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Abstract: Plants have been used by humans since ancient times due their antimicrobial and medicinal
properties. Essential oils (EOs) are complex mixtures of secondary plant metabolites, including
terpenoids, phenylpropanoids, and other aromatic compounds. Cinnamomun verum and Thyme
vulgaris EOs and their organic extracts exert numerous biological activities because of their major
compounds, particularly thymol, carvacrol, eugenol, and benzoic and cinnamic acid. The structural
motifs presented by these phytochemicals are responsible for their biological activities. Modification
or hybridization of these structures could lead to new bio-based compounds with improved efficacy
or multiple modes of action. In this work, we aimed to develop reliable methods of obtaining six
hybrid molecules from the major constituents of C. verum and T. vulgaris EOs. For the first time,
we tested their efficacy in the inhibition of the mycelium growth and spore germination of two of
the most important phytopathogenic fungi, Fusarium oxysporum and Colletotrichum gloeosporioides,
and one opportunistic human pathogen, Aspergillus niger. The cytotoxic activity of the obtained
hybrids was assessed using the brine shrimp lethality assay. In addition, we report for the first time a
biocatalytic process for the obtention of these bioactive hybrid molecules. The results of this work
enable the possibility of using hybrid molecules based on the major constituents of EOs as active
ingredients in strategic industries such as agriculture, aquaculture, and pharmaceuticals.

Keywords: Cinnamomun verum; Thymus vulgaris; essential oils; hybrid molecules; antifungal; lead
discovery; enzymatic catalysis; cytotoxicity

1. Introduction

Plants are one of the richest and most versatile chemical factories on the planet for
obtaining natural bioactive compounds. In particular, cinnamon (Cinnamomun verum J.
Presl; syn. Cinnamomun zeylanicum Blume) and thyme (Thymus vulgaris L.) have been
used by humans since ancient times due to their pesticidal, antimicrobial, antioxidant,
and medicinal properties [1–5]. Essential oils (EOs) are among the most valuable fractions
obtained from these aromatic species, comprising complex mixtures of secondary plant
metabolites, including terpenoids and aromatic compounds.

The methoxyphenol eugenol is the major constituent of the C. verum essential oil [6].
The bioactivities exerted by essential oils containing eugenol are generally attributed to
this compound [7,8]. Organic extracts of C. verum, of which aromatic compounds and
carboxylic acids such as cinnamic and benzoic acid are reported as major compounds, also
exhibit numerous bioactivities [9]. On the other hand, the essential oil of T. vulgaris contains
phenolic monoterpenes as major constituents—particularly, thymol and its structural
isomer carvacrol.
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These natural compounds have been extensively studied and may be responsible for
the bioactivities of the essential oils containing them [10]. The modes of action of these
natural bioactive compounds are under intense investigation, although some of them have
been relatively well described. Figure 1 depicts some of the bioactivities exhibited by each
compound described above and the modes of action by which they are exerted [11–17].
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The structural motifs presented by these phytochemicals are responsible for their
biological activities. The modification or hybridization of these structures could lead to
the development of new naturally inspired compounds with potent biological activities,
which could be used as a new generation of lead compounds. The design and synthesis
of hybrid molecules based on bioactive phytochemicals would allow molecules to be
obtained that are capable of interacting with different molecular targets simultaneously.
Scientific evidence and cases of enormous commercial success support this notion [18,19].
Therefore, these hybrids could be used as multifunctional leads in novel biopesticide
compositions that would minimize the appearance of resistance, or as the active ingredients
of polypharmaceuticals, and have thus been proposed as a powerful tool to treat diseases
that require complex therapeutic approaches [20,21].

In this work, we propose cost-effective synthesis and purification methods for six hy-
brid molecules based on the major constituents of C. verum and T. vulgaris EOs. We demon-
strate, for the first time, their antifungal activity against two of most scientific/economic
important phytopathogenic fungi, Colletotrichum gloeosporioides Penz. [22] and Fusarium
oxysporum f. sp. lactucae [23], as well as one opportunistic human pathogen, Aspergillus
niger P.E.L. To determine their antifungal activity, in vitro assays were carried out, covering
two different modes of action. In addition, the cytotoxic activity was assessed in vivo by
means of the brine shrimp lethality assay (BSLA), a well-established method for the prelim-
inary screening of potential anticancer nature-based drugs. It has been proven that BSLA
provides good correlation data with cytotoxic activity in some human solid tumors [24],
such as 9KB cells (human nasopharyngeal carcinoma) and the 3PS (P388) cell line (leukemia
in vivo) [25,26]. Although most of these hybrids have not yet been described in nature, we
demonstrate here, for the first time, the process of obtaining these molecules by means of
enzymatic catalysis.

The aim of this research was to provide a reliable method for the obtention of pure
EO-based hybrid molecules which exert potent bioactivities, and to examine the possibility
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of obtaining them by natural means although they have not been reported in nature. These
compounds thus have the potential to be used as novel active ingredients in strategic
industries such as agriculture, aquaculture, and pharmaceuticals.

2. Materials and Methods
2.1. Chemicals and Reagents

Cinnamoyl chloride, benzoyl chloride, cinnamic acid, benzoic acid, eugenol, thymol,
carvacrol, potassium hydroxide (KOH), anhydrous sodium sulfate (Na2SO4), ethyl acetate,
n-hexane, and DMSO were purchased from Sigma-Aldrich (San Luis, MO, USA). The
biocatalyst, Novozym® 435, was purchased from STREM Chemicals Inc. (Newburyport,
MA, USA).

