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Abstract: Colorectal cancer (CRC) is one of the most common cancers worldwide. Its main modifiable
risk factors are diet, alcohol consumption, and smoking. Thus, the right approach through lifestyle
changes may lead to its prevention. In fact, some natural dietary components have exhibited
chemopreventive activity through modulation of cellular processes involved in CRC development.
Although cancer is a multi-factorial process, the study of post-translational modifications (PTMs) of
proteins associated with CRC has recently gained interest, as inappropriate modification is closely
related to the activation of cell signalling pathways involved in carcinogenesis. Therefore, this review
aimed to collect the main PTMs associated with CRC, analyse the relationship between different
proteins that are susceptible to inappropriate PTMs, and review the available scientific literature on
the role of plant-based dietary compounds in modulating CRC-associated PTMs. In summary, this
review suggested that some plant-based dietary components such as phenols, flavonoids, lignans,
terpenoids, and alkaloids may be able to correct the inappropriate PTMs associated with CRC and
promote apoptosis in tumour cells.
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1. Introduction

Colorectal cancer (CRC) is currently the second type of cancer with the highest mortal-
ity rate in the population according to Global Cancer Statistics 2020 [1]. Metastatic CRC has
a poor prognosis, with less than a 15% of five-year survival rate [2]. Its carcinogenesis is a
process of many years of development and some early life risk factors are important con-
tributors [3]. Among them, cigarette smoking, obesity, and a sedentary lifestyle are closely
related to CRC incidence [4,5]. However, its quickly increasing incidence is mainly due to
lifestyle westernization associated with changes in dietary behaviour such as heavy alcohol
consumption and diets rich in sugars, saturated fats, and red and processed meat [6]. Thus,
some protective lifestyle factors against CRC include a diet rich in minerals and vitamins,
dairy, dietary fibre, fish, vegetables, and fruits. An alternative strategy for CRC prevention
is the use of a chemopreventive supplement providing greater individual exposure to some
nutrients than can be obtained from the diet (such as phytochemicals) [7].

The pathogenesis of CRC is a complex multi-stage process which includes gut micro-
biota imbalances, cell DNA disruption, and carcinogenic signalling pathways activation [8].
The aetiology underlying the mechanism of action of specific nutrients in CRC has been
mainly attributed to their anti-inflammatory and antioxidant properties, and their modula-
tion of gut microbiota populations, maintaining gut homeostasis and regulating the host
immune response [9,10]. However, their effects on epigenetic modulation associated with
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CRC pathogenesis remains unknown. There is increasing evidence that the disruption of
epigenetic control over gene expression has an important role in carcinogenesis [11–14]. To-
gether with non-coding RNAs and DNA methylation, histone and protein post-translational
modifications (PTMs) have an important role in carcinogenesis and gene regulation [15,16].
PTMs occur once the mRNA has been translated into the protein sequence in the ribo-
somes and produce marginal chemical modifications to lipoproteins and native proteins.
Among these modifications, PTMs may mark proteins for degradation, inhibit or promote
interactions with other proteins, redirect cellular protein localization, and modify enzyme
activity [17,18]. Most PTMs are reversible, so normal cells use them as a switch to control
proliferating or quiescent cells [19]. The role of PTMs in the onset and progression of
diseases such as cancer has been investigated. Their involvement in the process of carcino-
genesis could be due to their function in processes such as the cell cycle, cell survival, and
cell proliferation [20]. Therefore, PTM-focused analysis of enzyme phosphorylation and
the involvement of protein kinases in cancer formation and progression have led to the use
of PTM-based therapeutic approaches (i.e., tyrosine kinase inhibitors) [21,22]. Furthermore,
in the case of CRC, PTMs develop key role-playing as a tight junction protein and regulate
the epithelial barrier function [23,24]. Thus, PTMs may be essential to work with the exter-
nal impact and could provide an excellent opportunity for intervention through feeding
and promoting clinical strategies for CRC patients regarding predictive, preventive, and
personalized medicine. Overall, the aims of this article were (1) to summarize the main
PTMs involved in CRC development; (2) to identify the connection between the main PTMs
involved in CRC via the Search Tool for the Retrieval of Interacting Proteins 11 (STRING
11) [25]; and (3) to review the plant-based dietary components that can modulate these
modifications.

