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Abstract: The technological development of Artificial Intelligence (AI) has grown rapidly in recent
years. The applications of AI to cardiovascular imaging are various and could improve the radiol-
ogists’ workflow, speeding up acquisition and post-processing time, increasing image quality and
diagnostic accuracy. Several studies have already proved AI applications in Coronary Computed
Tomography Angiography and Cardiac Magnetic Resonance, including automatic evaluation of
calcium score, quantification of coronary stenosis and plaque analysis, or the automatic quantification
of heart volumes and myocardial tissue characterization. The aim of this review is to summarize the
latest advances in the field of AI applied to cardiovascular CT and MR imaging.

Keywords: artificial intelligence; computed tomography angiography; magnetic resonance imaging;
cardiovascular diagnostic technics

1. Introduction

Nowadays, clinical and therapeutic interest in cardiovascular imaging is continuously
increasing, with growing number of exams for dedicated radiologists who are often asked
to use a long workflow prior to completing a report. Technological improvement and
computational power development have allowed for huge progress in the field of artificial
intelligence (AI). In the medical field, radiology represents one of the most appealing areas
for AI application [1].

In particular, machine learning (ML) algorithms have the ability to learn from data,
improve with experience, and make predictions [2]. Deep learning (DL) is a subtype of
machine learning that does not require manual data input and generates artificial neural
networks, capable of learning data and creating features [3,4]. In cardiovascular imaging,
the use of AI can aid the radiologists’ workflow, reducing acquisition and post-processing
time, improving image quality and exam accuracy. Moreover, stratification of the risk and
prognosis evaluation can be precisely assessed due to the ability of AI to analyze enormous
amounts of data [5,6].

The aim of this review is to summarize the latest AI applications in cardiovascular CT
and MR imaging, pointing out the prognostic value and future prospects of a powerful but
still widely unknown technology.
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2. AI in Coronary Computed Tomography Angiography

The application of artificial intelligence in the context of cardiovascular imaging
comtains several implications that mainly include the assessment of coronary artery calcium
(CAC) score, stenosis and plaques evaluation, FFRct and myocardial perfusion analysis.

2.1. Calcium Score

The CAC score is a simple, highly reproducible tool for assessment of atherosclerotic
diseases calculated on unenhanced CT scans and is considered an independent predictor of
major cardiovascular events. The assessment of coronary plaque burden is actually estab-
lished on a semi-automatic segmentation of calcified plaques with a density of >130 HU on
axial CT images [7–9].

The application of AI in the evaluation of CAC would be extremely helpful, reducing
the time-consuming need for the radiologist to manually select lesions and providing
clinicians information about prognostic stratification of patients.

In 2007, Isgum at al. [10] used a fully automated method for the coronary calcifica-
tion detection from 76 non-contrast-enhanced, ECG-gated multi-slice CT scans including
275 calcifications in the coronary arteries. The AI algorithm was able to identify coronary
calcifications in 73.8% of cases and to assign patients to the correct risk category in 93.4%
of cases.

Even if CAC score is usually calculated on ECG-gated scan, visual assessment of
calcified plaque burden can be performed on every chest CT [11].

Takx et al. [12] examined a cohort of 1793 patients who underwent a non-ECG-gated
and non-contrast CT for lung cancer screening to assess the impact of AI for evaluation of
CACS. Even though the automated system was responsible for underestimation of calcium
score values in comparison to the reference standard, results showed good reliability with
a weighted k of 0.85 for Agatston risk score.

In a more recent study, Gonzalez et al. [13] used a database of 5973 non-contrast
non-ECG-gated chest CT scans, of which 4973 cases were used for training and 1000 were
used for testing the ability of a 3D deep convolutional neural network (CNN) to calculate
the Agatston score, reaching a Pearson correlation coefficient of r = 0.93 and an accurate
risk stratification in 72.6% of cases.

These results potentially extend the application of AI CAC score stratification and
benefit to a patient who undergoes a chest CT scan for different clinical indications.

Sandsted et al. [14] evaluated the performance of an AI algorithm for the quantification
of the Agatston score, the volume score and the mass score compared to semiautomated
CAC score. Results showed excellent correlation (Spearman’s rank ρ = 0.935, 0.932, 0.934)
and excellent agreement (ICC = 0.996, 0.996, 0.991, respectively). Agreement in risk category
assignment was 89.5% and κ = 0.919 (p < 0.001).

