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Abstract: Rheumatoid arthritis (RA), one of the most common of the chronic inflammatory autoim‑
mune diseases (CIADs), is recognized as an independent cardiovascular risk factor. Traditional risk
factors such as smoking, arterial hypertension, dyslipidemia, insulin resistance, and obesity are fre‑
quently found in RA. Given the increased risk of mortality and morbidity associated with cardiovas‑
cular disease (CVD) in RA patients, screening for risk factors is important. Moreover, there is a need
to identify potential predictors of subclinical atherosclerosis. Recent studies have shown that mark‑
ers such as serum homocysteine, asymmetric dimethylarginine, or carotid intima–media thickness
(cIMT) are correlated with cardiovascular risk. Although RA presents a cardiovascular risk com‑
parable to that of diabetes, it is not managed as well in terms of acute cardiovascular events. The
introduction of biological therapy has opened new perspectives in the understanding of this pathol‑
ogy, confirming the involvement and importance of the inflammatory markers, cytokines, and the
immune system. In addition to effects in inducing remission and slowing disease progression, most
biologics have demonstrated efficacy in reducing the risk of major cardiovascular events. Some stud‑
ies have also been conducted in patients without RA, with similar results. However, early detection
of atherosclerosis and the use of targeted therapies are the cornerstone for reducing cardiovascular
risk in RA patients.

Keywords: atherosclerosis; autoimmunedisease; rheumatoid arthritis; inflammation; cardiovascular
risk; biological therapy

1. Introduction
The main cause of death worldwide continues to be CVD. According to the World

Health Organization (WHO), CVD causes 17.9 million deaths globally each year, account‑
ing for 32% of all deaths [1–3]. Myocardial infarction (MI) and stroke (defining atheroscle‑
rotic cardiovascular disease (ASCVD)) are two of the most important complications and
contributors to mortality, both of which have atherosclerosis as their underlying process.
Moreover, it has been established that these two conditions share a number of risk factors,
including traditional cardiovascular risk factors such as smoking, sedentary life leading
to overweight or obesity, high blood pressure (BP), glucose intolerance or diabetes, and
dyslipidemia [1–4].

Considering that more than 70% of CVD can be prevented, the research focus has
mainly been on modifiable risk factors, in order to identify and treat them, thereby reduc‑
ing the overall disease burden. Nevertheless, beyond these risk factors, there are several
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non‑traditional factors that have been described as influencing cardiovascular risk. Clini‑
cal conditions such as cancer, chronic kidney disease (CKD), infections, chronic obstructive
pulmonary disease (COPD), CIAD [4], and hyperhomocysteinemia [5] increase the occur‑
rence of CVD and worsen its prognosis.

Inflammatory rheumatic diseases are chronic conditions involving the joints, muscles,
and tissues, causing both joint and systemic manifestations. RA, the most common form
of CIAD, is characterized by damage to the synovial membrane [6]. It affects womenmore
frequently than men, with a ratio of 3:1, and is most common after the age of 50. Many
studies have focused on the prevalence of the disease, estimating a global prevalence of
0.5–1%, with no significant change between 1990 and 2010 [7,8].

CIAD has been shown to increase cardiovascular risk, with significantly higher rates
of cardiovascular mortality and morbidity [4]. According to the 2021 ESC Guidelines on
CVD prevention, RA is an independent cardiovascular risk factor, increasing the risk of
developing ASCVD by about 50%, even in the subclinical stages or in patients with early‑
stage RA and symptoms for less than one year [4,9].

Even though in almost half of the cases the increased cardiovascular risk is due to
traditional risk factors [10], their management does not reduce it, with RA patients having
more than twice the risk of developing MI compared to the general population [11]. This
risk is sustained by the characteristics of the disease, such as seropositivity (expressed by
the presence of specific antibodies, e.g., rheumatoid factor (RF); anti‑citrullinated protein
antibodies (ACPAs)), inflammatory syndrome (represented by elevated C‑reactive protein
(CRP) or erythrocyte sedimentation rate (ESR)), and disease duration or disease activity
score (DAS) [12]. On the other hand, systemic inflammation is by itself an important factor
in increasing cardiovascular risk, both acutely and over time [13]. Moreover, it appears
that RA patients run roughly the same risk of developing acute cardiovascular events as
do patients with type 2 diabetes mellitus [14].

Cardiovascular mortality in RA patients is estimated to account for half of all causes,
making it the most frequent cause of death [15]. Therefore, in addition to inducing remis‑
sion or at least reducing disease activity, the goal of therapy in RA is to control chronic
inflammation and, thus, reduce cardiovascular risk [16].

With this review, we aim to provide a better understanding of the inflammation–
atherosclerosis axis. We consider the common and frequently encountered cardiovascular
risk factors that, despite their advanced management, may be difficult to treat in clinical
practice. Their relationship with atherosclerosis is examined, as well as the possibility of
their use as biomarkers for the detection of early atherosclerosis in RA patients. Moreover,
the effects of anti‑inflammatory and disease‑modifying antirheumatic drugs (DMARDs)
(such as biological therapy (bDMARDs)) on cardiovascular risk factors—and especially
on the process of atherosclerosis—are reviewed and discussed.

2. Cardiovascular Risk Factors in RA and Their Relationship with Atherosclerosis
2.1. Arterial Hypertension

Arterial hypertension has been identified as the most prevalent comorbidity in RA
patients [17–19], which can be explained by several mechanisms, including genetic poly‑
morphism [20], association with other traditional risk factors (e.g., physical inactivity, obe‑
sity, alcohol, dyslipidemia, metabolic syndrome) [21], or the use of pathogenic or symp‑
tomatic treatments for the disease. Special attention should be paid to patients prescribed
corticosteroids, COX‑2 inhibitors, or leflunomide, as there are studies showing increased
BP in patients taking these therapies. In a recent systematic review, Hadwen et al. [22]
demonstrated that corticosteroids andCOX‑2 inhibitorsmay increase the risk of arterial hy‑
pertension in RA patients. Among the synthetic DMARDs used in managing RA, lefluno‑
mide is the one that carries the greatest risk of inducing hypertension, so other drugs
should be used first in the presence of this risk factor. In contrast, methotrexate (MTX)
seems to have protective effects, since it has been negatively associated with arterial hy‑
pertension in several studies [23–25].
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There is evidence showing the relationship between inflammation (as illustrated by
increased levels of CRP or inflammatory cytokines such as interleukin (IL)‑6) and high
BP [26,27]. Arterial hypertension is associated with accelerated atherosclerosis in RA pa‑
tients, which is mainly based on their pro‑inflammatory status, with studies showing that
hypertensive RA patients have a higher risk of acute cardiovascular events (such as MIs)
than patients with normal BP [23,28]. On the other hand, a study published by Yu et al. [29]
showed an inverse U‑shaped relationship between CRP and systolic BP (SBP) in both RA
and non‑RA patients, meaning that an increased CRP level (i.e.,≥6 mg/L) led to decreased
SBP. The mechanisms mediating these changes are not fully understood, which is why
new horizons are open for future studies to clarify the link between inflammation and
BP dysregulation.