2.2. Chemical Synthesis of the Hybrid Molecules

Chemical synthesis of the six hybrid molecules was achieved by means of bimolec-
ular nucleophilic substitution. First, 50 mmol of the phenolic compound was stirred in a
10 mL KOH solution (5 mmol/mL) until neutralization. To the prior solution, 100 mmol of
acyl chloride were slowly added. The mixture was continually stirred at room temperature
(25 ◦C) for 2 h. The resulting mixture was submitted to liquid-liquid extraction, stirring
it overnight with n-hexane and aqueous KOH saturated solution. The organic phase was
recovered and the aqueous phase was discarded. The organic phase was dried over an-
hydrous sodium sulphate and filtered, and the solvent was evaporated under reduced
pressure. Chemical characterization of products was carried out by means of GC-MS analy-
sis. The structural features and purity of the obtained hybrid molecules were confirmed via
1H NMR analysis. Figure 2 shows the general reaction scheme for the chemical synthesis of
the six hybrid molecules obtained.
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2.3. Enzymatic Synthesis of the Hybrid Molecules

Enzymatic synthesis of the six hybrid molecules was carried out using Novozym® 435
as a biocatalyst. Novozym® 435 is Candida antarctica B lipase (CALB) immobilized on acrylic
resin. First, 5 mmol of the phenolic compound were mixed with 5 mmol of carboxylic acid
in a glass vial. Then, 0.1% (m/m) of Novozym® 435 was added regarding the phenol. The
reaction occurred over 72 h at 90 ◦C in the absence of solvent or agitation. The production
of hybrid molecules was confirmed by means of GC-MS. The identification of products
was made by comparing the retention time (tR) and mass spectra of the biosynthesized
molecules with those obtained chemically.

2.4. GC-MS Analysis

The GC-MS analysis was carried out using an Agilent Model 7890 Series gas chromato-
graph (Agilent Technologies, Santa Clara, CA, USA), combined with an autosampler and an
Agilent 7000 D GC/TQ mass-selective detector. Compounds were diluted in ethyl acetate
at 1000 ppm and were separated on an HP-5MS UI 3 30 m long × 250 µm ID × 0.25 µm
thick capillary column (Agilent Technologies, Santa Clara, CA, USA). The injection and ion
source temperatures were 300 ◦C and 280 ◦C, respectively. Mass spectra were obtained at
70 eV in full-scan mode (40–500 m/z). The scan rate was 2.7 cycles/s. Compound identifi-
cation was carried out via the comparison of the mass spectra obtained with fractionation
patterns available in the NIST database (National Institute of Standards and Technology,
Gaithersburg, MD, USA), and additionally via 1H NMR analysis.
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The chromatographic conditions used were as follows: He as carrier gas at a flow
rate of 1 mL/min; injector temperature = 300 ◦C, with a split ratio of 40:1; initial oven
temperature = 70 ◦C (0 min), with a first ramp of 6 ◦C/min up to 250 ◦C (30 min), followed
by a second ramp of 90 ◦C/min up to 290 ◦C, and a third stage where the temperature was
maintained for 4 min. The total chromatography time was 34.4 min.

2.5. NMR Analysis

A Bruker Avance III 600 spectrometer, operating at a proton frequency of 600 MHz,
equipped with a SampleJet 480-position thermostatised autosampler, and a QCI quadruple
cryoprobe with magnetic field gradient, was used. Homonuclear (1H) NMR experiments
were recorded. The acquisition and processing of the obtained spectra were performed
using TOPSPIN software.

2.6. In Vitro Antifungal Activity Assay

Three phytopathogenic fungi: Fusarium oxysporum f. sp. lactucae J.C. Hubb. and Gerik,
Colletotrichum gloeosporioides (Penzig) Penzig and Saccardo (CECT 21107), as well as an
opportunistic human pathogen, Aspergillus niger P.E.L. van Tieghem 1867 (ATCC 9029),
were used. Fungi were stored in the R&D department of Kimitec Group (Vícar, Almería,
Spain) at −80 ◦C on glycerol (15%). Prior to the experiments, the microorganisms were
activated at 28 ◦C on potato dextrose agar (PDA) medium for 7 days. The antifungal activity
of the six hybrid molecules listed in Section 2.2 was evaluated for the inhibition of mycelial
growth and spore germination.

2.6.1. Mycelial Growth Inhibition

Hybrid molecules were dissolved on dimethyl sulfoxide (DMSO) at 50%, 25%, and
12.5% (w/v). Culture media were prepared mixing prior solutions at 1% (v/v) with PDA
medium, achieving final concentrations of 0.5%, 0.25%, and 0.125%. Control treatments
consisted of 1% (v/v) of DMSO with PDA medium. Media were autoclaved at 120 ◦C for
21 min and poured into Petri dishes. The inoculation was performed by placing an agar
circle with mycelia from the cultures described in Section 2.6 in the center of each Petri
dish. Next, the dishes were sealed with parafilm and incubated at 28 ◦C for 6 days. The
diameter of the mycelium was measured on the sixth day. Five replicates per treatment
were performed.