Similar results were also obtained by Wilkemann et al. [15], who assessed an automated
machine-learning system with two mechanisms, a CNN with ResNet and a dense network.
The machine learning-based software achieved a great correlation (Spearman’s rho > 0.969)
and excellent agreement (ICC > 0.919) with the semi-automated software used as a reference.
Patients were assigned to the correct risk group in 98.4% of cases.

Martin et al. [16] presented a multi-step deep learning model and tested it on 511 pa-
tients. The first step was used to identify and segment the regions, such as the coronary
artery, aorta, aortic valve, and mitral valve. The second step classified the voxels as coronary
calcium. The sensitivity and the intraclass correlation coefficient they achieved were both
excellent, respectively 93.2% and 0.985.

Recently, Lee at al. [17] developed a new atlas-based CAC_auto system that allows to
accurately identify coronary artery regions using a deep learning model. The novel algo-
rithm was proven using three CT angiography cohort datasets and a manually generated
reference standard (CAC_hand). CAC_auto system achieved great reliability for evaluation
of coronary calcium score (ICC 0.99), reaching a sensitivity of 93.3%.
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2.2. Coronary Stenosis and Plaque Analysis

Coronary computed tomography angiography (CCTA) provides excellent visualiza-
tion of coronary arteries, and its application for the assessment of coronary stenosis and
plaque characterization has been widely validated [18–20]. AI can be very helpful in the
evaluation of these features (Figure 1).
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Figure 1. Axial and multiplanar reconstruction of quantitative plaque AI-based measurements of
a fibrofatty plaque with positive remodelling determining severe stenosis of the left descending
artery (LAD) ((A,B)—white arrow) and of a calcified plaque determining mild stenosis of the LAD
((C,D)—black arrow).

Nonetheless, post-processing and image evaluation can be very time-consuming and
susceptible to inter-observer variability, which may be reduced by AI-based algorithms.

Jonas et al. [21] verified the interobserver variability among expert readers for quanti-
fying the volume of coronary plaque and plaque components on CCTA using an artificial
intelligence software as a reference (AI-QCT). The study cohort included a sub-group of
232 patients of the CLARIFY (CT EvaLuation by ARtificial Intelligence For Atherosclerosis,
Stenosis and Vascular MorphologY) study. Readers yielded fair consistency in quantifying
total plaque volumes (Spearman’s coefficients ranging between 0.68 and 0.74), but there
was a certain grade of discordance for the assessment of plaque composition (Spearman’s
coefficients between 0.38 and 0.60).

Based on stenosis and plaque burden evaluated on CCTA, patients are assigned to
specific category of risk according to the Coronary Artery Disease-Reporting and Data
System (CAD-RADS) classification allowing to identify patients that may require further
functional or invasive investigations [22].

Muscogiuri et al. [5] evaluated a cohort of 288 patients who underwent CCTA to
check the performance of a deep learning algorithm based on CNN for the classification of
CAD-RADS. The average time of analysis of CNN was significantly shorter compared to
that of humans. Sensitivity, specificity and accuracy ranged between 47 and 82%, 58 and
91%, and 46 and 86%, respectively.
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Paul et al. [23] valued a deep-learning model (DLM) trained with 10,800 curved
multiplanar reformatted (cMPR) CCTA images for classifying coronary arteries on CCTA
using the CAD-RADS. The results showed that sensitivity and specificity were 93% and
97%, respectively, and the negative predictive value was 97%.

Choi et al. [24] enrolled 232 patients to compare AI performance in assessing maximal
diameter stenosis, plaque volume and composition, presence of high-risk plaque and CAD-
RADS category in comparison with three expert radiologists. AI’s accuracy, sensitivity,
specificity, positive predictive value and negative predictive value were excellent for both
stenoses >70% and >50%: 99.7%, 90.9%, 99.8%, 93.3%, 99.9%, 94.8%, 80.0%, 97.0, 80.0%, and
97.0%, respectively. Patients were assigned to the correct CAD-RADS category in 228/232
(98.3%) exams.

Several studies have compared the diagnostic accuracy of artificial intelligence in the
assessment of stenosis to more invasive diagnostic approaches.

Hell et al. [25] applied an AI-based software (AUTOPLAQ) to define the maximum
percent difference of contrast densities (CDD) within an individual lesion to calculate the
hemodynamic relevance of coronary stenosis. CDD was considerably increased in hemody-
namically significant stenosis and allowed to determine the hemodynamical relevance of
the lesions with a specificity of 75% and negative predictive value of 73% when compared
to invasive FFR.

