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Abstract: Acacia Nilotica (AN) has long been used as a folk cure for asthma, but little is known about
how AN could possibly modulate this disease. Thus, an in-silico molecular mechanism for AN’s anti-
asthmatic action was elucidated utilizing network pharmacology and molecular docking techniques.
DPED, PubChem, Binding DB, DisGeNET, DAVID, and STRING were a few databases used to collect
network data. MOE 2015.10 software was used for molecular docking. Out of 51 searched compounds
of AN, eighteen compounds interacted with human target genes, a total of 189 compounds-related
genes, and 2096 asthma-related genes were found in public databases, with 80 overlapping genes
between them. AKT1, EGFR, VEGFA, and HSP90AB were the hub genes, whereas quercetin and
apigenin were the most active components. p13AKT and MAPK signaling pathways were found to
be the primary target of AN. Outcomes of network pharmacology and molecular docking predicted
that AN might exert its anti-asthmatic effect probably by altering the p13AKT and MAPK signaling
pathway.

Keywords: Acacia Nilotica; asthma; network pharmacology; molecular docking

1. Introduction

Asthma has been described as a common long-term inflammatory condition of the
respiratory airways. Airway inflammation, hyperresponsiveness, and remodeling are
the prime manifestations of asthma. The recurrence of the disease, along with the high
expense of available treatment, make it life-threatening sometimes [1]. Many treatment
options are available for managing asthma, but all are preventive therapies with associated
side effects. Inhaled corticosteroids (ICS) or ICS coupled with long-acting β2-adrenergic
agonists are primarily employed for managing asthma. However, in some circumstances,
corticosteroid overload poses a high risk of glucocorticoid-related adverse effects and
makes it extremely difficult to manage the onset of asthma. Thereby it is a need of time to
establish new treatment strategies for managing asthma [2]. Since ancient times, traditional
herbal medicinal agents have been utilized to treat various ailments, but their use has
significantly increased in the last few years. Eighty percent of the world’s population
relies on phytotherapeutic agents to meet their primary healthcare needs, and 11 percent of
important medications are plant-based [3]. In middle income countries especially Asia and
Africa, herbal medicines are used by 80 percent of the people [4].

Acacia Nilotica (AN) possesses a wide range of biological attributes. Acacia trees are
abundant in Saudi Arabia, India, Sudan, Pakistan, Egypt, and Sri Lanka and are used
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by ordinary people as a nutritional supplement and medicinal agent [4]. Adding this
antioxidant-rich medicinal herb to the diet can help prevent oxidative stress, a factor in-
volved in the pathophysiology of several disorders. Acacia Nilotica possesses anticancer,
antispasmodic, antipyretic, anti-diabetic, antifungal, antiviral, antibacterial, and antihy-
pertensive properties [5]. In Pakistan, AN has traditionally been used for asthma man-
agement [6]. The lack of pharmacological records on the anti-asthmatic activity of AN
necessitated this investigation, which used network pharmacology and molecular docking
techniques to elucidate its anti-asthmatic potential.

The network pharmacology approach allows for studying the interaction among
compounds, genes, and diseases. This provides a better understanding of the contribution
of any particular test compound in the treatment or prevention of any specific disease by
targeting the genes involved in disease pathogenesis. Network pharmacology employs a
multifunctional approach to elucidate the mechanism of action of multiple compounds
rather than concentrating on interactions between a single molecule and a single target. This
makes it possible to discover novel, natural pharmacological treatments and preventative
measures with novel mechanisms of action [7]. Thereby, in the current investigation
network pharmacology approach investigated the likely mechanism of AN in the treatment
of asthma. The overall workflow for the entire study is shown in Figure 1.
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Figure 1. The overworkflow for elucidation of anti-asthmatic potential of Acacia Nilotica.