2. Post-Translational Modifications in Colorectal Cancer

PTMs are protein-specific modifications that control many physiological processes to
ensure the dynamic and quick response of cells to intracellular and extracellular stimuli [26].
Any proteome protein may be modified post-translationally or during translation. These
reversible modifications may alter not only the protein’s stability, conformation, and charge
state, but also its function modulating its intracellular conformation, its interactions, and
the life span of the target protein [27]. In some cases, PTMs are inadequate and modulate
positively some signal transduction pathways that are involved in tumourigenesis regula-
tion and cancer development [28]. To date, more than 450 unique protein modifications
have been described, including ubiquitination, acylation, SUMOylation, methylation, and
phosphorylation [29]. In the case of CRC, the most important modifications involved have
been summarized below (Figure 1).

2.1. SUMOylation

Small ubiquitin-like modifiers (SUMO) are covalently attached to lysine residues [30].
The downregulated SUMOylation in lysine 138 of Rho GDP-dissociation inhibitor 1 has
been observed in CRC cell lines (Table 1). This protein is involved in Rho GTPases signalling
regulation [31].

2.2. Glycosylation

A carbohydrate is attached to specific proteins. In mammals, there are two types:
(1) O-glycosylation, where glycosyl groups are connected to tyrosine, hydroxylysine, ser-
ine, or threonine side chains with glycosidic linkages by glycosyltransferases, and (2) N-
glycosylation, where glycosyl groups are connected to Asn side chains with amide linkages
by oligosaccharyltransferase [32,33]. The upregulation of this PTM in complement decay-
accelerating factor and cathepsin B has been identified in tumour tissue samples of CRC
patients (Table 1) [34,35].
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Figure 1. Schematic representation of the main post-translational modifications in colorectal cancer.
Below each post-translational modification is a list of the identified proteins that suffer inappropriate
post-translational modifications associated with colorectal cancer.

2.3. O-GlcNAcylation

There is a covalent attachment of N-acetylglucosamine residue O-linked to the hy-
droxyl group of threonine and serine residues of multiple cytosolic and nuclear pro-
teins [36,37]. The upregulation of O-GlcNAcylation in ATP-dependent RNA helicase
DDX5 has been associated with CRC in cell lines and murine models (Table 1) [38].

2.4. Ubiquitination

There is an attachment of ubiquitin molecules to the lysine residue of the substrate
proteins. This process is based on an enzymatic cascade of ubiquitin-activating, ubiquitin-
conjugating, and ubiquitin-ligase enzymes [39,40]. There have been two ubiquitination-
susceptible proteins identified that are related to CRC (Table 1): (1) caspase homolog that is
an apoptosis regulator [41] and (2) histone H2A type 1 that is involved in chromosomal
stability, DNA replication, and DNA repair [42].

2.5. Methylation

Methylation occurs mainly in arginine or lysine residues. One of the most biologically
important roles of methylation is in histone modification [43]. Among the different proteins
that suffer dysregulated post-translational methylation associated with CRC (Table 2), the
one that is involved in cell growth suppression has downregulated methylation (putative
insulin-like growth factor 2 antisense gene protein) [44,45]. The other proteins identified
have an upregulated methylation, among them are (1) BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3 that is involved in apoptosis [46]; (2) homeobox protein
CDX-2 that is involved in the transcriptional regulation of different genes expressed in
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the intestine [47]; (3) C-X-C motif chemokine 14 that is involved in immunoregulatory
and inflammatory processes [48]; (4) transcription factor E2F1 that participates in the cell
cycle [49]; (5) DNA mismatch repair protein Mlh1 that participates in DNA repair [50];
(6) nuclear factor NF-kappa-B p105 subunit that is a pleiotropic transcription factor involved
in several signal transduction events which are initiated by stimuli such as oxidative stress
or inflammation [51]; and (7) 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 that
is an essential protein for cell cycle progression and apoptosis prevention [52].

Table 1. Post-translational glycosylation, O-GlcNAcylation, SUMOylation, and ubiquitination associ-
ated with CRC.