In a multi-center study, Griffin et al. [26] compared the accuracy of AI for the detection
of >50% stenosis and >70% stenosis to quantitative invasive angiography (QCA). Results
showed an accuracy ranging between 84% and 86% and high correlation between stenosis
detected on AI-QCT evaluation vs. QCA (ICC = 0.73). The analysis required approximately
10 min, with a net gain in time against the hours normally necessary for readers to process
images. However, AI was responsible for the detection of 62/848 (7.3%) false-positive
coronary stenosis ≥ 70%.

Over the last few years, the development of dual-energy technology has significantly
increased its use in cardiovascular diagnostics due to its numerous advantages [27–30].

Yi et al. [31] investigated the value of an AI-based application for detecting coronary
stenosis from virtual monoenergetic spectral reconstructions (VMI) on Dual-Energy CCTA
using invasive coronary angiography (ICA) as reference standard. VMI images demon-
strated a non-inferior diagnostic performance in vessel analyses with conventional images,
reaching a similar sensitivity (72 vs. 74%) and even higher specificity (91 vs. 86%) and
diagnostic accuracy (82 vs. 80%). For plaque assessment, the accuracy of VMI ranged
between 80 and 93% vs. 81 and 94% of conventional imaging.

2.3. FFRct and Myocardial Perfusion

Fractional flow reserve computed tomography (FFRct) is a novel and non-invasive
instrument for the detection of myocardial ischemia based on computational fluid dynamics
modeling techniques [32].

The development of machine learning algorithms for the estimation of FFRct could be
incredibly valuable for the assessment of potential ischemic lesions.

Coenen et al. [33] used the data obtained from MACHINE consortium to validate the
accuracy of ML-FFRct compared with invasive FFR as a reference standard and with FFRct
derived from the classic fluid dynamic (CFD) FFRct. The authors determined that on a
per-vessel analysis, the diagnostic accuracy of ML-FFRct was 78% compared to 58% of
CCTA, while the patient accuracy reached 85% compared to 71% of CCTA. ML-FFRct and
CFD-FFRct showed the same area under the curve (AUC: 0.84) compared to the low AUC
of CCTA (AUC: 0.69).

A study by Tesche et al. [34] compared CCTA to ML-FFRct in 85 patients using QCA
as reference standard, revealing a per-lesion and a per-patient sensitivity of 79% and 90%
and a specificity of 94% and 95%, respectively.

In their retrospective study, Morais et al. [35] proposed the FFRct obtained by an
AI-based software to improve the detection coronary ischemia. The authors analyzed
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images from 93 patients who underwent CCTA on two different scanners and detected
good agreement between FFRct and invasive FFR which have been used as a reference
standard (r = 0.73). The use of different scanners did not affect the correlation between
FFRct and invasive FFR. FFRct performance was considerably higher compared to the
visual classification of coronary stenosis (AUC 0.93 vs.0.61).

Tang et al. [36] assessed the value of ML-FFRct in identifying hemodynamically in-stent
restenosis using invasive FFR as reference in 33 patients who underwent stent implantations.
Results showed that FFRct had a great correlation with invasive FFR (ICC = 0.84).

Recently, Quiao et al. [37] performed a prospective study whose aim was to prospec-
tively compare the outcomes of ML-FFRct with conventional anatomical CCTA or the
evaluation of patients with moderate coronary stenosis. Patients were divided in two
groups, depending on whether they were assigned to CCTA or FFRct group. At 90 days,
the rate of ICA without obstructive disease was higher in the CCTA group (33.3%, 39/117)
than that in the FFRct group (19.8%, 19/96). FFRct was also associated with a lower rate
of referral for ICA (20.3% vs. 27.5%) and 1-year MACE when compared to the anatomical
CCTA alone strategy (HR: 1.73; 95% CI: 1.01, 2.95; p = 0.04).

Myocardial CT perfusion (CTP) also demonstrated to improve the accuracy of CCTA
in recognizing hemodynamically significant coronary stenoses [38,39].

Nevertheless, AI applications in CTP are actually limited, and only few studies have
investigated its potential.

Xiong et al. [40] evaluated the capability of three ML models (Naive Bayes, Random
Forest, and AdaBoost) to differentiate significant coronary artery stenosis from myocardial
perfusion assessed by CCTA imaging at rest using QCA as reference. AdaBoost showed a
sensitivity of 0.79 and specificity of 0.64 when compared to QCA.