2.2. Dyslipidemia
Dyslipidemia, defined as a change in serum lipid concentration, is an importantmodi‑

fiable cardiovascular risk factor in the general population, given its close links with
atherosclerosis [30]. Increased cardiovascular risk due to dyslipidemia in RA patients is a
result of several factors, including disease activity, specific inflammatory processes, seden‑
tary lifestyle and, last but not least, the so‑called “lipid paradox”. According to London
et al. [31], disease activity is negatively correlated with cholesterol levels. Since then, nu‑
merous studies have focused on this complex relationship between dyslipidemia and car‑
diovascular risk in RA patients, with results that, although incompletely understood, are
still valid today.

Themost frequently reported changes in the lipid profile are quantitative. The activity
of the disease, expressed by the CRP, is correlated with the inflammatory status, resulting
in increased cholesterol consumption and a reduction in its synthesis. Thus, low levels
of total cholesterol (TC) and low‑density lipoprotein cholesterol (LDL‑C), along with high
levels of high‑density lipoprotein cholesterol (HDL‑C), were observed in RA patients with
active disease [23,32,33]. Paradoxically, in these patients, although TC levels and those of
its fractions remain low, the cardiovascular risk persists, most likely due to the inflamma‑
tory status, but also to changes in the structure and functions of lipoproteins [32,34]. These
observations have been referred to as the “lipid paradox”, and aU‑shaped relationship has
been developed [21,35].

In non‑RA patients, among other important roles (e.g., transport of cholesterol from
extrahepatic tissues to the liver, the site of its catabolism; inhibition of monocyte adhesion;
antithrombotic properties), HDL‑C is thought to confer protection against oxidized LDL‑C
(oxLDL‑C) (responsible for the development of atherosclerotic plaques) via paraoxonase‑
1. On the other hand, in RA patients, these properties of HDL‑C are no longer observed.
Instead, it has been observed that HDL‑C’s ability to inhibit oxLDLwas affected by inflam‑
mation, with paraoxonase‑1 being greatly reduced in these patients [36]. These qualitative
changes in the lipid profile of RA patients lead to increased cardiovascular risk through
the development and progression of atherosclerosis.

2.3. Obesity and Insulin Resistance
A number of chronic diseases have been linked to obesity, which is a major health

problem in the modern world. Given that obesity leads to CVD independently of other
risk factors [37], attention has been focused on the impact of obesity associated with RA on
cardiovascular mortality. It is well known that adipokines (Table 1)—cytokines secreted
in excess by adipose tissue—are involved in the development of inflammation and insulin
resistance, thereby initiating and promoting atherosclerosis. As hormones that are closely
related to the immune system and various organs (e.g., heart, brain, liver), adipokines
induce endothelial dysfunctionwith platelet activation and secondary pro‑thrombotic, pro‑
atherogenic, and systemic pro‑inflammatory effects [38].

The effects of obesity on RA have been intensively studied over time [39,40], with
one of the earliest and largest studies being published by Lu et al. (Nurses’ Health Sur‑
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vey/Nurses’ Health Survey II) [39]. This study established a positive, age‑dependent rela‑
tionship between overweight/obesity and the occurrence of RA. As in the case of dyslipi‑
demia, the relationship between body mass index (BMI) and the risk of cardiovascular or
all‑cause mortality was inverse in RA patients compared to non‑RA patients. In summary,
it has been observed that overweight or obese RA patients have a lower relative risk of
cardiovascular death than normal‑weight patients. This effect has been called “the obe‑
sity paradox in RA” and has gained the attention of subsequent studies [41]. It was later
shown that BMI is not an accurate predictor of mortality among RA patients, mainly due
to accelerated catabolism in patients with active autoimmune disease leading to uninten‑
tional weight loss [42,43].

Table 1. Adipokines and their effects in RA patients.

Adipokine Functions Source Effects in RA Patients Reference

Adiponectin Anti‑inflammatory effect
Anti‑atherogenic effect Adipocytes

Pro‑inflammatory effect
Correlated with disease activity, disease
progression, and inflammatory markers

[44,45]

Leptin
Pro‑inflammatory effect
Appetite and weight

regulator
Adipocytes

Pro‑inflammatory effect
Correlated with disease activity and
progression, as well as with IL‑6 levels

[44,46,47]

Visfatin
Pro‑inflammatory effect
Promotion of B‑cell
differentiation

Adipose tissue,
liver, bone

marrow, muscle

Pro‑inflammatory effect
Correlated with inflammatory markers and

disease activity
Expression of visfatin seems to be linked to

decreased cardiometabolic risk

[44,48,49]

Resistin

Pro‑inflammatory effect
Promotion of immune cell
recruitment and immune

cell activation

Macrophages,
adipocytes

Pro‑inflammatory effect
Systemic levels may depend on RA disease

duration or severity
Synovial levels seem to be correlated with
inflammatory markers and disease activity

[44,50]

Omentin Anti‑inflammatory effect
Anti‑atherogenic effect

Stromal vascular
cells,

adipocytes

Systemic levels were associated with
inflammatory markers, while tissue

concentrations were neutral
[44,51]

Progranulin
Anti‑inflammatory effect (by
competitive binding to

tumor necrosis factor (TNF))

Adipocytes,
macrophages,
chondrocytes

Pro‑inflammatory marker
Correlated with disease activity and

progression
Is a key player in the preservation of

cartilage integrity

[44,46,52]

2.4. Homocysteine
Homocysteine, a sulfhydryl‑containing amino acid, is recognized as an independent

cardiovascular risk factor. Hyperhomocysteinemia can lead to atherosclerosis by
several different mechanisms. One of them is through oxidative stress, which causes ni‑
tric oxide (NO) depletion with endothelial dysfunction and atherothrombosis, but also
contributes to the formation of oxLDL with the release of pro‑inflammatory cytokines by
spumous cells. Moreover, hyperhomocysteinemia, through asymmetric dimethylarginine
(ADMA)—which is derived from S‑adenosyl methionine (an intermediate in the
metabolism of homocysteine)—can stimulate the proliferation of the arterial wall’s smooth
cells [53–55]. These alterations in subclinical arterial structure and function contribute
to atherosclerotic plaque formation and vascular calcification. Recently, Karger et al. [5],
based on the Multi‑Ethnic Study of Atherosclerosis (MESA) cohort, confirmed the results
of previous studies on the relationship between increased homocysteine levels and the
prevalence of vascular calcification.

The link between inflammatory status in RA patients and hyperhomocysteinemia has
been demonstrated in several studies over time. For example, in 1997, Roubenoff et al. [56]
showed that homocysteine levels were about 33% higher in RA patients than in the con‑
trol group, assuming that this could be an explanation for the increased cardiovascular
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mortality seen in these patients. Later, Tekaya et al. [57] found that homocysteine levels
were associated with high disease activity, CRP, age, and male gender. In another cross‑
sectional study using the Kyoto University Rheumatoid Arthritis Management Alliance
(KURAMA) database, Katsushima et al. [58] demonstrated that hyperhomocysteinemia
was strongly and positively correlated with DAS‑28‑ESR but, more importantly, this rela‑
tionship was stronger in the non‑remission group than in the remission group. Regarding
the impact of DMARDs on homocysteine levels in RA patients, glucocorticoid therapy is
linked to a quick and sustained reduction in plasma homocysteine concentrations, which
may have an effect on cardiovascular risk [59]. In contrast, treatment with MTX alone or
in combination with sulfasalazine (SSZ) resulted in a persistent increase in plasma homo‑
cysteine, which is why therapy in these patients should be adjusted by adding folic acid
(5 mg/week) to reduce homocysteine levels [60].