2. Results
2.1. Active Compound’s Screening of AN

The literature retrieval and DPED database found 51 compounds in AN, the names and
molecular formulae reported in Supplementary Table S1. ADMET (Absorption, distribution,
metabolism, excretion, and toxicity) screen of 51 compounds revealed that 18 compounds
were “Accepted”, suggesting they had good potential as active components. The effective-
ness of selected compounds as leads was confirmed by conducting an ADMET analysis.
A freely available web server, pkCSM, was used to predict the ADMET characteristics of
selected compounds (Table 1). In the ADMET assessment, anticipated values for absorption,
such as water solubility (log mol/L), intestine solubility (% absorbed), and skin permeabil-
ity (log Kp), supported the significant therapeutic potential of particular drugs. According
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to research, substances with good absorption characteristics can passively penetrate the in-
testinal wall and reach the desired target. Compared to standard values (absorption > 30%,
skin permeability > −2.5 log Kp), all the compounds displayed appropriate intestinal
solubility and skin permeability. Additionally, all screened compounds’ Blood Brain Bar-
rier (BBB) and Central Nervous System (CNS) permeability values were equivalent to
the standard values (i.e., >0.3 to −1 log BB and >−2 to −3 logPS, respectively). More-
over, CYP3A4 and CYP1A2, isoforms of cytochrome P450, validated their computational
metabolic function with inhibitory potential. Based on total clearance (log mL/min/kg),
Ames toxicity, maximum tolerated dose (MTD), and LD50 values, the excretion and toxicity
predicted values similarly supported the drug-like behavior of these substances. The Ames
toxicity prediction further validated selected compounds’ non-mutagenic and nontoxic be-
havior. Negative behavior related to hepatotoxicity and skin sensitivity also demonstrated
these effects’ non-toxic and less sensitive nature. These hypothetical ADMET findings
indicated that the compounds had a good lead-like potential for further research.
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Table 1. ADMET Analysis of selected compounds of Acacia Nilotica.

Compound Pubchem
ID Absorption Distribution Metabolism Excretion Toxicity

WS (log mol/L) IS (% abs) SP (log
Kp)

BBB (log
BB)

CNSP (log
PS)

CYP3A4 In-
hibitor

CYP2C19 In-
hibitor

TC (log
mL/min/kg)

Max
Tolerated

Dose

ORAT
(LD50) HT SS AMES

Catechin 9064 −3.11 68.82 −2.37 −1.054 −3.298 No No 0.183 0.438 2.428 No No No

Leucocyanidin 71629 −2.98 56.71 −2.37 −0.91 −3.213 No No −0.072 0.446 2.394 No No No

Alpha sitosterol 9548595 −6.66 94.87 −2.61 0.782 −1.554 Yes No 0.585 −0.578 2.56 No No No

Apigenin 5280443 −3.32 93.25 −2.37 −1.734 −2.061 No Yes 0.566 0.328 2.45 No No No

Beta amyrin 73145 −6.531 93.73 −2.11 0.667 −1.773 Yes No −0.044 −0.56 2.478 No No No

Beta carotene 5280489 −7.39 91.73 −2.21 0.938 −1.094 Yes No 1.061 −0.379 2.073 No No No

Betulin 72326 −5.446 94.53 −2.32 −1.295 −2.035 Yes No 0.236 −0.794 2.699 Yes No No

Chlorogenic acid 1794427 −2.449 36.37 −2.35 −1.407 −3.856 No No 0.307 −0.134 1.973 No No No

Ellagic acid 5281855 −3.181 86.68 −2.35 −1.272 −3.533 No No 0.537 0.476 2.399 No No No

Gallic acid 370 −2.56 43.37 −2.35 −1.102 −3.74 No No 0.518 0.7 2.218 No No No

Hydroquinone 785 −0.762 86.85 −2.18 −0.318 −2.076 No No 0.52 0.707 2.008 No Yes No

Kaurenic acid 73062 −3.096 100 −2.35 0.05 −1.602 Yes No 0.506 0.046 2.031 Yes No No