Mycelial growth inhibition was determined by measuring the mycelium diameter
(cm) in the treatment samples, taking in consideration the growth observed in the control
samples. The percentage of mycelial growth inhibition (MGI) was calculated according to
the following formula [27]:

MGI =
Dt − Ds

Dt
× 100 (1)

where Dt is the diameter of the mycelium in the controls and Ds is the mycelium diameter
in the treatment dishes.

2.6.2. Spore Germination Inhibition

The effect of spore germination inhibition exhibited by the hybrid molecules was
assessed by means of a previously reported slide assay [28] with some modifications.
Briefly, a spore suspension was prepared by flooding 15 mL of potato dextrose broth (PDB)
medium and scraping gently with a sterile Drigalski spatula on a 10-day culture of fungi
grown in potato dextrose agar (PDA) medium at 28 ◦C. The spore suspension was filtered
with sterile gauze. Then, the spore concentration was adjusted to 5 × 105 spores/mL, using
PDB medium and a Neubauer chamber for counting.

Hybrid molecules were dissolved in DMSO at 2.5%, 1.25%, and 0.625% (w/v). Then,
400 µL of the spore suspension and 100 µL of the hybrid molecule solution were homoge-
nized via gentle agitation, reaching final concentrations of 0.5%, 0.25%, and 0.125%. The
control group consisted of 400 µL of the spore suspension and 100 µL of DMSO. Then,
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10 µL of the prior solution was placed in a glass slide and covered with a coverslip. All
slides were incubated in a dark humidity chamber at 28 ◦C for 24 h. Using a light mi-
croscope (NIKON, Model Eclipse Ci-S, Tokyo, Japan) at 200× magnification, a total of
100 spores from each slide were counted, and the number of germinated spores was also
determined. Germinated spores were those with a hyphal size at least as large as the spore
diameter. The percentage of spore germination inhibition (SGI) was calculated using the
following formula [29]:

SGI =
Gc − Gt

Gt
× 100 (2)

where Gc is the total number of germinated spores in the control group and Gt is the total
number of germinated spores in the treatment group. Control and treatment samples were
prepared in triplicate.

2.7. Brine Shrimp Lethality Bioassay

The cytotoxic effect of the six hybrid molecules was assessed by means of the brine
shrimp lethality assay (BSLA) described by Meyer et al. [30]. The toxicities of hybrids were
tested at 600, 300, 150, 100, 75, 50, 25, 10, and 1 µg/mL in 3 mL sea-water solutions in 1%
DMSO (v/v). Sea water and DMSO were used as negative controls.

Briefly, Artemia salina cysts were purchased from IBERCAN-Spain, hatched, and
maintained in laboratory for 48 h with continuous aeration at room temperature. In a
24-well plate, ten nauplii were disposed for each test in the presence of the prior solutions
at the different concentrations. Three replicates were used for each concentration. After
24 h of exposure, the number of dead nauplii was counted and the percentage of mortality
was calculated using the following formula [31]:

% mortality =
number of dead nauplii

10 (initial number of live nauplii)
× 100 (3)

Median lethal concentration (LC50) was determined for each hybrid molecule, us-
ing the regression line equation in the linear part of the graph by plotting the tested
concentration against the death percentage. Survivors and dead nauplii were counted
macroscopically by two independent counters.

2.8. Statistical Analysis

Statistical analysis was conducted using a one-way ANOVA and the results of bio-
logical activities were expressed as means plus standard deviations. Significant results
were considered for p-values less than 0.05. In addition, Tukey’s test was carried out for
the testing of multiple comparisons. STATGRAPHICS centurion Version 19.4.01 (64 bit)
software was used for the statistical analysis.

3. Results
3.1. Chemical Synthesis of Hybrid Molecules Based on Major Constituents of Thymus vulgaris and
Cinnamomun verum EOs

In total, six hybrid EO-based molecules were obtained via chemical synthesis. Figure 3
shows the structures of the six hybrids corresponding to esters of benzoic acid and cinnamic
acid with the main constituents of T. vulgaris EO (thymol and carvacrol) and C. verum EO
(eugenol).

The structures of the obtained molecules were established based on MS and 1H NMR
analysis. Spectroscopic data were acquired in order to corroborate the structural features of
the obtained hybrids. All structures have been previously reported in the literature [32–37].
Their yields and their chemical characterizations are presented below.
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(m, 1H), 7.53 (dd, J = 8.3, 7.6 Hz, 2H), 7.23–7.17 (m, 1H), 7.10 (dd, J = 7.8, 1.8 Hz, 1H), 7.01
(d, J = 1.8 Hz, 1H), 2.92 (hept, J = 6.9 Hz, 1H), 2.22 (s, 3H), 1.26 (d, J = 6.9 Hz, 6H).

(3) 4-Allyl-2-methoxyphenyl benzoate [33,34]—Colorless crystals. Yield 71.15%; GC-
MS (EI, 70 eV): m/z (%): 268 [M+] (9), 269 (2), 107 (1), 106 11), 105 (100), 103 (2), 91 (3), 78
(2), 77 (23), 51 (2). 1H NMR (600 MHz, CDCl3) δ 8.23 (d, J = 7.9, 2H), 7.63 (ddt, J = 8.8, 7.4,
1.3 Hz, 1H), 7.55–7.46 (m, 2H), 7.07 (d, J = 8.0 Hz, 1H), 6.87–6.75 (m, 2H), 6.03–6.95 (m,
J = 1H), 5.15–5.11 (m, 2H), 3.81 (s, 3H), 3.42 (dt, J = 6.9, 1.6 Hz, 2H).