3. Inflammation and Atherosclerosis
Rudolf Virchow, the father of cellular pathology, was the first to describe the patho‑

physiological mechanism of thrombosis, later synthesizing, in Virchow’s triad, the risk fac‑
tors that predispose to thrombus formation. Moreover, in 1856, in one of his publications,
he stated the inflammatory character of atherosclerotic plaques as follows: “in some partic‑
ularly violent cases of softening manifests itself even in the arteries not as the consequence
of a real fatty process, but as a direct product of inflammation” [61]. Later, in 1999, Russel
Rose hypothesized that atherosclerosis is an inflammatory disease and that atheromatous
plaque formation is sustained by an important immunological component [62].

Atherosclerotic plaque formation begins with endothelial dysfunction and endothe‑
lial cells (ECs) undergoing inflammatory activation. ECs play an important role in the
pathogenesis of atherosclerosis through their barrier capacity and paracrine/endocrine se‑
cretory functions. They regulate vasodilatation, monocyte infiltration, and platelet aggre‑
gation via vasoactivemediators such as endothelin‑1 (ET‑1), NO, prostacyclin, angiotensin
II (Ang II), vascular cell adhesionmolecule 1 (VCAM‑1), and intercellular adhesionmolecule
1 (ICAM‑1), as well as vascular endothelial growth factor (VEGF) and platelet‑derived
growth factor (PDGF). Leukocytes and monocytes enter the subendothelial space and se‑
crete chemokines and other chemoattractant molecules. Monocytes become tissue
macrophages, which internalize lipoprotein particles and generate foam cells. These cause
the secretion of inflammatory cytokines, reactive oxygen species (ROS), and other media‑
tors. After subendothelial accumulation, LDL becomes oxLDL; moreover, cholesterol ac‑
cumulation leads to inflammasome activation, which results in the cleavage of IL‑1β into
its biologically active form (Figure 1) [63–66]. Macrophages are classified into two cate‑
gories: M1, secreting pro‑inflammatory factors that participate in tissue damage; and M2,
secreting anti‑inflammatory factors. Under homeostatic conditions, macrophages have
atheroprotective effects, but under pathological conditions they are involved in the lo‑
cal immune response [63,67]. Vascular smooth muscle cells (VSMCs) can change their
phenotypic form and secrete cytokines (e.g., IL‑6, IL‑8, and monocyte chemoattractant
protein‑1 (MCP‑1)) and a large number of extracellular matrix (ECM) proteins, such as
elastic fibers, collagens, proteoglycans, and matrix metalloproteinases (MMPs) [68]. De‑
pending on their phenotype, VSMCs can have a pro‑inflammatory or anti‑inflammatory in‑
fluence. Amacrophage‑like phenotype, a mesenchymal stem cell (MSC)‑like phenotype, a
fibromyocyte phenotype [69], an osteogenic phenotype [70], an EC‑like phenotype [71], an
adipocyte‑like phenotype, and an intermediate cell phenotype [72] can be found in the
pro‑inflammatory model.

The inflammatory response triggered by endothelial dysfunction and the dysregulation
in lipid metabolism is followed by an adaptive immune response, involving T and B cells.
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masome contributes to the regulation of innate immune system and controls the release of pro‑
inflammatory cytokines.

Through their activation and secretion of cytokines, T‑helper (Th) 1 cells contribute
to atherogenesis. Th2 cells have both pro‑ and anti‑atherosclerotic properties. These two
types of T lymphocyte (LT) interact with B cells and IL secretion [73]. Regulatory T cells
(Tregs) inhibit Th activity while promoting the anti‑inflammatory phenotype of
macrophages [73]. A reduced number of Tregs in atheromatous plaques is representa‑
tive of the local inflammation that occurs there [74]. Recently, researchers have demon‑
strated that ApoB‑reactive T cells evolve from Tregs that have lost their atheroprotective
effects [75]. Among symptomatic patients and those with recent cardiovascular events,
CD4‑positive andCD8‑positive T cells are activated and differentiated [76]. B lymphocytes
(LB) induce inflammation due to antibody production, but mainly due to the secretion of
pro‑inflammatory factors. B1 and B2 cells are most commonly present in atherosclerotic
plaques. An important role of the two types of B cells is the secretion of IL‑10, which has a
repressive impact on inflammation. In atherosclerosis, the plaque number of IL‑10 is small,
and this helps to promote inflammation. Anti‑LBmedication appears to have beneficial ef‑
fects in patients with atherosclerosis, demonstrating B‑cell involvement [63].

Taking into account the inflammatory component present at the atherosclerotic level,
several studies have been carried out to investigate the influence of anti‑inflammatorymed‑
ication on the atherosclerotic process.

The LoDoCo (Low‑dose colchicine for secondary prevention of cardiovascular dis‑
ease) trial examined the effects of colchicine in patients with CVD, looking at the even‑
tual reduction in the risk of cardiovascular events. A dose of 0.5 mg/day was used versus
a placebo in 532 patients with stable coronary artery disease after 3 years of follow‑up.
The results were positive, with the combination of colchicine, high‑dose statin, and an‑
other standard secondary prevention therapy preventing recurrent cardiovascular events
in these participants [77]. This was followed by LoDoCo 2—a randomized, controlled,
double‑blind trial that involved 5522 patients with chronic coronary disease. A dose of
0.5 mg of colchicine was used in 2762 of the patients, with the other 2760 being the placebo
group. The follow‑up period was at least 12 months. At the end of follow‑up, patients
who received colchicine had a lower risk of cardiovascular events compared to the placebo
group [78].

Considering the positive effect that MTX has on inflammatory biomarkers and car‑
diovascular risk in patients with rheumatic diseases, the CIRT (Cardiovascular Inflamma‑
tion Reduction Trial) study was developed. This was a randomized, double‑blind trial in



Life 2023, 13, 319 7 of 26

which 4786 patients with a history ofMI ormultivascular coronary disease alongwith type
2 diabetes or metabolic syndrome were included. The dose of MTX was 15–20 mg/week.
The trial was stopped after a median follow‑up of 2.3 years. The results showed that MTX
did not lead to a decrease in cardiovascular events or inflammatory markers. Moreover,
there were increases in liver enzymes, decreases in the associated number of leukocytes
and hematocrit, and an increase in the incidence of non‑basal‑cell skin cancers compared
to the placebo group [79].

The involvement of cytokines in the formation of atherosclerotic plaques has become
a possible treatment target over time. IL‑1β is one of the most important cytokines in‑
volved in pathogenesis; therefore, targeted therapies towards it could have positive ef‑
fects. The CANTOS (Canakinumab Anti‑Inflammatory Thrombosis Outcome Study) trial
evaluated the medical effects of anti‑IL‑1β therapy (canakinumab) through a randomized
double‑blind trial. A total of 10,061 patients with previous MI and a high‑sensitivity CRP
(hs‑CRP) level > 2 mg/dL were included. Three different doses of canakinumab (50 mg,
150 mg, and 300 mg administered every 3 months subcutaneously) were compared with
a placebo. The results showed a decrease in CRP in CANA patients. After 48 months, the
average reduction in those on 50, 150, and 300 mg was 26%, 37%, and 41%, respectively.
Lipid levels were not influenced by the initial value. A reduction in cardiovascular events
was also demonstrated in patients from the CANA group. Regarding adverse effects, an
increase in mortality due to infections or sepsis was observed. Thus, CANTOS certified
inflammatory involvement in atherosclerosis [80]. Another targeted cytokine is IL‑6. The
ASSAIL‑MI (Assessing the effect of anti‑IL‑6 treatment in MI) trial, which is currently in
phase II, has highlighted that tocilizumab (TCZ) improves outcomes in patients presenting
with an acute ST segment elevation MI (STEMI), due to reduced myocardial damage [81].
Moreover, in STEMI patients, IL‑6 inhibition induced a decrease in neutrophil numbers
and appeared to reduce neutrophil function, which may be connected to TCZ’s favorable
effects on myocardial salvage [82].