Protein Name Gene Name PTM PTM Site Type Ref

Rho GDP-dissociation
inhibitor 1 ARHGDIA SUMOylation K138 Downregulated [31]

Complement
decay-accelerating factor CD55 O-linked

glycosylation NA Upregulated [34]

Cathepsin B CTSB Glycosylation NA Upregulated [35]

Probable ATP-dependent
RNA helicase DDX5 DDX5 O-

GlcNAcylation NA Upregulated [38]

Caspase homolog CFLAR Ubiquitination K195 Upregulated [41]

Histone H2A type 1 HIST1H2AG Ubiquitination NA Upregulated [42]

NA: data not available; K: lysine.

Table 2. Post-translational methylation associated with CRC.

Protein Name Gene Name PTM Site Type Ref

BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3 BNIP3 NA Upregulated [53]

Homeobox protein CDX-2 CDX2 NA Upregulated [54]

C-X-C motif chemokine 14 CXCL14 T72 Upregulated [55]

Transcription factor E2F1 E2F1 K109/111/113 Upregulation [56]

Putative insulin-like growth factor 2
antisense gene protein IGF2-AS NA Downregulated [45]

DNA mismatch repair protein Mlh1 MLH1 NA Upregulated [57]

Nuclear factor NF-kappa-B
p105 subunit NFKB1 K218/221 Upregulated [58]

6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase 3 PFKFB3 R131/134 Upregulated [59]

NA: data not available; K: lysine; R: arginine.

2.6. Phosphorylation

Phosphorylation is the most prevalent and widely studied type of PTM. It is inversely
regulated by phosphatases and protein kinases in the amino acids’ hydroxyl tyrosine,
threonine, or serine [32,60]. In the case of CRC, inadequate PTMs have been identified in
the following proteins (Table 3): (1) acidic leucine-rich nuclear phosphoprotein 32 family
member A that is involved in cell growth [61]; (2) COP9 signalosome complex subunit 5
that develops an important role in the degradation of cyclin-dependent kinase inhibitor [62];
(3) eukaryotic translation initiation factor 2 subunit 1 that is a translation initiation fac-
tor [63]; (4) ephrin type-A receptor 1 and ephrin type-B receptor 2 that are members of the
ephrin receptor subfamily of the protein tyrosine kinase family [64]; (5) receptor tyrosine-
protein kinase erbB-2 that is a member of the epidermal growth factor receptor family [65];
(6) heat shock protein beta-1 which plays an important role in cancer cells proliferation [66];
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(7) tyrosine-protein kinase JAK1 that is a tyrosine kinase of the non-receptor type [67];
(8) mitogen-activated protein kinase 1, 3, and 14 that are serine/threonine kinases that are
essential components of the MAP kinase signal transduction pathway [68–71]; (9) dual
specificity mitogen-activated protein kinase kinase 1 which acts as an essential component
of the MAP kinase signal transduction pathway [72]; (10) macrophage-stimulating protein
receptor that is a tyrosine kinase receptor [73]; and (11) merlin that plays a pivotal role in
tumour suppression through apoptosis promotion [74].

Table 3. Post-translational phosphorylation associated with CRC.

Protein Name Gene Name Type Ref

Acidic leucine-rich nuclear phosphoprotein
32 family member A ANP32A Upregulated [61]

COP9 signalosome complex subunit 5 COPS5 Downregulated [62]

Eukaryotic translation initiation factor 2 subunit 1 EIF2S1 Upregulated [63]

Ephrin type-A receptor 1 EPHA1 Upregulated [64]

Ephrin type-B receptor 2 EPHB2 Upregulated [64]

Receptor tyrosine-protein kinase erbB-2 ERBB2 Upregulated [65]

Heat shock protein beta-1 HSPB1 Upregulated [66]

Tyrosine-protein kinase JAK1 JAK1 Upregulated [67]

Mitogen-activated protein kinase 1 MAPK1 Upregulated [69]

Mitogen-activated protein kinase 3 MAPK3 Upregulated [68–70]

Mitogen-activated protein kinase 14 MAPK14 Upregulated [71]

Dual specificity mitogen-activated protein kinase
kinase 1 MAP2K1 Upregulated [72]

Macrophage-stimulating protein receptor MST1R Upregulated [73]

Merlin NF2 Downregulated [74]

Table 4 summarizes the inadequate post-translational serine, threonine, and tyro-
sine phosphorylation in proteins that have been associated with CRC. With regards to
phosphorylation, the main affected proteins and their functions are the following (Table 4).