Han et al. [41] developed an ML algorithm that was able to recognize myocardial
perfusion deficits at rest using datasets from 252 CCTAs. The ML model showed, on
a per-patient analysis, accuracy, sensitivity, specificity, positive predictive, and negative
predictive of 68.3%, 52.7%, 84.6%, 78.2%, and 63.0%, respectively, and improved stenosis
detection (AUC: 0.75 vs. 0.68 of CCTA evaluation alone).

Muscogiuri et al. also proposed a DL algorithm for the identification of ischemic
myocardium on rest CCTA with a sensitivity, specificity, NPV, PPV, accuracy, and AUC
respectively of 100%, 72%, 100%, 74%, 84%, and 96% [42]. Moreover, the application of
the ML model also allowed to shorten the time of analysis compared to human evaluation
(39.2 vs. 379.6 s).

3. AI in Cardiac Magnetic Resonance

Cardiac Magnetic Resonance (CMR) may require a long time, both for the acquisition of
images and their segmentation, such as for cardiac volumes assessment. In clinical practice,
the analysis of MRI datasets based on manual analysis can lead to long post-processing
times and inter- and intra-operator variability.

In this scenario, AI may represent the keystone to help radiologists in their clini-
cal workflow as well as to increase the accuracy, reproducibility, and precision of their
examinations [43].

3.1. Acquisition Phase

CMR imaging requires accurate and precise execution of the acquisition phase by the
technician in order to obtain the standard views recommended by the SCMR guidelines [44].
Since the availability of dedicated technicians is not always possible, multiple studies have
been exploring the opportunity to automatise, speed up, and standardize CMR acquisition.

In a study conducted by Lu et al. [45], a new approach based on learning-based al-
gorithms was proposed to automate and accelerate the acquisition process. First, they
manually segmented a left ventricle (LV) 3D model that was co-registered and scaled to
the patient heart through a tree-based classifier, with probabilistic boosting trees. Then,
the 3D model was inflated or deflated to match the specific patient heart anatomy. Other
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studies proposed different algorithms to obtain anatomical landmarks used for slice align-
ment [46–49].

Fokati et al. [50] applied a joint Multi-Scale Variational Neural Network to accelerate
the reconstruction time of a prototype of balanced-Steady-State Free Precession sequence for
3D whole-heart imaging: the Free-breathing Magnetization Transfer Contrast Bright blOOd
phase SensiTive (MTC-BOOST). They concluded that the proposed five-fold accelerated
jMS-VNN MTC-BOOST framework provides efficient 3D whole-heart bright-blood imaging
in fast acquisition (3.0 ± 1.0 min vs. 9.0 ± 1.1 min) and reconstruction time (10 ± 0.5 min
vs. 20 ± 2 s) compared to conventional Compressed Sensing with concomitant reduction in
flow and off-resonance artifacts.

Even Weine et al. [51] attempted to improve the acquisition of cardiac diffusion
tensor imaging (cDTI), which can provide information about myocardial microstructure.
They hypothesized that the robustness of diffusion tensor estimation can be improved
by incorporating spatial information and physiologically plausible priors into the fitting
algorithm. Thus, they trained a CNN with synthetic data generated by a parameterized
pipeline (including spatial correlations of diffusion tensors and motion of the heart). The
CNN demonstrated an increase in the accuracy and precision of cDTI and a potential
reduction in acquisition time.

3.2. Image Segmentation

Cine-MRI provides essential information about ventricular wall motion abnormalities,
myocardial thickening, and ventricular volumes [52–54]. Manual segmentation of cardiac
volumes by tracing endocardial and epicardial contours is essential for biventricular func-
tion evaluation [55]. However, contouring is a time-consuming process, which can be
even more difficult when there are individual differences in heart shape or datasets with
low contrast-to-noise ratio. Additionally, inter- and intra-operator variability can still be a
problem in follow-up studies [56,57].

Different AI models have been developed to automate the segmentation process,
making it easier, faster, and more accurate (Figure 2).
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During the 20th International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI), the “Automatic Cardiac Diagnosis Challenge” (ACDC)
was performed to establish the best AI model for automatic cardiac segmentation. Bernard
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et al. tested multiple DL algorithms for the segmentation and classification task [58].
They demonstrated a 0.97 correlation score for the best algorithm, which proved to work
very well for LV segmentation, but it was suboptimal for right ventricle and myocardial
evaluation.