Increased cardiovascular risk due to accelerated atherosclerosis and its relationship
with inflammation in RA patients are well proven [83]. In addition to the fact that CVD
and RA share common risk factors—such as genetic (e.g., genetic polymorphism) and en‑
vironmental factors (e.g., smoking, obesity, metabolic syndrome)—the increased levels
of inflammation in these patients make the atherosclerotic plaques unstable and prone
to rupture.

A wide range of disease‑associated single‑nucleotide polymorphisms (SNPs) are
shared by RA and CVD. Human leukocyte antigens (HLAs) are involved in the pathogen‑
esis of RA, and HLA‑DRB1*04 is considered to be a risk factor for both RA and CVD [84].
Moreover, different genetic forms of inflammatory mediators appear to be common risk
factors for RA and CVD. Two variants of TNF‑α are known to be risk factors involved in
complications of both RA and CV. From the IL‑1 family, IL‑33 is responsible for mediating
CV events in RA patients [85]. On the other hand, interferon (IFN) does not seem to be in‑
volved in CVD in RA patients [86]. IL‑6 is another IL that is involved in both RA and CVD
due to atherosclerosis. Increased levels of IL‑6 may predict the risk of MI, as revealed by a
prospective study that included nearly 15,000 apparently healthy patients [87]. Moreover,
IL‑6 can be considered to be a negative prognostic factor for acute coronary events [88].

Citrullination is a process that is part of RA’s pathogenesis and has been a point of
interest in recent years. ACPAs are essential for diagnosis and are used to monitor dis‑
ease activity. The presence of ACPAs and RF are markers of ischemic heart disease [89].
Citrullination processes were highlighted in the myocardial interstitium of patients and in
the atheromatous plaques of RA patients [90]. In this way, ACPAs are determinant of the
atherogenesis process [91]. Moreover, according to the MESA cohort and the Northwick
Park Heart Study, ACPAs can also cause CVD in patients without RA [92].

Although not as well‑researched, antibodies against carbamylated proteins can ap‑
pear in RA patients and can be detected even before clinical diagnosis [93]. Under these
conditions, the atherosclerosis process can be promoted by carbamylatedHDL‑C and LDL‑
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C. Carbamylated HDL‑C influences the absorption and efflux process of cholesterol to‑
wardsmacrophages [94]. On the other hand, carbamylated LDL‑C promotes atherogenesis
by altering the endothelium, the proliferation of smooth muscle cells, and the stimulation
ofmonocytes’ adhesion to altered ECs [95]. Therefore, these antibodies are associatedwith
subclinical atherosclerosis in RA patients [96]. It is important to mention that these anti‑
bodies are also associated with an increase in cardiovascular risk in other diseases [97].

4. Assessing Cardiovascular Risk in RA
4.1. Biomarkers Predictive of Cardiovascular Risk in RA
4.1.1. Lipid Profile

Given the paradox of low LDL‑C levels in RA patients, a question has been raised as
to whether changes in lipid profiles over time can predict cardiovascular risk in these pa‑
tients. Myasoedova et al. published a retrospective cohort study in which they looked at
the relationships between lipid levels, inflammatory status in RA, and cardiovascular risk.
This study confirmed the positive link between increased inflammatory status, low TC lev‑
els, and increased cardiovascular mortality. As explained above, the relationship between
TC levels and cardiovascular risk was not linear but, rather, represented in the form of a
“U‑shaped curve” [32]. These particularities have been highlighted in other subsequent
studies [33,98].

Recently, Giles et al. published a study based on four cohorts of CVD. Excluding pa‑
tients undergoing hypolipemiant therapy, they compared coronary artery calcium (CAC)
scores in RA patients versus non‑RA patients with LDL‑C plasma levels. Their results
strengthen the idea of an increased cardiovascular risk for RA patients with very low LDL‑
C levels (defined as an LDL‑C < 70 mg/dL), three‑quarters of whom had a CAC
score ≥ 100 units (this elevated CAC score was associated with the occurrence of cardio‑
vascular events). They also correlated these changes with other risk factors, such as white
race, history of smoking, and normoponderal status [99].

4.1.2. Homocysteinemia and ADMA
Several previous studies have tried to determine whether homocysteine can serve as

a potential predictive cardiovascular risk factor. For example, a prospective cohort study
enrolling patients with no history of acute cardiovascular events (i.e., stroke orMI) demon‑
strated a link between elevated serum homocysteine values and increased risk of both car‑
diovascular events and death [100]. Furthermore, another study showed that hyperhomo‑
cysteinemia was more common in younger patients (<56 years old) who experiencedmore
than one acute cardiovascular event in evolution (such as stroke,MI, or death) than in those
who did not. An important conclusion of this study was that high homocysteine levels at
admission may serve as a potential predictor for worse late cardiac events in patients who
have premature atherosclerotic diseases [101]. This position was reinforced by another
recent study that highlighted the potential predictive role of homocysteine for increased
major adverse cardiovascular events (+) in female patients [102].

The relationship between hyperhomocysteinemia and cardiovascular risk in RA pa‑
tients has also been studied in several works [103]. Balkarli et al. [104] found that inflam‑
matory mediators such as IL‑6 and TNF‑α, along with homocysteine, are simultaneously
increased in RA patients, which may lead to the development of ASCVD.

Due to its pathophysiological involvement in endothelial dysfunction, ADMA has at‑
tracted attention in recent years for its potential role as a biomarker of subclinical atheroscle‑
rosis. A direct relationship between ADMA levels and acute cardiovascular events, such
as stroke or ASCVD, was recently shown in a meta‑analysis of 22 cohort studies enrolling
over 20,000 patients [103]. In addition, a correlation between ADMA and flow‑mediated
dilation (FMD) or cIMT has been described, the latter being considered to be a parameter
for the detection of subclinical atherosclerocsis [103,105].

Regarding the link between ADMA levels and markers of subclinical atherosclerosis
in RA patients, there are some data showing a positive correlation. The greatest impact is
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in patients with high disease activity, in whom a significant correlation has been demon‑
strated betweenADMA levels and the cIMT. Positive associations have also been described
between ADMA levels and CRP and DAS‑28, as well as between ADMA levels and ACPA
titers—particularly in the early stages of rheumatic disease—or betweenADMA levels and
homocysteine levels [106–108]. In conclusion, ADMAmay be a good predictor of subclini‑
cal atherosclerosis in RApatients, but further studies are needed to strengthen this position,
as well as to identify targeted therapies to reduce cardiovascular risk.