2.7. Serine Phosphorylation

Serine phosphorylation includes proto-oncogene c-Ak and Fos-related antigen 1 that
regulates many processes including proliferation cell survival, growth, and angiogene-
sis [75,76]; apoptosis regulator Bcl-2 that is a regulator of apoptosis [77]; COP9 signalosome
complex subunit 6 which is a component of the COP9 signalosome complex [78]; ELAV-like
protein 1 that stabilizes mRNAs and regulates gene expression [79]; fascin-2 that acts as an
actin bundling protein [80]; histone H3.1 which plays a central role in transcription regula-
tion and DNA repair [81]; Kirsten rat sarcoma virus which is involved in the propagation
of growth factors [82]; MAP kinase kinase 4 and 5 that are dual specificity protein kinase
which act as an essential component of the MAP kinase signal transduction pathway [83,84];
NFKB1 and NFKB3 which are pleiotropic transcription factors involved in several signal
transduction [85,86]; PHD finger protein 20 that contributes to p53 stabilization after DNA
damage [87]; cellular tumour antigen p53 that acts as a tumour suppressor [88]; nuclear
receptor ROR-alpha which is a key regulator of glucose metabolism [89]; sirtuin 1 that is an
intracellular regulatory protein [90]; DNA topoisomerase 1 that releases the supercoiling
tension of DNA introduced during the DNA replication [91]; tropomyosin-1 which is a
member of the tropomyosin family of highly conserved proteins [92]; TP53-regulating
kinase which is a protein kinase that phosphorylates ‘Ser-15’ of p53/TP53 protein [93];
SUMO-protein ligase that is essential for nuclear architecture and chromosome segrega-
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tion [94]; and vimentin which is responsible for maintaining cell shape and stabilizing
cytoskeletal interactions [95].

Table 4. Post-translational serine, threonine, and tyrosine phosphorylation associated with CRC.

Protein Gene Name PTM Site Type Ref

Serine Phosphorylation

Proto-oncogene c-Akt AKT1 S473 Upregulated [75]

Apoptosis regulator Bcl-2 BCL2 S87 Upregulated [77]

COP9 signalosome complex subunit 6 COPS6 S148 Upregulated [78]

ELAV-like protein 1 ELAVL1 S318 Upregulated [79]

Fos-related antigen 1 FOSL1 S252; S265 Upregulated [76]

Fascin-2 FSCN2 S39 Upregulated [80]

Histone H3.1 HIST1H3A S28 Upregulated [81]

Kirsten rat sarcoma virus KRAS S181 Upregulated [82]

MAP kinase kinase 4 MAP2K4 S257 Upregulated [83]

MAP kinase kinase 5 MAP2K5 S311 Upregulated [84]

Nuclear factor NF-kappa-B p105 subunit NFKB1 S536 Upregulated [85]

Nuclear factor NF-kappa-B p65 subunit NFKB3 S276 Upregulated [86]

PHD finger protein 20 PHF20 S291 Upregulated [87]

Cellular tumour antigen p53 P53 S15 Upregulated [88]

Nuclear receptor ROR-alpha RORA S35 Downregulated [89]

Sirtuin 1 SIRT1 S27 Upregulated [90]

DNA topoisomerase 1 TOP1 S506 Upregulated [91]

Tropomyosin-1 TPM1 S283 Upregulated [92]

TP53-regulating kinase TP53RK S250 Upregulated [93]

SUMO-protein ligase UBE2I S71 Upregulated [94]

Vimentin VIM S72 Upregulated [95]

Threonine Phosphorylation

Aurora kinase B AURKB T232 Upregulated [96]

Probable ATP-dependent RNA helicase DDX5 DDX5 T564/446 Upregulated [97]

ETS domain-containing protein Elk-1 ELK1 T417 Upregulated [98]

Dual specificity mitogen-activated protein kinase kinase 4 MAP2K4 T261 Upregulated [83]