Bay et al. tested a fully convolutional network (FCN) automated analysis trained on a
large-scale UK Biobank dataset consisting of 4875 subjects with 93,500 pixel-wise annotated
images [59]. They demonstrated a human-level performance on the UK Biobank dataset,
although this dataset was relatively homogeneous and based on a single scanner model
with a standard imaging protocol.

A multicenter and multivendor study conducted by Tao et al. [60] demonstrated high
accuracy of LV function quantification based on three CNNs with the U-NET architecture
with a correlation of 0.98 and an average perpendicular distance of 1.1 mm ± 0.3 compared
with manual analysis.

Li et al. [61] proposed a DL-based cardiac MRI segmentation scheme based on three
steps. First, they pre-processed the input MRI data using a standard deviation filter to
detect regions of the cardiac cycle image sequence where pixel intensity varied strongly
with time, and then they used Canny edge detection and Hough transform techniques to
detect regions containing the heart area of interest. Second, the images were input into the
ESA-Unet model network, and through the encoder self-attention module and decoder
processes, a preliminary segmentation result was obtained. Third, the conditional random
field was used to reprocess the segmented images and optimize segmentation boundary.
This method demonstrated a good segmentation effect, which facilitates the diagnosis of
clinical cardiovascular diseases, improves the efficiency, and accuracy of diagnosis.

For left atrial segmentation, Wong et al. proposed a U-Net with Gaussian blur and
channel weight neural network to automatically segment the left atrial region in the MRI
of a patient with left atrial enlargement [62]. Their CNN-based technique results in the
segmentation of the left atrium being closer to the manual segmentation by an experienced
radiologist, with a dice similarity coefficient (DSC) of 93.57%.

3.3. Tissue Characterization

Non-invasive tissue characterization is one of the distinctive features of CMR [63–71].
Late gadolinium enhancement (LGE) imaging together with T1 and T2 mapping

techniques provide both visualization and quantification of focal or diffuse myocardial
disease [72–77]. In particular, native T1 mapping techniques are able to detect increased
extracellular compartment, as it happens in amyloidosis, acute inflammation, or myocardial
fibrosis, as well as the presence of iron infiltration or Fabry’s disease [67,78–81]. Moreover,
increased T2 mapping values are extremely accurate in assessing myocardial edema [63,82].

AI could be of great support for the correct evaluation of the aforementioned parame-
ters, which are of great importance both for diagnostic and prognostic models [83–85].

Chang et al. [86] attempted a DL method for the automated measurement of native T1
and extracellular volume (ECV) fractions in CMR imaging with a temporally separated
dataset. They demonstrated that DL algorithm successfully segmented the myocardium
in 99.3% of slices in the native T1 map, and 89.8% of slices in the post-T1 map with
DSC of 0.86 ± 0.05 and 0.74 ± 0.17, respectively. Native T1 and ECV showed a strong
correlation and agreement between DL and the reference, and the agreement between DL
and radiologists was excellent.

AI algorithms can also be used to reduce artefacts and to improve the accuracy of
native myocardial value estimation. Li et al. [87] evaluated a motion correction method
for myocardial T1 mapping using self-supervised deep learning-based registration with
contrast separation (SDRAP). Results showed that the AI algorithm achieved the highest
DSC of 85.0 ± 3.9% and the lowest mean boundary error (MBE) of 0.92 ± 0.25 mm among
the methods compared.

AI-based automatic contouring was also developed to obtain precise LGE quantifica-
tion (Figure 3).
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Figure 3. Assessment of myocardial Late Gadolinium Enhancement (LGE) in a 55-year-old patient
showing areas of contrast enhancement with subendocardial and transmural distribution (white
arrow—(A)) automatically detected using artificial intelligence (yellow-colored myocardium—(B)).

Moccia et al. [88] tested a segmentation model based on FCN for LGE segmentation
and provided a DSC of 71.3%, with a sensitivity, specificity, and accuracy of 88.1%, 97.9%,
and 96.8%, respectively.

Zabihollahy et al. [89] used a cascaded multi-planar U-Net (CMPU-Net) to efficiently
segment the boundary of the LV myocardium and scar from 3D LGE-MR images. Their
algorithm reported a DSC of 85.14% ± 3.36% by comparing it to manual segmentations.

On the contrary, Zhang et al. [90] proposed a method based on non-contrast cine
images. They used a deep learning framework to identify the presence and extension
of myocardial infarction on cine MRI by first localizing the LV, and then analysing both
local and global motion features. The results obtained were promising with sensitivity,
specificity, and AUC of 89.8%, 99.1%, and 0.94%, respectively, on non-contrast cine images.