4.1.3. MicroRNAs
MicroRNAs (miRNAs) are a class of small, single‑stranded, non‑coding ribonucleic

acids (RNAs) between 18 and 25 nucleotides in length. Their genesis occurs initially in the
nucleus by transcription from the DNA molecule, resulting in pri‑miRNAs. Furthermore,
they are recognized by an enzyme–protein complex and cleaved into precursors that ma‑
ture at the cytoplasmic level. The role ofmaturemiRNAs is to regulate post‑transcriptional
gene expression [109].

MiRNAs are known to be involved in the physiopathological complex process of
atherosclerosis [110]. Different miRNAs—such as miR‑126, miR‑31, miR‑17‑3p, miR‑146,
ormiR‑223—cause endothelial dysfunction through a series of pathological processes such
as the adhesion of molecules such as ICAM‑1, E‑selectin, or VCAM‑1, with the recruitment
of new white cells or inhibition of NO release leading to atherosclerotic plaque formation
and/or destabilization. Moreover, given the links between dyslipidemia, inflammation,
and atherosclerosis, several miRNAs (i.e., miR‑27a/b, miR‑146a, miR‑125a‑5p, miR‑155,
miR‑301b, miR‑302a) have demonstrated their role in lipid metabolism. They seem to be
involved in the absorption, esterification, and efflux of cholesterol, as well as in the process
of foam cell development, reducing their number [111–113].

In addition, miRNAs are also involved in other cellular processes, such as develop‑
ment, proliferation, invasion, cell survival, and apoptosis. Moreover, due to their capacity
to influence adaptive responses and the differentiation of B and T cells, as well as lipid
uptake and efflux or cytokine synthesis, they have been described in some autoimmune
diseases [114]. In RA patients, somemiRNAs (e.g., miR‑22, miR‑38, miR‑146, miR‑48) have
been associated with an increased risk of the development and progression of this autoim‑
mune disease [115], with several studies showing their involvement in patients in the early
stages of the disease, but especially in those who eventually developed RA [116,117]. Fur‑
thermore, Renman et al. have demonstrated that some miRNAs have a modified expres‑
sion not only in the sera of RA patients, but also in their first‑degree relatives [116]. A
recent meta‑analysis illustrated the relationship between miRNAs and disease activity by
directly and positively correlating miR‑146a with DAS‑28‑ESR [117]. Other studies have
found a link between MiR‑22 or miR‑125b and DAS‑28, CRP, and ESR [118], as well as
between miR‑451 and DAS‑28, CRP, and IL‑6 [119].

The link between miRNAs and CVD in RA patients has also been studied over time.
For example, in a recent study, Taverner et al. demonstrated that decreased expression of
miR‑425‑5p in men was related to a higher risk of subclinical arteriosclerosis, while miR‑
451 in women was related to lower levels of subclinical arteriosclerosis and lower arterial
stiffness in the entire RA cohort. In this study, miRNA levels were directly related to the
measurement of cIMT using ultrasound [120]. Expressions of miR‑425‑5p and miR‑451
were also assessed prior to this study, showing similar plasma levels between patients
with RA and acute MI, but different from the control group [121]. Another studyhigh‑
lighted the link between miRNA expressions and Agatston score—a score for CAC. The
results led to the formulation of a list of miRNAs that have high predictability for coronary
atherosclerosis in RA patients [122].

Taken together, miRNAs could be used as biomarkers of CVD in RA patients, mainly
because they possess great stability in plasma. Future studies are needed to create a panel
of miRNAs that can be used as predictors of ASCVD in RA patients.
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4.1.4. Anti‑β2‑Glycoprotein‑1 (anti‑β2GPI) IgA Antibodies
The involvement of the immune system through its activation and synthesis of pro‑

inflammatory markers in the development, progression, and destabilization of atheroscle‑
rotic plaques is well known. β2GPI is a single‑chain polypeptide amino‑acid residue com‑
pound, known as the primary antigenic target for antibodies involved in thromboembolic
complications, and commonly found in patients with CIAD [123]. It has also been found
that β2GPI is co‑located with CD4‑positive lymphocytes and with oxLDL, with the latter
forming the oxLDL/β2GPI complex by binding oxLDL to the polypeptide, which is not
common for native LDL [123,124]. This complex has major implications in the process of
accelerated atherosclerosis and is found at increased levels in patients with CIAD, as well
as with non‑autoimmune diseases such as type 2 diabetes mellitus [125] or CKD [126]. Ad‑
ditionally, the risk of acute MI, unstable angina, or stroke was independently correlated
with anti‑β2GPI IgA antibodies [127].

The role of anti‑β2GPI IgA antibodies in atherosclerotic plaque progression and car‑
diovascular risk in RA patients is not well studied compared to antiphospholipid syn‑
drome. One study showed a positive correlation between anti‑β2GPI IgA and cIMT [128],
unconfirmed by others [129,130], butwithout a direct relationshipwith the presence or pro‑
gression of atheromatous plaques. New horizons have been opened with the publication
of a recent study that enrolled 150 participants who were subjected to coronary computed
tomography angiography for plaque evaluation, with promising results. This is the only
study to date that has shown a clear link between anti‑β2GPI IgA and the progression of
atherosclerotic plaques or their transition to extensive or obstructive ones [131].

4.2. Predictive Imaging Markers of Cardiovascular Risk in RA
4.2.1. cIMT

IMT is an easy index to assess using B‑mode Doppler ultrasonography of the carotid
arteries. The investigation has the advantages of being accessible, replicable, non‑invasive,
quick, and easy to perform, without requiring special preparation in advance. This is ex‑
tremely useful for screening patients at high cardiovascular risk, as elevated cIMT (≥1mm)
is correlatedwith the risk of acute cardiovascular events such as stroke orMI [13,132]. Stud‑
ies have demonstrated strong predictive value for cardio‑ and cerebrovascular complica‑
tions, as well as close links with most traditional cardiovascular risk factors, inflammatory
syndrome, and hyperhomocysteinemia [13,133–135]. Doppler ultrasound of the carotid ar‑
teries also highlights the presence of atheromatous plaques, as well as the degree of steno‑
sis that they produce.

In order to identify patients predisposed to the development of acute cardiovascular
complications, several studies have evaluated the importance of imaging plaque identi‑
fication and calculating the cIMT in RA patients. The findings showed that RA patients
have higher cIMT and more frequent carotid atherosclerotic plaques than patients with‑
out RA [136–138]. Some studies have demonstrated an association between cIMT and in‑
flammatory markers, such as ESR, CRP, or IL‑6 [139,140], while others have reported a
relationship with ACPA seropositivity [141]. As expected, a link between cIMT and DAS‑
28 was also detected by Ambrosino et al. [142]. Similar results have also been identified
by Wah‑Suarez et al. [143], as well as by Gonzales Mazario et al. [144] who, additionally,
correlated cIMT with disease duration. Furthermore, it has been demonstrated that RA
patients with carotid atherosclerotic plaques sustain a higher risk of acute cardiovascular
events and cardiovascular mortality. One of the most noteworthy things is that carotid
plaques have a greater ability to predict cardiovascular risk than the modified European
Alliance of Associations for Rheumatology (EULAR) systematic coronary risk evaluation
(mSCORE) [145]. A positive correlation between cIMT and traditional cardiovascular risk
factors has been reported, and the results of that study suggested that the evaluation of
cIMT as a cardiovascular risk predictor can be used for RA patients with low CVD [146].
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4.2.2. CAC Scores
Determination of CAC score is a method for the diagnosis and evaluation of subclinical

atherosclerosis, especially in asymptomatic patients, since it has diagnostic value even before
the signs and symptoms of myocardial ischemia appear. Using multidetector cardiac com‑
puted tomography (CT), the score is calculated based on themostwidely used algorithm—the
Agatston score. Although the investigation (CT) does not require a contrast substance, a mi‑
nor disadvantage is the low irradiation dose. The CAC score quantifies the extent and density
of calcium deposits in relation to the examined area, making it useful not only in diagnosis,
but also in stratifying the risk and the severity of atherosclerosis [147].