(4) 2-Isopropyl-5-methylphenyl cinnamate [35]—Yellow crystals. Yield 70.57%; GC-MS
(EI, 70 eV): m/z (%): 280 [M+] (4), 149 (20), 135 (4), 132 (24), 131 (100), 104 (4), 103 (36), 102
(5), 91 (5), 77 (14). 1H NMR (600 MHz, CDCl3) δ 7.91 (d, J = 16.0 Hz, 1H), 7.65–7.60 (m, 2H),
7.52–7.41 (m, 3H), 7.33–7.18 (m, 1H), 7.13–7.06 (m, 1H), 6.97 (dd, J = 1.8, 0.9 Hz, 1H), 6.69 (d,
J = 16.0 Hz, 1H), 2.92 (hept, J = 6.9 Hz, 1H), 2.20 (s, 3H), 1.27 (d, J = 7.0 Hz, 6H).

(5) 5-Isopropyl-2-methylphenyl cinnamate [35]—Pale brown crystals. Yield 78.12%;
GC-MS (EI, 70 eV): m/z (%): 280 [M+] (2), 135 (3), 133 (2), 132 (12), 131 (100), 104 (2), 103
(19), 102 (3), 91 (3), 77 (8). 1H NMR (CDCl3, 600 MHz, δ, ppm): 7.91 (d, J = 16.0 Hz, 1H),
7.63 (m, 2H), 7.45 (m, 3H), 7.25 (d, J = 7.9 Hz, 1H), 7.20 (dd, J = 7.8, 1.8 Hz, 1H), 6.98 (d,
J = 1.7 Hz, 1H), 6.70 (d, J = 16.0 Hz, 1H), 3.06 (hept, J = 5.9 Hz, 1H), 2.35 (s, 3H), 1.24 (d,
J = 5.9 Hz, 6H).

(6) 4-Allyl-2-methoxyphenyl cinnamate [36,37]—Colorless crystals. Yield 75.44%; GC-
MS (EI, 70 eV): m/z (%): 294 [M+] (3), 250 (2), 164 (3), 132 (14), 131 (100), 104 (3), 103 (24),
102 (3), 91 (3), 77 (9). 1H NMR (600 MHz, CDCl3) δ 7.88 (d, J = 16.0 Hz, 1H), 7.66–7.52
(m, 2H), 7.44–7.38 (m, 3H), 7.04 (d, J = 8.0 Hz, 1H), 6.88–6.78 (m, 2H), 6.68 (d, J = 16.0 Hz,
1H), 5.99 (ddt, J = 16.8, 10.0, 6.7 Hz, 1H), 5.20–5.02 (m, 2H), 3.84 (s, 3H), 3.41 (dt, J = 6.7,
1.5 Hz, 2H).
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Except for (3), which was recently tentatively detected (but never isolated or quantified)
as a minor compound in the non-polar fraction of the aerial part of Vincetoxicum funebre [38],
the other five hybrids have never been reported in nature until now. However, in Section 3.2
we demonstrate the possibility of obtaining these compounds by natural means such as
enzymatic catalysis.

Following the described chemical synthesis method, six hybrids of ≥95% purity were
obtained with high yields (≥70%) based on the spectroscopic analysis. All secondary
products were obtained by following the proposed synthesis and purification method.
Figure 4 shows the chromatograms acquired via GC-MS of the obtained compounds and
the structures of each hybrid.
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Figure 4. Chromatograms obtained via GC-MS of the chemical reaction products. (a) Chromatogram
of 2-Isopropyl-5-methylphenyl benzoate (1); (b) chromatogram of 5-Isopropyl-2-methylphenyl
benzoate (2); (c) chromatogram of 4-Allyl-2-methoxyphenyl benzoate (3); (d) chromatogram of
2-Isopropyl-5-methylphenyl cinnamate (4); (e) chromatogram of 5-Isopropyl-2-methylphenyl cinna-
mate (5); (f) chromatogram of 4-Allyl-2-methoxyphenyl cinnamate (6).

These results reveal that the proposed method of chemical synthesis could be reli-
able for obtaining further hybrid molecules based on the use of EOs in large quantities,
specifically, via the esterification of different phenolic compounds with carboxylic acids,
achieving good yields of high-purity products in two hours and in the absence of heat or
hazardous solvents.

3.2. Enzymatic Synthesis of Hybrid Molecules Based on Major Constituents of Thymus vulgaris
and Cinnamomun verum EOs

Although most of these hybrids were previously synthetized chemically, we have
reported their obtention by means of enzymatic catalysis for the first time in absence
of solvents. Figure 5 shows the chromatograms obtained via GC-MS of the enzymatic
reactions when benzoic acid was used as the carboxylic acid and thymol, carvacrol, and
eugenol were used as phenol compounds, obtaining hybrids (1), (2), and (3), respectively.
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Figure 5. Chromatograms obtained via GC-MS of the enzymatic reaction products, obtaining (1), (2)
and (3).

Figure 6 shows the chromatograms obtained for the enzymatic reaction products using
cinnamic acid as the carboxylic acid. Thymol, carvacrol, and eugenol were the phenol
compounds used to obtain hybrids (4), (5), and (6), respectively.