MAP kinase kinase 5 MAP2K5 T315 Upregulated [84]

5’-AMP-activated protein kinase catalytic subunit alpha-1 PRKAA1 T183 Downregulated [99]

Tyrosine Phosphorylation

Breast cancer anti-estrogen resistance protein 1 BCAR1 Y12; Y128 Upregulated [100,101]

Caveolin-1 CAV1 Y14 Upregulated [102]

Leptin receptor LEPR Y1141 Upregulated [103]

Peroxisome proliferator-activated receptor gamma PPARG Y102 Upregulated [104]

Serine/threonine-protein phosphatase 2A catalytic subunit
alpha isoform PPP2CA Y307 Upregulated [105]

Focal adhesion kinase 1 PTK2 Y397; Y407; Y925 Downregulated [106,107]

Protein tyrosine phosphatase type IVA 3 PTP4A3 Y53 Upregulated [108]

Paxillin PXN Y88 Upregulated [109]

Proto-oncogene tyrosine-protein kinase Src SRC Y419 Upregulated [110]

Signal transducer and activator of transcription 3 STAT3 Y705 Upregulated [111,112]

Signal transducer and activator of transcription 5A STAT5A Y694 Downregulated [113]

S: serine; T: threonine; Y: tyrosine.
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2.8. Threonine Phosphorylation

Threonine phosphorylation includes Aurora kinase B which is a serine/threonine-
protein kinase component of the chromosomal passenger complex [96]; probable ATP-
dependent RNA helicase DDX5 which is involved in the alternative regulation of pre-
mRNA splicing [97]; ETS domain-containing protein Elk-1 which is a transcription factor
that binds to purine-rich DNA sequences [98]; dual specificity mitogen-activated protein
kinase kinase 4 which is an essential component of the MAP kinase signal transduction
pathway [83]; MAP kinase kinase 5 that acts as a scaffold for the formation of a ternary
MAP3K2/MAP3K3-MAP3K5-MAPK7 signalling complex [84]; and 5′-AMP-activated pro-
tein kinase catalytic subunit alpha-1 which is the catalytic subunit of AMP-activated protein
kinase that plays a key role in regulating cellular energy metabolism [99].

2.9. Tyrosine Phosphorylation

Tyrosine phosphorylation includes breast cancer anti-estrogen resistance protein 1
which plays a central role in cell adhesion [100,101]; caveolin-1 that act as a scaffolding
protein within caveolar membranes [102]; leptin receptor that mediates leptin central and
peripheral effects [103]; peroxisome proliferator-activated receptor gamma that is a nuclear
receptor [104]; serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform
which is the major phosphatase for microtubule-associated proteins [105]; focal adhesion
kinase 1 which is a non-receptor protein-tyrosine kinase that plays an essential role in
regulating cell migration and apoptosis [106,107]; protein tyrosine phosphatase type IVA 3
that stimulates progression from G1 into S phase during mitosis [108]; paxillin which is a
cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the
extracellular matrix [109]; proto-oncogene tyrosine-protein kinase Src that is a non-receptor
protein tyrosine kinase [110]; signal transducer and activator of transcription 3 which
mediates cellular responses to interleukins and other growth factors [111,112]; and signal
transducer and activator of transcription 5A that is involved in signal transduction and
activation of transcription [113].

3. Relationship between Post-Translational Modifications Associated with
Colorectal Cancer

The results of the analysis showed that there were several interactions between some
of the proteins susceptible to inappropriate PTMs associated with CRC (Figure 2).