Evaluation of CAC score has been endorsed by the American and European cardiol‑
ogy associations to improve cardiovascular risk stratification and assessment. Since there
are data showing a link between Framingham risk score and the CAC score in RA pa‑
tients, studies have been conducted to determine whether the CAC score might be a good
predictor of subclinical atherosclerosis in RA patients [147,148]. As previously shown, ele‑
vated CAC score was associated with very low LDL‑C levels, demonstrating positive pre‑
dictive value for the occurrence of acute cardiovascular events [99]. The study carried out
by Karpouzas et al. [149] had significant results. RA patients had higher CAC, a greater
number of plaques—especially for the more vulnerable types, such as non‑calcified and
mixed ones—themost prevalent multivessel disease and, most importantly, increased risk
ofmild‑to‑moderate and severe plaque burden comparedwith controls. Furthermore, a re‑
cent study [149] examined the link between various cardiovascular risk scores used in RA
patients and CAC score, with the Expanded Risk Score in Rheumatoid Arthritis (ERS‑RA)
showing the highest correlation coefficient.

Thus, studies have confirmed that CAC score can be used as an indirect marker of
atherosclerotic burden in both RA and non‑RA patients.

5. The Effects of Biological Therapy on Cardiovascular Risk Factors in RA
Therapies used in RA include DMARDs, categorized into conventional synthetic

DMARDs (csDMARDs), targeted synthetic DMARDS (tsDMARDs), and bDMARDs. cs‑
DMARDs are used as first‑line therapy in the absence of contraindications, with MTX be‑
ing the first option. Moreover, when disease activity is high, low doses of glucocorticoids
can be used for a short period of time as a bridging therapy. If after 3 months of proper
therapy there is no improvement in the disease, or if after 6 months there is no therapeutic
target (defined as remission or low disease activity), either the csDMARD is replaced by a
different one or a second one is added. Failure of two csDMARDs at maximum tolerated
doses for at least 3 months, presence of inflammatory syndrome, and/or very high disease
activity are indications for bDMARDs or tsDMARDs [150–152].

The introduction of biological therapies (defined as biotechnologically derived ther‑
apeutic agents that modulate inflammation and the immune system and act against cy‑
tokines, tissue receptors, or co‑stimulatory molecules; they have specific action by bind‑
ing only to the molecule against which they were synthesized) has greatly improved the
prognosis of RA patients. bDMARDs have demonstrated their beneficial effects by achiev‑
ing therapeutic targets (e.g., inducing disease remission, slowing disease progression), im‑
proving quality of life, and reducing signs and symptoms of the disease [152–155]. With
the improvement of preventive and therapeutic measures, the life expectancy of patients
with CIADhas increased considerably, but so have themortality and disability rates due to
atherosclerotic vascular events. Understanding and updating knowledge about the patho‑
physiological mechanisms of biological therapy has led to the hypothesis that it can re‑
duce cardiovascular risk by improving inflammation and, thus, slowing the progression of
atherosclerosis. As shown above, the CANTOS and ASSAIL‑IM trials have demonstrated
the positive impact of molecules targeting inflammatory cytokines on the evolution of pa‑
tients with acute cardiovascular events [80–82].

Although widely used, bDMARDs have the disadvantage of high cost, making them
less accessible in low‑income countries. Based on this aspect, new products with the same
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antigenic determinants have been developed in recent years. They are called biosimilars
and appear to havemuch the same therapeutic effects as the original molecules. Moreover,
they have been demonstrated to have efficacy and safety profiles that are similar to those
of the original bDMARDs [156,157].

The main biological molecules used in RA patients, along with their mechanisms of
action, are summarized in Table 2.

Table 2. Main bDMARDs used in RA treatment, their mechanisms of action, and their effects.

Classes of
bDMARDs bDMARDs Biosimilar Mechanism Effects

Tocilizumab ‑

Anti‑IL‑6
Sarilumab ‑

Monoclonal antibodies act as IL‑6
receptor antagonists, to which they bind
and prevent this cytokine from being

fixed at this level

Clinical and biological improvement,
slowing or stopping disease progression;

preventing joint destruction
Increased efficiency as a therapy in RA

patients
[150,152,155,158]

Infliximab
√

Chimeric IgG1k monoclonal antibody

Adalimumab
√

Human IgG1 monoclonal antibody

Golimumab ‑ Fully human monoclonal antibody

Certolizumab pegol ‑ PEGylated monoclonal antibody formed
with a humanized Fab fragment

Anti‑TNF‑α

Etanercept
√

Soluble TNF‑α receptor

Neutralization of biological effects of TNF‑α,
such as stimulation of synthesis and release

of pro‑inflammatory cytokines,
prostaglandins, and platelet‑activating

factors; endothelial dysfunction;
development and progression of

atheromatous plaques; cardiac remodeling
[150,152]

Anti‑CD20
(anti‑LB) Rituximab

√ Chimeric monoclonal anti‑CD20
antibody; the antigen CD20 is expressed

on the surface of LB

Induces B2 cell depletion
Clinical improvement, slowing or stopping

disease progression; preventing joint destruction
Increased efficacy in combination with MTX

[150,152,155]

Anti‑CD80/86
(anti‑LT) Abatacept ‑

Soluble receptor consisting of a fusion
molecule that blocks the binding of
CD80 and CD86 receptors on the

antigen‑presenting cell (APC), thereby
inhibiting T‑cell activation

Clinical improvement, slowing disease
progression; preventing joint destruction

Therapeutic effects and safety profile similar
to adalimumab
[150,152,155]

5.1. Anti‑IL‑6
IL‑6 is a cytokine with pleiotropic effects in inflammation, modulation of immune re‑

sponses, regenerative processes, hematopoiesis, andmetabolism. Synthesized from the ini‑
tial stage at the site of inflammation by several cell types—such asmacrophages, adipocytes,
ECs, or smoothmuscle cells—IL‑6 causes the release of acute‑phase reactants from the liver,
such as CRP, fibrinogen, haptoglobin, and serum amyloid A (SAA). It is important to note
that the transition from the acute to the chronic phase of inflammation is made by the re‑
cruitment of the leukocyte infiltrates, while neutrophils are transformed into monocytes
or macrophages. In this stage, an important role is played by the soluble IL‑6 receptor α
(sIL‑6Rα) [158,159]. Its important role in the acute and chronic phases of inflammation
has made this particular cytokine a key player in the development and progression of
atherosclerosis. There are studies that have demonstrated the role of IL‑6 as a risk fac‑
tor for coronary atherosclerosis. For example, Saremi et al. [160] showed an association
between IL‑6 values and CAC, independent of other cardiovascular risk factors. Another
study [87] highlighted a link between increased IL‑6 levels and MI risk. Studies in this di‑
rection have laid the groundwork for the hypothesis that IL‑6 could be a therapeutic target
for atherosclerosis.