The peaks which correspond to target compounds have been pointed out with their
numbers in the chromatograms. In all cases, the retention times and MS fractionation
patterns coincided with those of the chemically obtained hybrids, allowing us to ensure
that the chemically and enzymatically obtained compounds were the same.

Enzymatic reactions carried out under the proposed conditions produced qualita-
tively low product yields. Substrates, either carboxylic acid or phenols, were the major
compounds at the end of the reaction, and several non-identified secondary products
were obtained.
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Figure 6. Chromatograms obtained via GC-MS of the enzymatic reaction products, obtaining (4), (5)
and (6).

In view of these results, CALB lipase seems to be less specific to methoxyphenols such
as eugenol and to have greater affinity for other phenylpropanoids such as cinnamic acid.
The highest conversions of reactants to products were observed in reactions (4) and (5),
when thymol, carvacrol, and cinnamic acid were used as substrates.

The possibility for the biotechnological production of these bio-based hybrid molecules
was thus demonstrated, despite the fact that most of them have not previously been re-
ported in nature. However, the method used in this study required subsequent purification
processes in order to obtain large quantities of pure hybrid compounds based on the
constituents of T. vulgaris and C. verum EOs. Temperature, the stoichiometric ratio of
the substrate, and enzyme quantities could be also key variables in the optimization of
the process.

The methodology and results described here for obtaining EO-based hybrids by means
of enzymatic catalysis are in the process of being protected by a patent [39].

3.3. Biological Activity

The biological activity, in terms of antifungal activity against two modes of action, and
the cytotoxic effects of the obtained EO-based hybrid molecules were assessed.
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3.3.1. Mycelial Growth Inhibition

Mycelial growth inhibition was evaluated by the so-called “poisoned food method” [40].
A mycelial disc of actively growing fungi was placed in the center of a Petri dish with PDA
medium and the target hybrid molecule (DMSO in controls) at different concentrations.
The radial growth of the mycelium was measured after 6 days of incubation and the
percentage of mycelial growth inhibition (MGI) was calculated using the formula presented
in Section 2.6.1. The efficacy of each hybrid molecule was expressed in terms of MGI against
all fungi tested, as summarized in Table 1.

Table 1. Inhibition values of hybrid molecules at different concentrations in regard to the mycelial
growth of C. gloeosporioides, F. oxysporum, and A. niger at 6 days.

Hybrid

Mycelial Growth Inhibition (MGI)

C. gloeosporioides F. oxysporum A. niger

Concentration (w/v) Concentration (w/v) Concentration (w/v)

0.5% 0.25% 0.125% 0.5% 0.25% 0.125% 0.5% 0.25% 0.125%

(1) 94.76 ± 0.14 * 76.83 ± 0.12 * 65.56 ± 0.13 * 75.04 ± 0.14 * 63.20 ± 0.11 * 48.23 ± 0.07 * 65.13 ± 0.02 * 62.66 ± 0.05 * 57.19 ± 0.08 *

(2) 94.74 ± 0.06 * 86.77 ± 0.04 * 76.22 ± 0.09 * 69.74 ± 0.06 * 54.96 ± 0.08 * 29.48 ± 0.15 * 60.11 ± 0.02 * 58.97 ± 0.04 * 51.10 ± 0. 07 *

(3) 91.22 ± 0.08 * 88.24 ± 0.11 * 78.33 ± 0.10 * 83.09 ± 0.02 * 60.07 ± 0.10 * 51.48 ± 0.06 * 59.56 ± 0.03 * 57.27 ± 0.07 * 50.61 ± 0.03 *

(4) 100 ± 0.00 * 83.61 ± 0.04 * 73.82 ± 0.09 * 70.07 ± 0.18 * 61.62 ± 0.09 * 32.87 ± 0.12 * 18.34 ± 0.05 * 12.28 ± 0.08 * 3.31 ± 0.07 *

(5) 96.41 ± 0.03 * 80.67 ± 0.18 * 70.07 ± 0.09 * 86.82 ± 0.10 * 51.63 ± 0.07 * 30.81 ± 0.04 * 28.37 ± 0.06 * 23.10 ± 0.02 * 20.34 ± 0.05 *

(6) 100 ± 0.00 * 70.51 ± 0.04 * 64.23 ± 0.18 * 82.77 ± 0.08 * 64.23 ± 0.17 * 20.56 ± 0.05 * 27.92 ± 0.08 * 12.95 ± 0.11 * 11.19 ± 0.03 *

Values are presented as mean ± SD. * significantly different at p < 0.05, as determined via the one-way ANOVA
Tukey test.

The mycelial growth inhibition (MGI) effects against three fungi exerted by each
hybrid molecule at three different concentrations are shown in Figure 7. In the case of
C. gloeosporioides, all candidates showed strong antifungal activity at all concentrations
tested. The use of hybrids (4) and (6) at 0.5% completely prevented the growth of fungi.

In comparison with C. gloeosporioides, hybrid molecules exerted lower antifungal
efficacy against F. oxyposrum. At the highest concentration assayed, MGI was potent, but
this effect nearly disappeared when hybrids were tested at 0.125%. Furthermore, cinnamic
esters seemed to be more effective in inhibiting the mycelial growth of F. oxysporum.

In the case of Aspergillus niger, all hybrids exerted medium to low bioactivity. At
0.125%, (4) nearly lost its activity completely, but it became clear which hybrids from
cinnamic acid exerted higher antifungal effects. It should be noted that the tested molecules
did not exhibit dose-dependent response behavior.