In another recent study, the same research group aimed to assess virtual
non-enhancement (VNE) technology, which showed a strong correlation with LGE in
quantifying scar size (r, 0.89) and transmurality (r, 0.84) in 66 patients. In addition, VNE
demonstrated values of accuracy, specificity, and sensitivity of 84%, 100%, and 77%, respec-
tively [91,92].

Sendra-Balcells et al. trained a model that can maintain a good level of performance
when used to segment out-of-sample images from new hospitals [93]. The results showed
that the combination of data augmentation and transfer learning can lead to single-center
models that generalize well to different clinical centers which were not included during the
training phase.

Atrial fibrosis segmentation also represents a key prognostic and risk factor for the
onset of atrial fibrillation [94,95]. Li et al. proposed a fully automated method using a
multi-scale CNN for the assessment of atrial scars [96]. They demonstrated a mean accuracy
of 0.856 ± 0.033 and a mean DSC of 0.702 ± 0.071 for left atrium scar quantification. Even
Cho et al. used a 3D U-net architecture using a limited dataset of LGE CMR, demonstrating
a DSC value of 0.90 [97].

3.4. Prognosis

One of the main strengths of AI application is the possibility to better stratify the risk
and identify the prognosis in patients with cardiomyopathies or those subjected to invasive
treatments [83,98,99].

A combined approach based on the analysis of radiomic features with AI algorithms
was proposed by Arian et al. [100]. They used a smoothly clipped absolute deviation
(SCAD)–penalized support vector machine (SVM) and the recursive partitioning (RP)
algorithm to predict myocardial function improvement in patients who had undergone
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coronary artery bypass grafting (CABG). The authors concluded that multiple radiomic
features alone or combined in the multivariate model using machine learning algorithms
provide prognostic information regarding myocardial function improvement in patients
after CABG.

Dawes et al. [101] used a machine learning survival model based on three-dimensional
cardiac motion to predict the outcome in patients with pulmonary hypertension indepen-
dently of conventional risk factors.

Chen et al. [102] proposed a ML method using naive Bayes classifier for risk prediction
in patients with severe dilated cardiomyopathy at one-year follow-up. Their results showed
a high prognostic accuracy of the AI algorithm (AUC of 0.88) compared to 0.59 for the
Meta-Analysis Global Group in Chronic Heart Failure score and 0.50 for LVEF [103].

In patients with repaired tetralogy of Fallot, Diller et al. trained a machine learning
algorithm on external imaging datasets, determining a strong role of the right atrial median
area and the right ventricular long axis strain as outcome predictors [104].

4. Conclusions

Currently, the vast majority of AI applications are limited to research purposes. How-
ever, in the context of constant technological development and considering the increasing
demand for cardiovascular diagnostic studies, AI will necessarily acquire a fundamental
role in clinical practice. In cardiovascular imaging, AI algorithms are going to improve
workflows and aid radiologists in the detection of abnormalities, thus simplifying quan-
tification and improving the final diagnostic and prognostic accuracy. Finally, some AI
applications may also provide information that has been achieved only by means of con-
strastographic studies, which translates to even greater advantages both for economics and
patients’ health.

In the near future, the application of AI may result in faster image acquisition, radi-
ation dose reduction without loss of image quality for CT studies, and improvement in
cardiovascular disease diagnosis with facilitated reporting process. Additionally, AI could
potentially integrate imaging data with clinical and laboratory data in order to achieve
even higher accuracy rate in patient diagnosis and management.

It is unlikely that AI will completely substitute the human contribution, since the
physician supervision will always be necessary for result validation.

Currently, AI application in clinical routine has several limitations. First, every model
requires to be validated by larger studies, implying the necessity to achieve a standard-
ization of imaging protocols across different centers, to prove the real effectiveness and
accuracy of AI. The incredible amount of data obtained is also leading to major challenges
in terms of patients’ privacy and data protection. Second, the application of AI models
in clinical practice needs to be approved by the Food and Drug Administration or the
European Medicines Agency.

In conclusion, AI may represent a breakthrough in the technical innovation of imaging,
not strictly limited to cardiovascular investigations, potentially providing new data in every
imaging modality, ranging from X-rays to PET-CT and improving physician diagnostic
confidence, by reducing the number of diagnostic errors [105–107].
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