline, cryptomisrine, 10-hydroxyusambarensine, emetine, ergotamine,
camptothecin, lycorine, nigellone, norboldine, and quinine [133,150]. These compounds
could be further developed by being used alone or in combination with other drugs for
treating COVID-19.
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3.2.2. Antiviral Polyphenols

Polyphenols contain multiple aromatic rings and one or more hydroxyl groups.
Polyphenols are broadly classified as flavonoids, lignans, stilbenes and phenolic acids
according to the number of aromatic rings they contain and of the structural elements
binding these rings together [151]. Numerous polyphenols are considered as antiviral
agents. A comprehensive review on the phenolic compounds against SARS-CoV-2 was
recently published [152]. Polyphenols show antiviral activities using diverse mechanisms,
including intercalating into nucleic acid and inhibiting the activity of protease, helicase
and RdRp [152,153]. This is because the hydroxyl group of polyphenols can interact
with the positively charged amino groups of proteins and consequently destroy the three-
dimensional structure of the protein [123]. In silico analysis revealed that polyphenols can
inhibit the Mpro protease and RdRp of SARS-CoV-2 effectively [154]. Flavonoids consisting
of two aromatic rings bound together by three carbon atoms comprise the most studied
group of polyphenols. Flavonoid compounds were found to be able to inactivate the Mpro
protease of SARS-CoV-2 [155]. In addition, the flavonoid scutellarein from the root of
Lamiacaea was shown to inhibit the NSP13 helicase of SARS-CoV-2 by altering its ATPase
activity [156]. In the past three years, many clinical trials of polyphenols as a possible
treatment for patients with COVID-19 have been reported [152]. Polyphenols from different
plant species have been shown to improve symptoms (fever, chills, cough, myalgia, and
tachypnea), increase lymphocyte count, and decrease inflammation, etc. [152].

3.2.3. Antiviral Terpenoids/Terpenes

Terpenoids constitute a large group of PSMs with a broad spectrum of structures and
effects. They are lipophilic compounds found in essential oils of many plants. Terpenoids
could be used as antioxidant, anti-cancer, anti-inflammatory, antibacterial and antiviral
reagents [123]. In terms of antiviral activity, lipophilic terpenoids can disturb the lipid
envelope of viruses. Certain terpenes, such as celandine-B, betulinic acid, and ursolic
acid have demonstrated strong antiviral effects as they can destroy the lipid layer of the
virus [157]. Recent in silico screening indicated that some terpenes from African plants, such
as 6-oxoisoiguesterin, 22-hydroxyhopan-3-one and 20-epi-isoiguesterino, could interact
with the 3CLpro of SARS-CoV-2, and had binding affinities surpassing that of two reference
compounds, lopinavir and ritonavir [148]. Recently, Glycyrrhizin, a triterpenoid saponin
from licorice (Glycyrrhyza glabra) roots, was reported to be valuable in the treatment of
COVID-19 due to its multi-target mode of action, such as binding to ACE2, downregulating
proinflammatory cytokines, and stimulating endogenous interferon [158]. In addition,
cannabidiol (CBD) from Cannabis sativa has been shown to downregulate ACE2 expression
in COVID-19 target tissues, thus reducing COVID-19 severity [156].

3.3. Potential Anti-SARS-CoV-2 Compounds

Although numerous studies have focused on the inhibition of SARS-CoV and MERS-
CoV with PSM compounds in the past years, there are few studies on the direct treatment
of COVID-19 disease, which are limited to in silico studies [126]. A compilation of PSMs
with potential inhibitory and regulatory activity against SARS-CoV-2 is listed in Table 3.
Their chemical structure is shown in Figure 4. These metabolites were curated based on
their potential ability to stop, prevent, and treat COVID-19 infections. Only those with
potential direct activity against SARS-CoV-2 were considered. Additionally, most PSMs in
Table 3 show little toxicity, as indicated by in vitro or in silico evaluations.

Given the novelty of the disease and the shift in attention to other areas, PSMs have not
been studied thoroughly for treating COVID-19 and most research is still in early phases,
as evidenced by the predominance of in vitro models throughout the table. Therefore,
the metabolites presented are only prospects selected by their confirmed in vitro activity
and/or their theorized capabilities by in silico models. More research is needed to fully
corroborate their action against SARS-CoV-2 in humans. The PSM compounds introduced
below are a selection of those with the most advanced stages in research.
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Table 3. Compounds of medicinal plants found to be effective against SARS-CoV-2 through in vitro,
in vivo or in silico analysis.

Major Active Compounds Plant Species Efficacy/Mechanism of Action * References

Artemisinin, flavonoids,
artesunate, artemether,

nonidentified metabolites
Artemisia annua L.