In order to demonstrate the antifungal effects of the EO hybrid molecules, in Figure 7 we
provide images of one replicate of each fungus at each concentration tested. Statistically
significant differences between treatments were observed amongst the various concentra-
tions assayed.

Although A. niger can also be responsible for plant diseases, is not a strictly phy-
topathogen. Consequently, these results indicated which of the hybrid phytochemical-
based molecules tested, were able to exert potent mycelium inhibitory growth effects on
specific plant pathogens but lesser effects on opportunistic human fungi.



Life 2023, 13, 499 11 of 18Life 2023, 13, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 7. Colletotrichum gloeosporioides, Fusarium oxysporum, and Aspergillus niger mycelial growth 
inhibition effects exerted by hybrids: (1) 2-Isopropyl-5-methylphenyl benzoate, (2) 5-Isopropyl-2-
methylphenyl benzoate, (3) 4-Allyl-2-methoxyphenyl benzoate, (4) 2-Isopropyl-5-methylphenyl cin-
namate, (5) 5-Isopropyl-2-methylphenyl cinnamate, (6) 4-Allyl-2-methoxyphenyl cinnamate. Only 
one replicate per treatment and concentration is shown. Obverse and reverse of control treatment 
are shown. 

Figure 7. Colletotrichum gloeosporioides, Fusarium oxysporum, and Aspergillus niger mycelial growth
inhibition effects exerted by hybrids: (1) 2-Isopropyl-5-methylphenyl benzoate, (2) 5-Isopropyl-
2-methylphenyl benzoate, (3) 4-Allyl-2-methoxyphenyl benzoate, (4) 2-Isopropyl-5-methylphenyl
cinnamate, (5) 5-Isopropyl-2-methylphenyl cinnamate, (6) 4-Allyl-2-methoxyphenyl cinnamate. Only
one replicate per treatment and concentration is shown. Obverse and reverse of control treatment
are shown.
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3.3.2. Spore Germination Inhibition

To obtain solid understanding of the compounds’ antifungal activity, we determined
the spore germination inhibition (SGI) as a secondary mode of action, following the method
described in Section 2.6.2. The results of the SGI analysis for each hybrid at three different
concentrations against the selected fungi are shown in Table 2.

Table 2. Inhibition of hybrid molecules at different concentrations on the spore germination of
C. gloeosporioides, F. oxysporum, and A. niger at 24 h.

Hybrid

Spore Germination Inhibition (SGI)

C. gloeosporioides F. oxysporum A. niger

Concentration (w/v) Concentration (w/v) Concentration (w/v)

0.5% 0.25% 0.125% 0.5% 0.25% 0.125% 0.5% 0.25% 0.125%

(1) 34.40 ± 2.98 * 13.89 ± 1.84 * 11.24 ± 2.29 16.82 ± 0.25 * 11.84 ± 2.57 0.00 ± 0.00 13.68 ± 2.54 * 10.24± 1.87 0.00 ± 0.00

(2) 27.32 ± 1.86 * 2.57 ± 0.05 1.19 ± 0.76 5.92 ± 1.12 0.00 ± 0.00 0.00 ± 0.00 23.62 ± 3.05 * 10.91 ± 3.04 6.49 ± 1.12

(3) 11.94 ± 0.43 * 8.09 ± 0.30 1.64 ± 0.26 37.69 ± 6.3 * 24.92 ± 3.5 * 14.64 ± 0.75 * 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

(4) 7.00 ± 1.89 5.60 ± 1.42 0.00 ± 0.00 16.52 ± 4.75 * 12.86 ± 1.23 * 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

(5) 4.68 ± 1.49 4.50 ± 0.93 0.00 ± 0.00 0.16 ± 0.11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

(6) 10.90 ± 5.3 2.72 ± 0.71 2.20 ± 0.87 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Values are presented as mean ± SD. * significantly different at p < 0.05 by means of the one-way ANOVA
Tukey test.

The SGI results obtained for the EO hybrid molecules can be qualitative extrapolated
to describe their MGI bioactivities. All candidates exerted higher efficacy against C. gloeospo-
rioides than against F. oxyposrum, and with regard to A. niger most of them were completely
ineffective in inhibiting spore germination.

In general terms, all the concentrations tested exerted medium to low bioactivities.
Once again, the obtained phytochemical hybrid molecules were relatively good spore-
inhibitory ingredients for controlling phytopathogenic fungi but not for human diseases
caused by these microorganisms.

Figure 8 contains a graphical depiction of the SGI results obtained for the hybrids to
enable easier interpretation. As shown, for C. gloeosporioides, all hybrids displayed medium
efficacy at 0.5% and the benzoic esters performed the best. For F. oxysporum, all hybrids
exhibited medium to low activity at higher tested concentrations, with (1), (3), and (4)
being the best candidates. In the case of A. niger, the SGI results are not shown in the
graph because only (1) and (2) exerted low efficacies, and the other hybrids appeared to
be completely ineffective in inhibiting spore germination. Most hybrids did not present
dose-dependent response behavior in the SGI assays conducted in this study.