Lupeol 259846 −5.861 95.78 −2.44 0.726 −1.714 Yes No 0.153 −0.502 2.563 No No No

Malic acid 222656 −1.381 13.83 −2.35 −1.788 −3.523 No No 0.81 1.212 1.818 No No No

Oleic acid 445639 −5.924 91.82 −2.25 −1.168 −1.654 Yes No 1.884 −0.81 1.417 No Yes No

Phloroglucinol 359 −1.408 83.54 −2.51 −0.466 −3.252 No No 0.581 0.107 1.958 No No No

Quercetin 5280343 −2.925 77.20 −2.35 −1.098 −3.065 No Yes 0.407 0.499 2.471 No No No

Xanthurenic acid 5699 −2.621 75.57 −2.35 −0.853 −3.313 No No 0.553 1.039 2.805 Yes No No

BBB = blood brain barrier, CNSP = CNS permeability, IS = intestinal solubility, ORAT = oral rat acute toxicity, SP = skin permeability, TC = total clearance, WS = water solubility.
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2.2. Potential Targets Identification

Through the STITCH and BindingDB databases, 189 genes were targeted by 18 phy-
toconstituents of AN (Supplementary Data Table S2). 2096 Asthma-related genes were
retrieved from the DisGeNet database (Supplementary Data Table S3). Mapping 189 ac-
tive ingredient targets with 2096 asthma targets yielded 80 similar targets (Figure 2,
Supplementary Table S4), regarded as potential Acacia Nilotica asthma targets.
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Figure 2. A Venn diagram showing overlapping genes between 2096 asthma-related genes (A) and
189 compounds related genes (B).

2.3. Phytoconstituents-Target Network

To investigate the relationship between active compounds and prospective targets,
Cytoscape was used to build a network between potential targets and active compounds.
A compound-target network was constructed with 80 possible target genes and 18 active
compounds in AN. Using a “network analyzer”, we discovered that the compound-target
network has 206 edges and 99 nodes (Figure 3).
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In a compound-target network, the degree of 18 active compounds was examined
(Table 2). Flavones and terpenoids have the highest degree compared to other classes of
compounds. The contribution difference of each compound and gene to the anti-asthmatic
action of AN may be determined using the degree values of each compound and gene (Ta-
ble 2). The highest degree-bearing active ingredients of AN against asthma were apigenin
and quercetin, which were linked to 35 genes. A network analysis of target-compound
interactions reveals that one active ingredient can affect multiple targets while the same
target can interact with various active compounds. This reflects the AN’s multi-target and
multi-component efficacy against asthma.

Table 2. Degree value of selected 18 compounds.

Compounds Class Degree Compounds Class Degree

Catechin Flavonoids 24 Gallic acid Phenolic acids 5
Leucocyanidin Flavonoids 24 Hydroquinone Phenols 2

Alpha
sitosterol Sterol 14 Kaurenic acid Diterpene 4

Apigenin Flavonoid 35 Lupeol Terpenoids 5
Beta amyrin Terpenoids 14 Malic acid Organic acids 2

Beta carotene Carotenoid 6 Oleic acid Fatty acids 7
Betulin Terpenoids 5 Phloroglucinol Phenols 2

Chlorogenic
acid Phenolic acids 6 Quercetin Flavonoid 35

Ellagic acid Phenolic acids 14 Xanthurenic
acid

Quinoline
carboxylic acid 2

2.4. PPI Network Analysis

The association between the overlapping genes are revealed through protein-protein
interaction studies. Interrelationship between genes involved in a particular disease patho-
physiology can be established by PPI network. These overlapping genes were submitted to
STRING version 11.5 and high confidence protein interaction data with a score >0.7 was
chosen for PPI network building (Figure 4). The highest degree value between genes could
be considered as their strong correlation and hence their importance in disease development
and progression.