Inhibiting viral replication [159]

Inhibiting replication of five virus variants
including Delta [160]

Inhibiting viral infection [161]

Astersaponin I (AI) Aster koraiensis
Inhibiting virus entry pathways at plasma

membrane and within
endosomal compartments

[162]

Curcumin Curcuma longa Binding and inhibiting S protein of Omicron
variant (in silico analysis) [163]

Emetine Carapichea ipecacuanha Blocking viral entry into cells; inhibiting
virus replication; anti-inflammation [164]

Hesperidin
(Hesperetin) Various species Reducing expression of TMPRSS2 and ACE2

(in silico analysis) [165]

Hypericin Hypericum perforatum Binding viral envelope and reducing its
infectivity [166]

Licorice-saponin A3 (A3) and
glycyrrhetinic acid (GA) Glycyrrhiza uralensis Inhibiting viral infection [167]

Luteolin Various species Reducing viral replication by inhibition
of RdRp [168]

Myricetin Various species
Inhibiting viral replication and transcription

by inhibition of protease (Mpro);
anti-inflammation (in vivo analysis)

[169]

Nonalkaloid compounds Rhazya stricta Binding key residues of S proteins and
impeding viral infection (in silico analysis) [170]

Panduratin A Boesenbergia rotunda Inhibiting viral replication [171]

Persimmon-derived tannins Diospyros kaki Inhibiting virus replication; potential as a
prophylactic agent [172]

Piperine Piper spp. Inhibiting viral replication [173]

Quercetin Various species Impeding viral replication by inhibition
of RdRp [168]

Thapsigargin Thapsia garganica
Inhibiting viral replication by inducing stress
in ER and increasing the viability of infected

cells
[174]

Withaferin A, Withanone,
Withanolide A Withania somnifera (L.)

Inhibiting viral infection and replication;
anti-inflammation and proinflammatory

cytokines (in vivo analysis)
[175]

*: all those unindicated are in vitro analysis.

3.3.1. Artemisinin

Artemisinin derivatives from Artemisia annua L. are effective in treating malaria. They
are also well documented as antiviral drugs [176]. The study by Nair et al. (2021) revealed
a potent inhibitory action of A. annua L. leaf extracts on viral infection in Vero E6 cells
with relatively low IC50 values [159]. The study also demonstrated that artemisinin is not
the main or only metabolite with antiviral properties in the extracts. Furthermore, the
metabolites present in the leaf extracts were found effective against five variants of the
virus (Alpha, Beta, Gamma, Delta and Kappa) and seemed to have great stability [160].
Dry leaf samples still showed antiviral activity after staying frozen for twelve years [159].
In another study by Zhou et al. (2021), it was found that A. annua extracts as well as
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individual compounds (artemisinin, artesunate, and artemether) all showed inhibitory
effects on viral infection of Vero E6 cells, human hepatoma Huh7.5 cells and human lung
cancer A549-hACE2 cells. Among them, artesunate proved most potent in different cell
types, and it targeted SARS-CoV-2 at the post-entry level [161].
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3.3.2. Hesperidin/Hesperetin

Hesperidin and its aglycone hesperetin, compounds isolated from citrus plants, are
also regarded as potential antiviral drugs. Both compounds were initially studied due to
their predicted interaction in molecular models with ACE2 and TMPRSS2 [165]. These
molecules are crucial in the SARS-CoV-2 cell hijacking mechanism. Cheng et al. (2022)
applied enzymatic activity assays and in vitro studies with Vero E6 cells and particles of
pseudo-virus, demonstrating a strong disruption of ACE2-S protein interaction, but a slight
inhibition of TMPRSS2. Nonetheless, their research also revealed another action mechanism
for hesperidin and hesperetin—the downregulation of both ACE2 and TMPRSS2 in lung
epithelial lung cancer cell lines. These metabolites’ disruptive activity and little cytotoxicity
make them prospective agents to prevent further cell entry in infected individuals, allowing
for a quicker recovery.

3.3.3. Emetine

Emetine, an alkaloid extracted from the ipecacuanha plant (Brazilian root), is another
compound with strong antiviral activity [177]. Its effect against other coronaviruses is
well documented and SARS-CoV-2 is no exception. Several papers have documented the
multifaceted approach of emetine against SARS-CoV-2, inhibiting not only viral entry,
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but also replication and proliferation [164]. In a study published by Wang et al. (2020)
emetine swiftly reduced viral activity in SARS-CoV-2 infected Vero cells and blocked
viral entry in pretreated cells [178]. The metabolite disrupts the interaction between viral
mRNA and key molecules involved with translation, including ribosomes, viral polymerase
RdRp and replication–transcription complex translation initiation factor eIF4E [179,180], as
suggested by in silico simulations. In addition, the action of emetine remains effective even
at low concentrations, making it a potent drug. However, the researchers also noted that
emetine has been associated with cardiac complications and possible cytotoxicity, leaving
its viability as a drug yet to be assessed.