This analysis showed that there were strong interactions between TP53, AKT1, STAT3,
STAT5A, JAK1, MAPK1, MAPK14, MAP2K1, and SRC. In fact, this network had signifi-
cantly more interactions than expected, which means that proteins have more interactions
among themselves than what would be expected from a random set of proteins, demon-
strating that the proteins may be partially biologically connected as a group. This group
of proteins is mainly involved in the PI3K-Akt, EGF-EFGR, MAPK, and VEGFA-VEGFR2
signalling pathways. On the one hand, PI3K-Akt is the classical signalling pathway in-
volved in glucose metabolism that promotes cancer metabolic reprogramming by elevation
of aerobic glycolysis (known as the “Warburg effect”) [114,115]. Both EGF-EGFR and
MAPK signalling pathways are involved in proliferation, differentiation, and apoptosis.
Its regulation in cancer cells allows the maintenance of proliferative signalling, promoting
cancer cell survival [60,116]. On the other hand, VEGF and its receptors (such as VEGFR2)
develop an important role in tumour-associated angiogenesis. This process is essential for
tumour progression because it favours oxygen and nutrient uptake by cancer cells [117,118].
Therefore, the main PTMs identified in CRC are involved in cancer progression and cancer
cell survival. The next step was to identify how the inadequate PTMs in these proteins
associated with CRC may be modulated by plant-based dietary components.
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Figure 2. Protein–protein interaction network. Coloured nodes in green: proteins involved in the
VEGFA-VEGFR2 signalling pathway. Coloured nodes in blue: proteins involved in the EGF-EFGR
signalling pathway. Coloured nodes in red: proteins involved in the MAPK signalling pathway.
Coloured nodes in yellow: proteins involved in the PI3K-Akt signalling pathway. Coloured nodes
in grey: proteins that are not involved in any of the signalling pathways mentioned above. Edges
represent protein–protein associations. Pink line: association experimentally determined. Blue line:
association determined from curated databases. Purple line: protein homology.

4. Nutrigenomic Effects of Plant-Based Dietary Components on Protein
Post-Translational Modifications Associated with Colorectal Cancer

The available scientific literature showed several plant-based dietary components that
may modulate CRC-associated PTMs (Table 5). These components can be grouped accord-
ing to bioactive compounds as follows: phenols, flavonoids, lignans, terpenoids/alkaloids,
vitamins, phytochemicals, and plant extracts.

Among the different articles shown in Table 5, 39% of the studies evaluated PTMs in
STAT3, 18% of the studies measured PTMs in AKT, 18% of the studies analysed PTMs in
p53, 9% of the studies measured PTMs in ERK, and the rest of the studies analyzed PTMs
in other proteins such as AMPK, BCL2, CDX2, EGFR, JAK2, EphA1, EphB2, PI3K, SCR,
MLH1, and Nf-Kβ. All the studies referred to post-translational phosphorylation, and four
of them also mentioned post-translational ubiquitination, acetylation, and methylation.
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Table 5. Effects of plant-based dietary components on PTMs associated with CRC.

Dietary Component PTM Target Ref

Phenols

Coumarins (8-methoxypsoralen) ↓ Phosphorylation AKT1(Thr308) [119]

Coumarins (fraxetin) ↓ Phosphorylation STAT3 (Tyr 705); JAK2
(Tyr1007/1008) [120]

Curcumin ↓ Phosphorylation STAT3 [121]

Curcumin ↑ Ubiquitination SIRT1 [122]

Resveratrol ↓ Phosphorylation AKT1 [123]

Resveratrol ↓ Phosphorylation STAT3 (Tyr 705, Ser727) [124]

Resveratrol ↓ Phosphorylation AKT1/AKT2 [125]

Polyphenols from lemon peel ↓ Phosphorylation STAT3 (Ser 727) [126]

Polyphenols from grape pomace ↑ Phosphorylation
↓ Methylation

P53 (Ser 20)
CDX2 (5mC) [127]

Polyphenols from grape seeds ↓ Phosphorylation STAT3 [128]

Polyphenols from Annurca apple ↓ Methylation MLH1 [129]

Olea europaea extract
↓ Phosphorylation
↓ Phosphorylation
↑ Phosphorylation

STAT3
ERK1
P53

[130]

Extra virgin olive oil ↓ Phosphorylation STAT3 (Tyr 705) [131]

Flavonoids

Apigenin ↑ Phosphorylation P53 (Ser15, Ser37) [132]

Apigenin ↓ Phosphorylation STAT3 (Tyr 705) [133]

Baicalein ↓ Phosphorylation STAT3 (Tyr 705) [134]

Berry anthocyanidins ↓ Phosphorylation SCR; EGFR [135]

Blackberry anthocyanidins ↓ Phosphorylation STAT3 [136]

Delphinidin ↓ Phosphorylation STAT3 (Tyr 705) [137]