Cytoscape was used to visualize the PPI network, and 76 nodes and 227 edges were
found (Figure 4). The Hub genes were discovered using the CytoHubba plugin. There
are twelve topological ways of analysis in the CytoHubba. From these 12 techniques, the
degree technique was employed to predict Hub genes. The highest degree suggests that
the targets are more interconnected, suggesting that it may be a target responsible for the
biological impact of the compound. AKT1 (23), EGFR (21), VEGFA (18), RELA (16), ESR1
(16), HDAC1 (14), STAT1 (13), PPARG (12), AR (13), and HSP90AB1 (11) are among the top
10 hub genes with high degree values in the network (Figure 4).

2.5. GO Analysis and KEGG Pathway

GO annotations and KEGG pathway analysis were performed on 80 anti-asthmatic
targets to demonstrate the molecular mechanism of AN in the treatment of asthma. Go
analysis of target genes of AN’s targets was related to the regulation of inflammation,
response to oxygen levels, response to hypoxia, protein kinase B signaling, and many others.
The cellular compartment (CC) includes the apical part of the cell, basolateral plasma
membrane, and mast cell granules. At the same time, molecular function (MF) provides
transcription co-activity binding, nuclear receptor activity, ligand-activated transcription
factor activity, and many others, as shown in Figure 5.
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The top 10 GO annotations (BP, CC, and MF) (Figure 5) and ten highly enriched KEGG
pathways (Figure 6) were chosen using the cutoff value of p < 0.05. According to KEGG
analysis, as shown in Figure 6, most of the target genes were involved in pathways chemical
carcinogenesis-receptor activation, AGE-RAGE signaling pathway, EGFR tyrosine kinase
inhibitor resistance, P13K-Akt signaling pathway, and so forth. A literature review of
these pathways shows that the P13K-Akt signaling pathway (Figure 7) has a significant
contributory role in asthma pathophysiology; thereby, targeting this pathway by AN’s
compounds might be the possible mechanism of its anti-asthmatic action.
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2.6. Analysis of Target-Pathway-Compound Network

Network analysis was used to investigate the mechanism of AN in asthma. DAVID
analysis was used to determine the top 10 enriched pathways, and Cytoscape was used
to generate the target-pathway-compound network. The network contained 110 nodes
and 335 edges, with 18 active components, 80 potential targets, and ten critical pathways
(Figure 8. The targets of AN active components show coordination with many paths and
are interconnected, characterized by multi-target, multi-component, and multi-pathway
physiognomies. AKT1 was found to be implicated in several pathways among all of the
genes studied.
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2.7. Molecular Docking

For the molecular docking, the four target genes, AKT1, EGFR, VEGFA, and HSP90AB,
were selected based on KEGG analysis results in the asthma pathway. The topmost active
compounds, apigenin and quercetin were docked with these chosen targets. The two
crucial factors were used while analyzing docking results: (i) the best-docked pose binding
energy prediction using MOE (Molecular operating environment) scoring system and
(ii) Hydrogen bond information of the top-ranked pose. Each compound was docked
in 10 distinct positions throughout the docking run. The recovered molecules were first
sorted using the pre-validated methodology, and then the visualization approach was
used to determine the inhibitor binding mode that is best based on the inhibitor’s critical
interactions with the active site residues. Table 3 summarizes the docking information for
the top-ranked poses. Docking score and binding mode pattern of both compounds showed
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significant interaction with the mentioned targets. Docking score of less than −5 kj/mol
confirms the strong interaction of both compounds with selected targets. Figure 9 shows
the docking results of four targets with apigenin and quercetin.
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Figure 9. Apigenin and Quercetin possible binding modalities in the binding pockets of the specified
targets. A green dotted line shows side-chain proton acceptor/donors, while a purple dotted line
shows metal or ion contact. The blue and red circles, which represent basic and acidic amino acids,
respectively. Because they have been exposed to solvents, some amino acids have a blue background.
Additionally, the blue coloring of the ligand atoms in front of them indicates solvent exposure.
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Table 3. Binding energy and binding interaction mode of apigenin and quercetin.