3.3.4. Luteolin and Quercetin

Similar to emetine, luteolin and quercetin, which are ancestors of flavonoid natu-
ral compounds, exhibit in vitro inhibition against RdRp of SARS-CoV-2 [168]. Previous
in vitro studies have also suggested their inhibitory activity against viral protease 3CL-
pro [71]. Their ability to reduce SARS-CoV-2 replication by preventing translation and post-
translational processing makes both metabolites promising treatment drugs for COVID-19.

3.3.5. Panduratin A

Panduratin A, a diarylheptanoid found in Renealmia nicolaioides and Boesenbergia ro-
tunda can not only prevent infection but also slow viral replication. As discovered by
Kanjanasirirat et al. (2020), panduratin A significantly stops the activity of SARS-CoV-2 in
Vero E6 and Calu-3 cell lines in pre- and post- infection stages with a performance compa-
rable to the already approved COVID-19 treatment drugs. Additionally, it is important to
highlight the minimal toxicity shown by panduratin A, as evidenced by cytotoxicity assays
in five different cell lines [171].

3.3.6. Tannins

The case of persimmon-derived tannins has vital importance as it represents one
of the few studies to include in vivo models. After the hamster model was treated with
persimmon-derived tannins and then inoculated with SARS-CoV-2 viral particles, it re-
mained healthy and presented low antigen and viral load levels in their lungs, as indicated
by immunohistochemistry assays and qPCR [172]. By contrast, the control group presented
severe lung inflammation and greater pathophysiology and a higher antigen count. Even
though the researchers demonstrated the prophylactic potential of persimmon-derived
tannins to prevent/regulate SARS-CoV-2 infection, further studies are needed to assess the
efficacy of the compound in already infected organisms.

3.4. Challenges in Clinical Applications of PSMs against SARS-CoV-2

PSMs from various medicinal plants serve as a treasure of bioactive compounds
that have shown promising results against SARS-CoV-2. However, due to the novelty of
COVID-19, and lack of experimental evidence and safety studies, the use of most PSMs
is still limited [126]. So far, none of the isolated PSM compounds from medicinal plants
have been successfully used for clinically treating COVID-19. First of all, there is still
a lack of sufficient in vivo and clinical studies to demonstrate the effectiveness of PSM
compounds in preventing the viral infection or alleviating symptoms associated with virus
infection [181]. In fact, numerous compounds showing high antiviral activity in vitro could
be found to be inactive in pre-clinical or clinical trials [138]. Second, because the PSMs
are small molecules, they are usually stable and can be delivered orally as plant extracts
without the need to purify from other by-products. However, the treatment with plant
extracts becomes complicated due to the existence of various compounds. The antiviral
ability of individual compounds may be different from their functions in extracts, and
they can be additive or synergistic, or even antagonistic [156]. In addition, some PSMs
could be toxic at certain levels, so it is necessary to conduct in vitro and in vivo research
to evaluate the safety and therapeutic levels of each compound before conducting human
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clinical trials [131]. Therefore, tremendous research is still needed to find the most effective
PSM compounds or a combination of them that would be effective in treating COVID-19
infection.

4. Prospects

The COVID pandemic has been affecting the world for three years. It is generally
accepted that SARS-CoV-2 will not be fully eradicated. Most likely, the virus will coexist
with humans, and the disease will become an endemicity. There is a critical need to
develop new and effective pharmaceuticals for prophylactic and therapeutic purposes. The
rapid development of vaccines against SARS-CoV-2 has provided a major step forward in
reducing COVID-19’s impact, thus representing a scientific victory. However, many people,
even those fully vaccinated lose protection over time. This problem seems to be especially
pronounced with the Omicron-related variants. Therefore, there is still a pressing need
for globally available vaccines that can provide more lasting immunity against current
and future coronavirus variants [94]. A ferritin-based COVID-19 nanoparticle vaccine
that elicits robust, durable, broad-spectrum neutralizing antisera against known variants
of concern, including Omicron BQ.1 and the previous virus version SARS-CoV-1, was
just reported [182]. This offers great potential for the rapid response of the emerging
SARS-CoV-2 variants and provides versatility for the future development of vaccines
against other emerging coronaviruses. In addition, all currently approved vaccines are
administered parenterally, which may not be effective in preventing mucosal infection of
respiratory pathogens like SARS-CoV-2. Therefore, mucosal COVID-19 vaccines, such as
those administered orally or intranasally, would potentially be more effective in offering
protection against SARS-CoV-2 infection, because they offer the dual benefit of inducing
potent mucosal and systemic immunity [183]. Around 100 mucosal COVID-19 vaccines are
in development globally. Among them, 20 have reached clinical trials in humans [184]. In
late 2022, two mucosal COVID-19 vaccines that are delivered through the nose or mouth
have been approved for use in China and India [185]. These approvals validate the need for
mucosal vaccines, though their effectiveness in preventing COVID-19 infection needs be
further assessed. In addition to vaccines, other antiviral agents with the potential to limit
virus transmission or block infection, including both big molecules and small molecules,
will continue to be explored.