Delphinidin ↓ Phosphorylation NF-kβ3 (Ser536) [138]

Luteolin ↑ Phosphorylation P53 (Ser 15) [139]

Quercetin ↓ Phosphorylation PI3K; AKT [140]

Sappanchalcone ↑ Phosphorylation P53 [141]

Silibinin ↓ Phosphorylation STAT3 [142]

Wogonin ↑ Phosphorylation
↑ Acetylation

P53 (Ser15)
P53 (Lys380) [143]

6,8-Diprenylorobol ↑ Phosphorylation P53 (Ser15, Ser20, Ser46) [144]

Lignans

Secoisolariciresinol diglucoside ↓ Phosphorylation PI3K; AKT1 [145]

Sesamin ↓ Phosphorylation EphA1; EphB2 [64]

Terpenoids/Alkaloids

Berberine ↓ Phosphorylation STAT3 [146]

Berberine ↑ Phosphorylation AMPK (Thr 172) [147]

Berberine ↓ Phosphorylation STAT3 (Tyr 705); JAK2 [148]

Carnosic acid ↓ Phosphorylation STAT3 (Tyr 705); JAK2; SCR [149]

Costunolide ↑ Phosphorylation P53 (Ser15) [150]
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Table 5. Cont.

Dietary Component PTM Target Ref

Evodiamine ↑ Phosphorylation P53 [151]

Ginsenoside Rh2 (Ginseng) ↓ Phosphorylation STAT3 [152]

Harmine ↓ Phosphorylation AKT1 (Thr308, Ser473) [153]

Ophiopogonin D ↓ Phosphorylation AKT (S473) [154]

Ursolic acid ↓ Phosphorylation STAT3 (Tyr 705); JAK2
(Tyr1007/1008) [155]

Vitamins

Folic acid ↓ Phosphorylation ERK1/2; SRC (Tyr416) [156]

Phytochemicals

Luteolin ↓ Phosphorylation AKT1 (Ser473) [157]

Lycopene ↓ Phosphorylation AKT [158]

Thymoquinone ↓ Phosphorylation EGFR (Y1173); STAT3 (Tyr
705); JAK2 [159]

Plants extracts

Cordyceps militaris ↓ Phosphorylation ERK1/2 (Tyr 202/Tyr 204) [160]

Dioscorea bulbifera ↓ Phosphorylation ERK1/2 (Tyr 202/Tyr 204) [161]

Foxtail millet (Setaria italica) cereal ↓ Phosphorylation STAT3 [162]

Fresh tubers of Sagittaria trifolia L. ↓ Phosphorylation NF-kβ3 [163]

Iodine-biofortified lettuce extracts ↓ Phosphorylation BCL2 [164]

Mesua Assamica Kosterm extract ↓ Phosphorylation STAT3; NF-kβ3 [165]

Nigella sativa ↓ Phosphorylation ERK1 [166]

Paejangsan, Coix seed, and Mori Cortex ↓ Phosphorylation STAT3 (Tyr 705) [167]

Pharbitis semen seeds ↓ Phosphorylation AKT [168]

Trichosanthes kirilowii seeds ↓ Phosphorylation AKT (Ser473); ERK1
(Thr202/Tyr204) [169]

Withania somnifera ↓ Phosphorylation STAT3 [170]

FER: feruloylacetone; 5mC: 5-methylcytosine. ↑: upregulation; ↓: downregulation.

The PTMs induced by plant-based dietary components mainly consist of modulating
those modifications observed in CRC (Figure 3). Concerning STAT3, tyrosine phospho-
rylation (Tyr 705) was upregulated in CRC. Several articles showed that some phenols,
flavonoids, terpenoids, alkaloids, phytochemicals, and plant extracts were able to down-
regulate not only this phosphorylation but also STAT3 serine phosphorylation (Ser 727)
in some cases [120,121,124,130]. Some of them are also involved in reduced phosphoryla-
tion of JAK2, which is upregulated in CRC [120,148,149,155,159]. Both proteins form the
JAK/STAT signalling pathway, which has an important role in cytokine receptor signalling.
In response to cytokines, its activation promotes immune cell division, survival, activation,
and recruitment. This pathway not only participates in the immune response but also in
the transcription of several genes involved in cell division and apoptosis regulation such as
BCL2 [171,172].