Compounds Compound-
Target

Docking
Score

(kJ/mol)

Interaction

H-Bond Interactions
Arene-π

Distance
(ºA)

Score
(%)

Amino
Acid

Apigenin

Apigenin-
AKT1 Complex −12.4640 3.15 15 LysA276 ArgB4

Apigenin-
EGFR

Complex
−12.0665

3.02
2.41
2.93

41
40
42

AspB942
LysA757
LysA757

—-

Apigenin-
VEGFA

Complex
−12.8896 2.45

2.87
63
41

ThrA85
TyrA87 —-

Apigenin-
Hsp90AB1 Com-

plex
−14.7315 2.16

2.68
84
95

Ser52
Thr184 —-

Quercetin

Quercetin-
AKT1 Complex −13.6098

2.87
3.12
2.9

91
10
35

Asp292
Thr291
Thr291

—-

Quercetin-
EGFR

Complex
−14.6961

1.43
2.94
2.59

24
39
85

AspA761
LysB949
LysB949

—-

Quercetin-
VEGFA

Complex
−15.1991

2.26
2.92
3.07
2.58

13
17
13
83

GlnB39
TyrA87
TyrA87
ThrA85

Quercetin-
Hsp90AB1 Com-

plex
−15.3669

3.01
1.91
2.75
2.89
1.93

22
14
18
30
75

Lys112
Asn51
Asn51
Ser52

Thr184

3. Discussion

Chronic inflammation is a hallmark of asthma, and airway immune inflammation
contributes significantly to asthmatic symptoms such as inflammation, hyperresponsive-
ness, reversible airway restriction, and remodeling [8]. Traditional medicines have gained
significant attention due to their better efficacy and fewer side effects [9]. GO, pathway
enrichment analysis, and molecular docking was used in this study to demonstrate Acacia
Nilotica’s mechanism in treating asthma.

Eighteen compounds were associated with AN’s ability to alleviate asthma symptoms,
including four flavonoids, three terpenoids, three phenolic acids, two phenolics, one
diterpene, one sterol, and carotenoid. AN’s therapeutic impact on asthma appears primarily
due to terpenoids and flavonoids. Compounds-genes network analysis indicated that
quercetin and apigenin were the most potent active components against asthma. A literature
review of the anti-asthmatic activity of quercetin and apigenin further confirmed this
finding. Both compounds displayed significant anti-asthmatic activity in animal models
of asthma [10–13]. Above mentioned studies provided evidence of the anti-asthmatic
potential of apigenin and quercetin. Still, they needed to include detailed mechanistic
studies about their action on particular pathways involved in the pathophysiology of
asthma. Thus current work gave a probable mechanism of action of these compounds
that contribute to their anti-asthmatic potential. Results from PPI network analysis using
Cytoscape showed the top 10 hub genes to be AKT1, EGFR, VEGFA, RELA, ESR1, HDAC1
(14), STAT1 (13), PPARG (12), AR, and HSP90AB1 (11). Based on KEGG pathway analysis
along with PPI network analysis, it was concluded that four genes targeted by AN active
compounds, including AKT1, EGFR, VEGFA, and HSP90AB, have the most prominent
role in the anti-asthmatic potential of AN. Asthmatic airway remodeling is characterized
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by the activation of airway smooth muscle by Akt [14,15]. One of the studies found that
inhibiting AKT activation reduced airway hyperactivity, airway inflammation, and airway
remodeling in an animal model of asthma [16]. Airway remodeling, airway hyper mucus
secretion, and immunological responses to airway inflammation are all affected by EGFR
and VEGFA [17–20]. HSP90AB1 is linked to the immunological response, where it can
activate macrophages to generate inflammatory markers, including IL-6 and TNF-α [21].
Thus these four target genes contribute to asthma onset and progression. Quercetin and
apigenin demonstrated excellent binding capabilities with hub targets such as AKT1, EGFR,
VEGFA, and HSP90AB1 in molecular docking studies. Both compounds bind in the active
binding site of target proteins in the same way as the co-crystallized ligand binds.