Plants provide attractive bioproduction platforms for both recombinant therapeutics
and natural bioactive metabolites to combat the COVID pandemic. Molecular farming in
plants is an unprecedented opportunity for developing vaccines, antibodies, and other
biologics for pandemic diseases because of its potential advantages, such as low cost, safety,
and high production volume. As mentioned above, numerous anti-SARS-CoV-2 biologics
have been expressed in plant systems. Because many plants or plant products are edible,
advances in this area can lead to oral vaccines that can induce mucosal immunity, and
that are low cost, easy-to-administer, and have high thermostability [186]. This could be
especially applicable for vaccinating people in developing countries, such as those in Africa,
where high costs and logistical problems can constrain massive vaccine programs [60].
However, compared to the major expression hosts (bacteria, yeast and mammalian cells),
plants are still largely underutilized, mainly due to low productivity and non-human
glycosylation [187,188]. Modern molecular biology tools, such as RNAi and the latest
genome editing technology, could be exploited to modulate the genome of plant cells to
create new plant lines exhibiting improved “traits” for therapeutic protein production [189].

Alternatively, medicinal plants provide a significant prospect for discovering new and
effective anti-COVID-19 drugs. The PSMs from medicinal plants have been demonstrated
to be powerful in fighting against SARS-CoV-2 as they can interfere with the viral life
cycle, including viral entrance, replication, assembly, and virus-specific host targets [190].
Many potential antiviral PSMs against SARS-CoV-2 have been tested in vitro, in vivo or
predicted by in silico analysis. However, none of the PSM compounds have been approved
by the FDA for treating COVID-19 so far. More pre-clinical and clinical evaluation of the
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therapeutic effectiveness of these PSMs is a major concern for further development of
safe and effective treatments. Because of the novelty of the virus and the disease caused,
safety is still a main concern for the use of PSMs [138]. Although compared to synthetic
medicines, PSMs are regarded as less toxic because of their natural origin and long-term
use as traditional medicines, these compounds may have potential adverse or toxic effects
at certain concentrations [36]. Therefore, further investigations, particularly pre-clinical
evaluation, are necessary for determining the safe therapeutic dose of each compound
before clinical application. In addition, plant metabolomics is currently used as a tool to
discover novel drugs from plant resources [37]. Characterization of genes and enzymes
involved in secondary metabolic pathways is also very crucial for understanding the
biosynthesis of bioactive compounds [191]. This will pave the way for further genetic
modifications of medicinal plants to synthesize novel PSM compounds that are most
effective in treating COVID-19. Finally, in order to improve the use of PSM compounds,
combination treatments, for example the treatments in combination with the FDA-approved
anti-SARS-CoV-2 drugs or with the assistance of nanotechnology, may be a promising
strategy to develop as they exhibit better synergistic and/or additive effects against COVID-
19 [137].

5. Conclusions

The COVID-19 pandemic not only caused a public health crisis, but also severely
affected the global economy. Although the epidemic has been alleviated to a great extent
around the world, the virus will continue to coexist with human beings and constantly
mutate. Plants provide a promising bioproduction platform for both recombinant thera-
peutics (big molecules) and natural bioactive compounds (small molecules) that can be
used to combat the virus. “Molecular farming” in plants proposes a superior bioproduction
platform for recombinant therapeutics as compared to other eukaryotic systems in terms
of safety, scalability, and cost. In the future, advances in this area could also lead to oral
vaccines that may be convenient and easy to deploy. Alternatively, plants represent a dra-
matically underutilized source of bioactive compounds with a broad spectrum of antiviral
activities. In vitro, in vivo, and in silico analyses have revealed numerous plant-derived
compounds with promising anti-SARS-CoV-2 activity. Therefore, these molecules will be
able to develop new natural solutions for treating COVID-19. In summary, it will take
the combined efforts of plant genetic engineering and natural plant medicine research to
ultimately extinguish this pandemic.
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