In the case of AKT, serine phosphorylation (S473) was upregulated in CRC. Some
studies revealed that harmine [151], ophiopogonin D [154], and luteolin [157] were able to
downregulate this specific serine phosphorylation, while others such as coumarins [119],
resveratrol [125], quercetin [140], secoisolariciresinol diglucoside [145], lycopene [158], and
some plant extracts decrease protein phosphorylation [168,169]. Similarly, in PI3K and
BCL2 proteins, quercetin, secoisolariciresinol diglucoside, and iodine-biofortified lettuce
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extract downregulated their phosphorylation, respectively [140,145,164]. On the other hand,
delphinidin [136] and two different plant extracts [163,165] reverse carcinogen-induced
phosphorylation of NF-kβ3 (Ser536). These proteins interact within the same pathway. The
PI3K/AKT pathway participates in the modulation of cellular metabolism, cell growth, and
apoptosis. PIK3K produces conformational changes and phosphorylation of AKT protein,
inducing its activation. This cascade triggered the activation of NF-κB by enhancing the
transcriptional activity of the p65 subunit, leading to apoptosis inhibition [173]. Likewise,
the PI3K/AKT signalling pathway promotes the upregulation of Bcl-2 expression, which is
considered an oncogene that inhibits apoptosis [174]. This suggests that plant-based dietary
components may promote cancer cell apoptosis through downregulating AKT, PI3K, BCL2,
and NF-kβ phosphorylation.
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colorectal cancer. The first box lists the main signalling pathways that may be modulated through post-
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MAPK, and PI3K/AKT/mTOR signalling pathways are shown. The second box lists the main groups
of bioactive compounds with modulatory activity on post-translational modifications. Arrow: promotes
protein post-translational modification; no arrow: inhibits protein post-translational modification.
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Another of the main proteins identified that can be modulated by plant-based dietary
components is P53. This is considered a tumour suppressor involved in processes such
as apoptosis, senescence, DNA repair, and cell cycle arrest [175]. The P53 pathway is
activated against stress signals such as DNA damage. In response to this, P53 suffers from
PTM and promotes the transcription of genes involved in cell response against stress [175].
These PTMs are mainly phosphorylation that is downregulated in CRC. However, several
studies have shown that some plant-based dietary components such as phenols, flavonoids,
terpenoids, and alkaloids could reverse it [123,126,128,135,137,139,140,146,147].

Concerning ERK1 and ERK2, both are part of a structurally related kinases family
(MAPKs), whose signalling mechanism depends on an activating phosphorylation cas-
cade. ERKs are central regulators of essential cellular functions such as cell differentiation,
proliferation, migration, growth, survival, and metabolism [176]. Both proteins have post-
translational phosphorylation upregulated in CRC, favouring cancer cell survival. As it
has been shown in Table 5, some plant-based dietary components may downregulate their
post-translational phosphorylation [130,156,160,161,166,169].

It is important to highlight that, due to the lack of human studies, the present review is
focused on studies conducted in cells and murine models. Therefore, these findings cannot
be transferable to other species. Future studies should address the connection between
the modulation of PTMs associated with CRC elicited by plant-based dietary components
in patients.

5. Conclusions

The available literature data suggest that different plant-based dietary components
such as phenols, flavonoids, lignans, terpenoids, and alkaloids could prevent CRC develop-
ment by targeting several molecular mechanisms such as the P53, JAK/STAT, PI3K/AKT,
and ERK/MAPK pathways and affecting tumour behaviour through PTMs’ modulation in
cell lines and murine models. The different signalling pathways affected during CRC de-
velopment are mainly involved in cancer cell survival, and the main effects of plant-based
dietary components are to promote apoptosis in tumour cells. Therefore, this could be a
very interesting target for investigating the effect of supplementation based on these com-
ponents as an adjuvant to chemotherapeutic, radiotherapeutic, and immunotherapeutic
treatment in clinical trials. These findings will highlight the potential for precision nutrition
strategies and the development of personalized nutritional plans in CRC treatment and
may even serve as a basis for the development of dietary supplementation formulations for
these patients to improve their prognosis and disease-free survival.
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