3.3.3. Cytotoxic Activity

BSLA is a robust bioassay that is widely used in pharmacological studies for naturally
occurring and natural-related chemicals, which is capable of identifying cytotoxic and
bioactive compounds. Table 3 presents the cytotoxic activity in terms of the medium lethal
concentrations for brine shrimp nauplii (LC50) of the six hybrid molecules examined in this
study. Experiments were conducted for nine different concentrations—600, 300, 150, 100,
75, 50, 25, 10, and 1 µg/mL solutions in DMSO (1%).

According to the Clarkson’s toxicity criterion [41], plant extracts and natural com-
pounds can be considered non-toxic when treatments have LC50 values above 1000 µg/mL,
whereas LC50 between 1000–500 µg/mL are lowly toxic and treatments with LC50
100–500 µg/mL and 100–0 µg/mL are moderately and highly toxic, respectively.

In view of these results, a clear relationship exist between the chemical structure
and the mortality of A. salina nauplii. The eugenol-derived hybrids, (3) and (6), exerted
medium–low toxic activities and exhibited LC50 values ten times higher than thymol and
carvacrol derivatives, regardless of whether eugenol was hybridized with benzoic acid
or cinnamic acid. Furthermore, hybrids based on benzoic acid appeared to be slightly
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more active than cinnamic acid derivatives and thymol-based molecules were more active
than carvacrol-related hybrids. In view of the above conclusions and supported by the
experimental data, (1) was the hybrid molecule with the lowest LC50 and the highest
bioactivity against A. salina.
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Figure 8. Spore germination inhibition effects exerted by hybrids against Colletotrichum gloeosporioides
and Fusarium oxysporum at three different concentrations. Blue: 0.5% (w/v), Orange: 0.25% (w/v),
Grey: 0.125% (w/v). (1) 2-Isopropyl-5-methylphenyl benzoate, (2) 5-Isopropyl-2-methylphenyl
benzoate, (3) 4-Allyl-2-methoxyphenyl benzoate, (4) 2-Isopropyl-5-methylphenyl cinnamate,
(5) 5-Isopropyl-2-methylphenyl cinnamate, (6) 4-Allyl-2-methoxyphenyl cinnamate.

Table 3. Percentage mortality of Artemia salina nauplii after 24 h treated with different concentrations
of EO-based hybrid molecules and LC50 values calculated for each hybrid.

Hybrid Concentrations (µg/mL) % Mortality LC50 (µg/mL)

(1)

600 100 ± 0.00 *

50.39

300 100 ± 0.00 *
150 96.67 ± 5.77 *
100 76.67 ± 15.27 *
75 70.00 ± 10.00 *
50 46.67 ± 15.27 *
25 43.33 ± 10.00 *
10 33.33 ± 5.77 *
1 13.33 ± 5.77 *



Life 2023, 13, 499 14 of 18

Table 3. Cont.

Hybrid Concentrations (µg/mL) % Mortality LC50 (µg/mL)

(2)

600 96.67 ± 5.77 *

68.22

300 96.67 ± 5.77 *
150 83.33 ± 15.27 *
100 63.33 ± 15.27 *
75 60.00 ± 10.00 *
50 50.22 ± 10.00 *
25 30.68 ± 10.00 *
10 22.34 ± 0.00 *
1 10.12 ± 10.00 *

(3)

600 66.67 ± 5.77 *

418.56

300 26.67 ± 5.77 *
150 16.98 ± 5.77 *
100 16.42 ± 5.77 *
75 15.38 ± 0.00 *
50 12.11 ± 5.77 *
25 10.8 ± 0.00 *
10 8.7 ± 0.00 *
1 5.6 ± 0.00 *

(4)

600 100 ± 0.00 *

64.41

300 93.30 ± 5.77 *
150 86.67 ± 5.77 *
100 63.33 ± 5.77 *
75 60.00 ± 5.77 *
50 33.33 ± 5.77 *
25 36.67 ± 11.33 *
10 33.33 ± 5.77 *
1 20.00 ± 0.00 *

(5)

600 80.00 ± 17.32 *

71.95

300 70.00 ± 10.00 *
150 70.00 ± 10.00 *
100 63.33 ± 15.27 *
75 54.85 ± 5.77 *
50 40.00 ± 17.32 *
25 33.33 ± 5.77 *
10 36.67 ± 5.77 *
1 23.33 ± 0.00 *

(6)

600 66.67 ± 15.27 *

465.87

300 33.33 ± 5.77 *
150 30.00 ± 10.00 *
100 30.00 ± 0.00 *
75 23.33 ± 5.77 *
50 21.48± 5.77 *
25 16.67 ± 0.00 *
10 16.00± 5.77 *
1 15.00 ± 0.00 *

Values are presented as mean ± SD. * significantly different at p < 0.05 level by one-way ANOVA Tukey test.

The hybridization of the major compounds of C. verum seemed to result in new
molecules which did not exert high cytotoxic effects. Moreover, when hybrids were
obtained by means of a combination of phenylpropanoids from C. verum and phenols
from T. vulgaris EO, high cytotoxic effects were noted.