Seventy-eight signaling pathways, targeted by 18 compounds of AN and 80 target
genes, including the PI3K-AKT pathway, MAPK signaling pathway, and Ras signaling
pathway, were revealed by KEGG analysis. PI3K-AKT signaling pathway was found to be
the highly enriched pathway targeting 16 overlapping genes compared to the other screened
pathways. AKT pathway has been shown to reduce cell proliferation in airway smooth
muscle cells in asthmatic conditions [1]. PI3K signaling molecule is involved in practically
every facet of asthma pathogenesis. Inhibition of PI3K reduces mucus production, mast
cell degranulation, and recruitment of immune cells and promotes bronchodilation. These
attributes have therapeutic efficacy in managing asthma; therefore, AN might exert its anti-
asthmatic action by down-regulating the P13K-AKT signaling pathway. The second most
prominent signaling pathway with a central role in the pathobiology of asthma includes the
MAPK signaling pathway targeting 14 asthmatic genes. By modulating the expression of
pro-inflammatory genes such as TNF-α and IL-6, MAPK signaling pathways help modulate
asthmatic lung inflammation and immunological responses. Proinflammatory cytokines
such as interleukin-1β, interleukin-6, and tumor necrosis factor (TNF)-α may activate the
MAPK signaling pathway leading to increased inflammation [22]. Thus, based on network
pharmacology and molecular docking analysis, Acacia Nilotica’s anti-asthmatic potential
is probably due to its immunomodulatory and anti-inflammatory potential. In this study,
the molecular mechanism of Acacia Nilotica was clarified using network pharmacology
and molecular docking techniques. The present study had some limitations. The current
work is based on an in silico approach; detailed in vivo and in vitro studies are required to
validate these findings and point out the precise mechanism of action.

4. Materials and Methods
4.1. Database Construction and ADMET Analysis of AN Phytoconstituents

The bioactive ingredients of AN were searched using Dr. Duke’s Phytochemical and
Ethno botanical Database (DPED), Web of Science, and Google Scholar, while the SMILES
and molecular formulas of constituents were discovered using PubChem (https://pubchem.
ncbi.nlm.nih.gov/) accessed on 23 March 2022 [23]. pkCSM (https://biosig.lab.uq.edu.
au/pkcsm/prediction) was used to conduct ADMET analysis on selected constituents,
accessed on 27 March 2022. Active components were selected when the ADMET evaluation
results were deemed acceptable. Compounds which have appropriate intestinal absorption,
excretion and no toxicity were selected for further evaluation.

4.2. Target Genes Associated with Asthma and Selected Compounds

Binding DB (https://www.bindingdb.org/bind/index.jsp), accessed on 28 March
2022, was used using the “homo sapiens” setting to predict target genes for selected
compounds based on SMILES. The “minimum needed interaction score” was set to “high
confidence (0.700)” during Binding DB prediction. The public database DisGeNET (http:
//www.disgenet.org/, accessed on 1 April 2022) was used to identify asthma-related target
genes. A Venn diagram was used to identify and illustrate the overlapping genes between
the compounds and the asthma target genes [24].