The first anti‑IL‑6 drug approved for the treatment of RA, TCZ, has been investigated
in several studies. Clear data showing changes in lipid profiles—specifically in the serum
lipid levels—have raised concerns about increased cardiovascular risk secondary to the
dyslipidemic process. The MEASURE study [161] showed that adding TCZ to MTX in‑
creased TC, LDL‑C, and triglycerides more than MTX alone; in addition, another report
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compared monotherapy with TCZ with monotherapy with MTX, with the results favor‑
ing MTX in terms of lipid profile [162]. In another study, TCZ alone resulted in greater
increases in TC and LDL‑C than the combination of two csDMARDs (MTX plus hydroxy‑
chloroquine) [163]; meanwhile, in the ADACTA study, comparing TCZ with another bD‑
MARD, TCZ had amore pronounced impact on serum lipid levels than adalimumab [164].
Further analysis concluded that although these changes in lipid profile occurred, long‑term
use of TCZ reduced the cardiovascular risk due to atherosclerosis. The explanation was
found in the same studies, which showed that although TCZ had a negative impact on
serum lipid levels, its effects on lipid function and quality were beneficial. Therefore, it
was observed that the increase in serum lipids led to an improvement in inflammation,
with a reduction in inflammatory markers such as fibrinogen, D‑dimer, phospholipase
A2, and SAA [161,163,164]. This makes the lipid changes more anti‑atherogenic than pro‑
atherogenic [165]. Furthermore, using TCZ was linked to lower lipoprotein(a) (Lp(a)) con‑
centrations [161,164,166]. Future studies should aim to translate these pro‑atherosclerotic
risk reduction effects of TCZ to patients without RA. The ASSAIL‑IM study, still in phase
II, has already demonstrated some data and aims to assess whether TCZ can reduce my‑
ocardial damage in patients with ASCVD [81,82].

Aside from quantitative and qualitative changes, TCZ improves endothelial function
and decreases oxidative stress, expression of VCAM, and pro‑thrombotic status by modu‑
lating the pro‑thrombotic and pro‑inflammatory phenotype of monocytes; it also induces
NETosis [167].

The impact of TCZ on arterial stiffness—an independent predictor of cardiovascular
risk—has also been evaluated. The results were either conflicting [163] or showed that TCZ
reduces pulsewave velocity (PWV) [168,169], while cIMTwas not influenced [169]. Regard‑
ing traditional cardiovascular risk factors, therewere no significant changes in BP [169], but
there was a higher prevalence of arterial hypertension among patients treated with TCZ
than among those treated with MTX [170]. TCZ also improved the distribution of fat to
peripheral tissues and the skeletal muscle mass index [171].

Compared to other bDMARDs, TCZ has a reduced risk of MACE, being superior to
abatacept [172] and anti‑TNF‑α [173], but with no major differences between it and adali‑
mumab or etanercept [173].

Sarilumab, the other monoclonal antibody that binds to the IL‑6 receptor, seems to
have similar efficacy to TCZ in terms of clinical and radiological improvement of RA [174],
while being clinically and functionally superior to adalimumab [175]. The incidence of
MACE with sarilumab, whether in combination with csDMARDs or as monotherapy, did
not differ from that in patients without DMARDs [176]. Although the changes in lipid
profile are the same, studies on the relationship between sarilumab and cardiovascular
risk are limited compared to those on TCZ.

5.2. Anti‑TNF‑α
TNF‑α, a cytokine produced by activatedmacrophages andmonocytes aswell as natu‑

ral killer (NK) cells, plays a key role in the pathogenesis of RA, due to its pro‑inflammatory
effects. It is also involved in defending organisms against infection, bone remodeling, and
cancer. Increased endothelial permeability to circulating blood cells, NO reduction, ROS
production, and the ability to promote dyslipidemia and insulin resistance aremechanisms
underlying atheromatous plaque formation [151,177]. It is worth noting that patients with
MI who were being monitored for recurrence of MACE showed steadily increased TNF‑α
levels [178]. Understanding the mechanisms of action of this cytokine has led to the de‑
velopment of targeted therapies such as TNF‑α inhibitors. These were the first bDMARDs
approved for RA treatment, and all five currently available [177] are described in Table 2.

Data from studies and clinical trials show a reduction in cardiovascular risk in pa‑
tients treated with TNF‑α inhibitors. Comparative studies between anti‑TNF‑α drugs and
csDMARDs demonstrated a 20–30% reduction in cardiovascular risk in the first sixmonths
after the introduction of anti‑TNF‑α drugs [179]. Moreover, anti‑TNF‑α drugs may reduce
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the risk of all acute cardiovascular events, but especially of MI or stroke, as suggested by
two meta‑analyses. [180]. The cardioprotective effect increases proportionally the faster
the bDMARDs with anti‑TNF‑α activity are introduced, but also the longer they are main‑
tained [181]. This is also supported by two other studies inwhich an increased cardiovascu‑
lar risk was observed upon [182] andwithin 6months of [183] bDMARDs’ discontinuation.
In addition to the impact on the occurrence of an acute cardiovascular event such as MI,
anti‑TNF‑α therapy may influence the prognosis of patients after such an event. As re‑
gards post‑MI mortality, Low et al. [181] demonstrated that patients in whom bDMARDs
were stopped 3 months prior to the MI had a threefold higher mortality rate than those
receiving anti‑TNF‑α drugs. No correlation was found between severity or mortality rate
and TNF‑α inhibitors versus csDMARDs in this study [181]. However, these effects do not
apply to all patients, since Ljung et al. [184] showed that patients with low disease activity
(as assessed by DAS‑28)—referred to as responders—had a 50% lower rate of developing
acute coronary syndrome compared to non‑responders.

Insights on the effects of anti‑TNF‑α drugs on the lipid profile have conflicting re‑
sults. Some studies have reported a significant increase in TC, LDL‑C, HDL‑C, or ApoA1
and ApoB [185,186], while others have shown no effect on TC and its fractions or triglyc‑
erides [187,188] for adalimumab. There was no effect of adalimumab on cholesterol efflux
despite inhibiting cholesterol uptake in macrophages [188]. Infliximab, on the other hand,
seems to have greater effects on serum lipid levels, with most of the studies proving that
it can induce long‑lasting increases in TC, LDL‑C, HDL‑C, and triglycerides [189,190]. In
patients treated with golimumab and MTX, increases in TC, LDL‑C, and HDL‑C were ob‑
served compared to those receiving monotherapy with MTX [191], while for certolizumab
there are non‑specific data available [184,185]. As for etanercept, the ApoB/ApoA ratio
was significantly lower in responders among RA patients, while HDL‑C increased signifi‑
cantly, with these results demonstrating its favorable effects on the lipid profile [192]. No
significant change in LDL‑C or triglycerides was reported [192,193].

There is evidence that TNF‑α inhibitors have a positive effect on endothelial dysfunc‑
tion, although this has been observedmainly in patients without many cardiovascular risk
factors [194]. Improvements have also been seen in NO bioavailability and ROS produc‑
tion in patients treated with both infliximab and MTX [195]. Low levels of SAA [186] and
ADMA [196], along with reduced levels of inflammatory markers such as CRP, phospho‑
lipase A2, or fibrinogen, further help to improve cardiovascular risk.