4. Discussion

In a changing scenario, in which the traditional active ingredients in agroindustry
and pharmaceuticals are gradually being displaced by nature-based ingredients, basic and
industrial research on novel lead compounds is necessary in order to comply with new
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legal and social requirements. Notably, in the European “Green Deal” strategy, 50% of con-
ventional phytosanitary products will be prohibited by 2030 [42]. In the present study, we
proposed to develop reliable chemical methods for the industrial scaling-up of six bioactive
hybrid molecules based on major constituents of Cinnamomun verum and Thymus vulgaris
EOs. Some recent works have demonstrated the possibility of obtaining, by other chemical
methods, a few of these hybrid molecules, namely, 2-Isopropyl-5-methylphenyl benzoate
(1), 4-Allyl-2-methoxyphenyl benzoate (3), and 2-Isopropyl-5-methylphenyl cinnamate (4),
and their potential bioactivity as antileishmanial and insecticidal compounds has been
tested [43,44]. For the first time, we have demonstrated further biological activities in
the form of antifungal effects against two different modes of action, and their cytotox-
icity results allowed us to propose industry-targeted applications for EO-based hybrid
molecules. In addition, a distinguishing feature of the present research work is that it is
the first demonstration of the obtention of these EO-based hybrid molecules by means of
enzymatic catalysis, even though most of them have not been reported in nature.

To assess their antifungal activity, in vitro experiments were conducted using two
different modes of action against the two most important phytopathogenic fungi and
an opportunistic human pathogen. The inhibitory effects on the mycelial growth of Col-
letotrichum gloeosporioides and Fusarium oxysporum for 4-Allyl-2-methoxyphenyl benzoate (4)
and 4-Allyl-2-methoxyphenyl cinnamate (6) were potent, and we determined that 0.5% was
the concentration that inhibited 100% of mycelial growth. Regarding the inhibition of spore
germination activities, benzoic acid derivatives exhibited the highest efficacies against C.
gloeosporioides and F. oxysporum, but all of the compounds exerted medium to low efficacies.
The obtained results indicated that these could be lead compounds in novel biopesticide
formulations applied in field curative applications. Moreover, the next step to validate the
antifungal activity of the selected hybrids could involve well-established in vivo pot or
greenhouse assays against phytopathogenic fungi. In the other hand, the efficacy of the
two modes of action against Aspergillus niger was quite low. Testing higher concentrations
or searching for other phytochemical hybrids could provide ingredients for the treatment
of opportunistic fungal human diseases. Even though the antifungal activities of all the
starting products were well established [45–48], the aim of this study was to expand the
chemical space, uncovering novel EO-based derivatives and determining their modes of
action, as well as proposing new biotechnological means of obtaining them.

To examine the potential bioactivity of these EO-based molecules, the cytotoxicity
was assessed by means of the brine shrimp lethality assay, a well-established method to
preliminarily test the bioactivity of plant extracts and nature-related pure compounds. This
easy, fast, accurate, and cost-effective bioassay is widely used for pre-screening anticancer
compounds and extracts from natural sources [3,26,49]. The indicator of cytotoxicity (po-
tential anticancer effects) is an LC50 value less than 1000 µg/mL. The EO-based hybrid
molecules developed here exhibited a strong correlation between their toxicity against
A. salina and their structural features. In all cases, they demonstrated potential as anti-
cancer drugs, with toxicities varying between medium (LC50 ≈ 500 µg/mL) and high
(LC50 < 100 µg/mL). Eugenol-derived molecules were ten-fold less toxic than thymol
or carvacrol hybrids, and benzoic derivatives were slightly more active. It is worth not-
ing that the published data indicate that thymol’s activity against A. salina nauplii was
LC50 = 514 µg/mL [30], ten times higher than that of 2-Isopropyl-5-methylphenyl benzoate
(1) and 2-Isopropyl-5-methylphenyl cinnamate (4). For validation of the data obtained
in the experiments performed here, the most effective hybrids, which correspond to the
hybridization of phenolic monoterpenes from T. vulgaris and phenylpropanoids from C.
verum, must be tested against target tumoral cell lines. These results could also imply
toxicity to aquatic life; therefore, if applied in agriculture, well-established tests [50] to
ensure ecotoxicological safety should be carried out. Alternatively, hybrids could be used
which have been observed to exert high antifungal activities and low cytotoxicities, such as
as 4-Allyl-2-methoxyphenyl benzoate (3).
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In the present work, we have also amply demonstrated reliable, cost-effective, and
industrially scalable chemical synthesis methods for EO-based hybrids. The high purity
of the obtained products was demonstrated via H1 NMR, and the lowest yield achieved
was higher than 70%. On the other hand, and although in this study we have presented the
first demonstration of the enzymatic production of these hybrids, the proposed method
demonstrates that they could be obtained by natural means, and thus could have the
potential for industrial scalability. Further investigations could be accomplished regarding
the enzymatic catalysis process. Variations in substrate ratios, temperatures, and reaction
times, as well as the use of different enzymes and cost-effective purification processes,
could be investigated in order to achieve higher conversion of the substrates to products or
to avoid the obtention of secondary artefacts.

Specifically, the compound 2-Isopropyl-5-methylphenyl benzoate (1) was most active
as an antifungal compound and as a potential anticancer drug, and was also one of the
most reliable hybrids obtained via chemical and enzymatic methods. In conclusion, in the
present work, we have proposed industrially-applicable chemical and enzymatic methods
for obtaining hybrid molecules based on EO constituents. We have demonstrated which of
these hybrids could represent novel active ingredients in agricultural biofungicide products
and, potentially, in EO-based anticancer drugs. Furthermore, we revealed and discussed
some structure–activity relationships, thus enabling the rational design of new EO-based
hybrid molecules which could meet the demands of industry and society.
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