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://biosig.lab.uq.edu.au/pkcsm/prediction
https://biosig.lab.uq.edu.au/pkcsm/prediction
https://www.bindingdb.org/bind/index.jsp
http://www.disgenet.org/
http://www.disgenet.org/
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4.3. Interactions between Compounds and Overlapping Genes: Network Construction

Cytoscape ver. 3.9.1 (https://cytoscape.org/, accessed on 29 November 2022) was
used to construct, display, and analyze the network of interactions based on the Binding DB
prediction results for constituents and overlapping genes [24]. Nodes in the network indi-
cate bioactive components and genes, while edges show interactions between compounds
and genes. Anti-asthmatic AN components and hub genes were identified by analyzing
the network’s topological structure and setting the “Degree value” of compounds or genes,
respectively [25]. A compound’s or a gene’s degree value represents how many phytocon-
stituents or genes are present in a network. AN’s therapeutic effect on asthma is enhanced
if a compound targets more disease-inducing genes.

4.4. Building a Protein-Protein Interaction Network

An online database called STRING, version 11.5, (https://string-db.org/, accessed on
29 November 2022) was used to gather information on protein-protein interactions between
the target proteins of selected AN components (PPI). The website calculated a score for each
protein’s mutual information. The stronger the contact between the two target proteins,
the higher the score. Since high confidence data >0.7 were used to ensure accuracy and
reliability, the study was considered reliable. The obtained protein interaction data were
imported into the Cytoscape 3.9.1 application to generate a PPI protein interaction network.
The CytoHubba plug-in was employed for the identification of Hub genes [26]

4.5. Target Protein Gene Ontology (GO) and KEGG Enrichment Analysis

The selected target genes were analyzed for GO and KEGG analysis by using (David)
v 6.8 software. Cellular components (CC), molecular functions, biological processes were
analyzed for GO analysis. KEGG pathway enrichment analysis was done to predict a
possible molecular mechanisms of AN against asthma. GO KEGG pathway bar charts were
made with SRPLOT (http://bioinformatics.com.cn/, accessed on 29 November 2022) [27].

4.6. Target-Pathway-Compound Network Construction

It is possible to perform a pathway enrichment analysis using KEGG as well as
pathway functional annotations for a given gene set. The Cytoscape 3.9.1 software was
used to create the compound–target–pathway network seen in Figure 8 based on results
from the DAVID database. The development of a network showed the features of numerous
AN components, targets, and pathways.

4.7. Molecular Docking

MOE 2015 (Molecular operating environment) was employed as the molecular docking
tool. Crystal structure of AKT1, EGFR, VEGFA and Hsp90AB1 were found in the protein
data bank (PDB ID: 6HHG, 6Z4B, 7VSW and 3NMQ). The builder tool of MOE was used
to prepare the structures of apigenin and quercetin. The MOE tool’s Energy minimization
algorithm was used to reduce the energy of the protein molecule. The following variables
were used to minimize energy; 0.05 Gradient, MMFF94X + Solvation Force Field, and
Current Geometry Chiral Constraint. When the root mean square gradient dropped below
0.05, energy minimization was stopped. Ten distinct docked conformations for each
compound were produced once the active site was chosen. For binding pattern analysis,
the compound’s lowest energy conformation was chosen. The minimized protein structure
was used as the docking template [27].

5. Conclusions

For the first time, the active components and mechanisms of AN’s anti-asthma prop-
erties were studied using network pharmacology. According to network pharmacology
results, quercetin and apigenin were found to be the most enriched constituents of AN, and
the AKT1, EGFR, VEGFA, and HSP90AB were enriched hub genes, respectively. The funda-
mental mechanism of AN against asthma was the deactivation of the p13AKT signaling

https://cytoscape.org/
https://string-db.org/
http://bioinformatics.com.cn/
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pathway, which may aid in the prevention and progression of asthma and other inflamma-
tory diseases. Based on network pharmacology and molecular docking-based prediction, it
can be concluded that AN might be considered a natural source of asthma management;
however, detailed mechanistic studies are required to validate this hypothesis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life13020411/s1, Table S1, The names of active compound’s
screening of AN; Table S2, compounds and target genes; Table S3, prospective asthma targets and
Table S4, Overlapping genes between active ingredient targets with asthma targets.
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