Effects of anti‑TNF‑α therapy on arterial stiffness showed significant reduction for
adalimumab, etanercept, and infliximab after 8–56 weeks of follow‑up, independent of
other factors such as clinical response or age. The impact appeared to bemore pronounced
for the first two than for infliximab [197–199]. There were no effects reported on
cIMT [168,186,198], except for one study showing that anti‑TNF‑α therapymay be effective
in slowing the progression of cIMT, but this is dependent on the long‑term disease [200].
As for the impact on traditional cardiovascular risk factors, insulin resistance appeared to
improve with infliximab therapy [189]. Although there is evidence that patients receiving
TNF‑α inhibitors present a risk of developing arterial hypertension [201], many studies do
not show a direct correlation between them [187,190]. Nevertheless, monitoring BP during
bDMARDs should be part of the therapeutic management.

Regarding the risk of developing acute cardiovascular events, there is evidence show‑
ing that the risk for the occurrence of MACE is lower in patients treated with etanercept
compared to TCZ [202] or tofacitinib (a janus kinase inhibitor) [203], while another study
found no difference in the risk ofMACE between patients treatedwith tofacitinib andwith
adalimumab [204].

5.3. Anti‑CD20
In addition to previously described mechanisms involved in the pathogenesis of

atherosclerosis, B‑cell activation plays an important role by stimulating Th1, with a pro‑
atherogenic effect, and inhibiting IL‑17, with an anti‑atherogenic effect [205]. Both B1
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(by producing IgM antibodies) and B2 have been shown to promote atherosclerosis [206].
Moreover, B cells stimulate the production of different cytokines, such as IL‑6, IL‑8, IL‑10,
and TNF‑α [207]. Finally, anti‑CD20 treatment, through the consumption of B2 cells, slows
the progression of atherosclerosis [208]. There is some evidence demonstrating the poten‑
tial anti‑atherogenic role of anti‑CD20 treatment. Treatment with anti‑CD20 drugs in mice
led to decreased infarct area and improved cardiac remodeling [209].

Rituximab (RTX), a monoclonal CD20 antibody, works by depleting B2 cells. It has
been shown to be effective in the treatment of RA, by improving clinical symptoms and
slowing disease progression. RTX is a second‑line biologic agent, used in case of therapeu‑
tic failure of another bDMARD [152].

Significant increases in HDL‑C along with decreases in the ApoB/ApoA1 ratio (seen
as an atherogenic index) have been reported, while TC and triglycerides were increased
in two studies [210,211]. However, other studies showed no changes in HDL‑C or triglyc‑
erides, along with significant increases in TC and LDL‑C [169,210]. Due to conflicting find‑
ings, further studies are needed to elucidate the impact of RTX on lipid profiles.

There was no significant effect on B, or on PWV, as demonstrated in three
studies [169,212,213], although in one study an improvement in cIMT was observed [213].

Improved cardiovascular risk in patients treated with RTX may also result from re‑
duced inflammatory status, with studies showing decreases in CRP, VSH, DAS‑28 [211],
and SAA [210], as well as enhanced endothelial function [214].

According to the literature, the reduction in the risk of acute cardiovascular events
such as MIs using RTX is similar to that from using anti‑TNF‑α drugs [215].

5.4. Anti‑CD80/86
As described in Section 3, T cells play a pivotal role in the immune response in native

atherosclerosis. Abatacept (whose mechanism of action is described in Table 2) shows
strong clinical promise for cardiovascular risk prevention, since T‑cell CD28‑CD80/86 co‑
stimulation is essential for accelerated atherosclerosis [216].

Assessing factors that influence cardiovascular risk, studies have not reported changes in
TC, triglycerides, LDL‑C, orHDL‑C levels for abatacept [169,217]. There is one study showing
an increase in LDL‑C [218], while there two showing improvements in HDL‑C, both quanti‑
tatively and qualitatively [218,219]. No significant modification in cIMT [169,220] or BP [169]
was observed, while BMI showed an upward trend; however, insulin sensitivity appeared
to be improved [221].

Compared to other bDMARDs—specifically, to TNF‑α inhibitors—abatacept demon‑
strated better cardioprotective effects [172,222]. Jin et al., in their review [220], noted that
patients treated with abatacept had a 28% lower risk of MACE compared with anti‑TNF‑α
therapy and a 36% increased risk of MACE compared with those starting TCZ; neverthe‑
less, only the composite outcome showed this effect of TCZ. In another study, this charac‑
teristic was only found in patients with diabetes mellitus [223].

6. Conclusions
Cardiovascular risk is significantly increased in RA patients, as shown by a meta‑

analysis of 17 studies including 124,894 RA patients, which confirmed the increased risk of
MI or stroke [224]. EULAR recommends that in patients with a disease duration of more
than 10 years, positive RF and/or ACPA, and extra‑articular manifestations, the cardiovas‑
cular risk should be multiplied by 1.5‑fold. Increased cardiovascular risk in these patients
cannot be explained by the presence of traditional cardiovascular risk factors alone. RA
has been shown to be an independent risk factor for CVD, and increased inflammatory
status leads to accelerated atherosclerosis.

In addition to disease control, optimal management of RA patients also requires con‑
trol of inflammation and cardiovascular risk factors. Since RA patients’ risk of MI is 70%
higher, and sudden death is more common among them than in the general population,
atherosclerosis should be the target of therapies aimed not only at achieving remission,
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but also at reducing cardiovascular risk. Cardiovascular risk reduction in this group of
patients is still an unmet need, although both favorable and adverse effects of the widely
used therapies are known. Early initiation of biological therapy, with longer and continu‑
ous use, has been shown to reduce cardiovascular morbidity and mortality in RA patients.
However, whether biological therapy exerts cardioprotective and anti‑atherosclerotic ef‑
fects beyond reducing inflammation remains to be demonstrated. The impact of different
bDMARDs on BP control, metabolic syndrome or BMI, endothelial function, and arterial
stiffness or atherosclerotic plaques is uncertain and opens up new research perspectives.

In conclusion, further studies are needed in order to detect the subgroup of RA pa‑
tients requiring additional CVD screening and/or aggressive primary prevention. Future
prospective clinical trials are warranted in order to identify accessible biomarkers that can
predict ASCVD in RA patients. Moreover, studies leading to the implementation of valid,
easy‑to‑perform and ‑interpret risk scores in cardiovascular risk assessment are required.

The key points of this article are as follows:
□ RA patients are complex patients requiring a multidisciplinary approach, especially

because the interaction between traditional cardiovascular risk factors and disease‑
specific inflammation increases cardiovascular risk.

□ RA patient management involves the following:
■ Caution when prescribing medication that contributes to increased cardiovas‑

cular risk (e.g., COX‑2 inhibitors, glucocorticoids, leflunomide);
■ Management of cardiovascular risk factors (i.e., antihypertensive and hypolipi‑

demic treatment should be administered according to current guidelines);
■ Induction of disease remission and optimal control of systemic inflammation;
■ Quantifying cardiovascular risk and detecting early atherosclerosis;
■ Early implementation of targeted bDMARDs in selected patients.
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