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Abstract: There are no theorems (proven theories) in the biological sciences. We propose that the
3 31 nt minihelix tRNA evolution theorem be universally accepted as one. The 3 31 nt minihelix
theorem completely describes the evolution of type I and type II tRNAs from ordered precursors
(RNA repeats and inverted repeats). Despite the diversification of tRNAome sequences, statistical
tests overwhelmingly support the theorem. Furthermore, the theorem relates the dominant pathway
for the origin of life on Earth, specifically, how tRNAomes and the genetic code may have coevolved.
Alternate models for tRNA evolution (i.e., 2 minihelix, convergent and accretion models) are falsified.
In the context of the pre-life world, tRNA was a molecule that, via mutation, could modify anticodon
sequences and teach itself to code. Based on the tRNA sequence, we relate the clearest history to date
of the chemical evolution of life. From analysis of tRNA evolution, ribozyme-mediated RNA ligation
was a primary driving force in the evolution of complexity during the pre-life-to-life transition. TRNA
formed the core for the evolution of living systems on Earth.

Keywords: accretion model; convergent evolution model; divergent evolution model; folding of first
proteins; genetic code evolution; origin of life; pseudosymmetry; ribozyme/primitive catalyst RNA
ligation; type I and type II tRNA evolution

1. Evolution of TRNA

A number of models have been advanced to describe tRNA evolution. We have
advanced the 3 31 nt minihelix theorem [1–3]. To support minihelix replication in pre-life,
3 31 nt minihelices were joined by ligation. The D loop 31 nt minihelix had the sequence
GCGGCGG_UAGCCUAGCCUAGCCUA_CCGCCGC (the _ separates distinct sequence
features). The D loop minihelix is a 7 nt GCG repeat (5′-acceptor stem) linked to a 17 nt
UAGCC repeat (D loop minihelix core) linked to a 7 nt CGC repeat (3′-acceptor stem). The
anticodon loop and the T loop 31 nt minihelices were probably initially identical, with the
sequence GCGGCGG_CCGGG_CU/???AA_CCCGG_CCGCCGC (/ indicates a U-turn;
? indicates A, G, C or U (the pre-life base remains unknown)). This is a 7 nt GCG repeat
(5′-acceptor stem) linked to a 17 nt stem-loop-stem (CCGGG_CU/???AA_CCCGG) linked
to a 7 nt CGC repeat (3′-acceptor stem). The only pre-life sequence ambiguities are in the 7
nt CU/???AA loops, not in the stems. After LUCA (the last universal common (cellular)
ancestor), the dominant anticodon loop sequence was CU/BNNAA or CU/BNNGA (B
indicates G, C or U, not A; N indicates A, G, C or U), and the dominant T loop sequence
was UU/CAAAU. Moreover, 7 nt loop sequences for the anticodon loop and the T loop
were separately selected in evolution because of their different placements within tRNA.
The anticodon loops were selected to generate the distinct anticodons required for coding.
The T loop sequence was selected to form the tRNA elbow at which the D loop and the
T loop interact to form the L-shaped tRNA fold [4]. T loop C3 (tRNA-56) forms a bent
Watson–Crick base pair to a D loop G (G19 in standard tRNA numbering; for historical
reasons, standard tRNA numbering breaks down in the D loop and V loop). D loop G18
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intercalates between T loop A4 (tRNA-57) and A5 (tRNA-58), lifting T loop A6 (tRNA-59)
and U7 (tRNA-60) out of the loop. G18 was initially an A, as part of the third UAGCC
repeat, but was mutated to G to support D loop–T loop interactions at the elbow. This
G to A transition in the D loop is one of the very few systematic sequence changes to
support the tRNA fold versus the parental 31 nt minihelix folds. In summary, tRNA
evolved in pre-life from ligation of 3 31 nt minihelices followed by internal RNA processing
(described below). The 31 nt minihelices that were utilized were of two distinct sequences
(D loop and anticodon/T loop). Pre-life tRNA sequences were comprised of RNA repeats
and inverted repeats. Post-LUCA, the dominant tRNA anticodon and T loop sequences
are known because these sequences have been conserved for ~4 billion years in living
organisms. Post-LUCA tRNA sequences can be recovered as typical tRNA sequences from
a tRNA database [5]. The 3 31 nt minihelix tRNA evolution theorem, therefore, can readily
be confirmed from typical tRNA diagrams of ancient Archaea (i.e., Pyrococcus furiosis,
Sulfolobus solfataricus, Aeropyrum pernix, Staphylothermus marinus).

Alternate models for tRNA evolution are of the following types: (1) convergent
models [6–17]; (2) accretion models [6–18]; (3) 2 minihelix models [6,11,12,14,16,17]; and
(4) highly theoretical models [7,8,10,19,20]. First of all, no convergent model can rationally
apply to tRNA evolution. To evolve, tRNA requires a divergent evolution model, in which
tRNAomes (all of the tRNAs of an organism) diverged from pre-life type I and type II
tRNAs by repeated duplications and re-purposing events. In a convergent model, multiple
small tRNA fragments must converge on the same homologous sequence, conformation
and form. For tRNA, such a convergent evolution model is untenable, and all convergent
models are accretion models because bases must be added and/or subtracted to gain
the final tRNA form. Because pre-life tRNAs were generated from completely ordered
sequences (RNA repeats and inverted repeats), no accretion or convergent model can be
descriptive [2,3,21–25]. Accretion models have reasonably been applied to describe later
stages of rRNA evolution [26–28]. For tRNA, by contrast to rRNA, accretion models are
convergent models that demand convergence of multiple pre-tRNAs (tRNA fragments) to
similarly structured and ordered RNA sequences. For initial tRNA evolution, no accretion
model is reasonable.

Multiple 2 minihelix models have been advanced for tRNA evolution. All of these
models are convergent and accretion models. One disqualifying objection to 2 minihelix
models is that 2 minihelix models are inconsistent with the homology of the anticodon
stem-loop-stem and the T stem-loop-stem [3]. Because the 17 nt anticodon and the 17 nt
T stem-loop-stems are clearly homologous (i.e., by inspection), no 2 minihelix model can
possibly be correct. In a 2 minihelix model, the anticodon and T stem-loop-stems would be
required to converge on a homologous conformation (i.e., compact 7 nt U-turn loop) and
homologous sequence.

The uroboros (hoop snake with mouth grasping tail) model for tRNA evolution
was computer-generated and remains highly theoretical [9,10]. In the uroborous vision,
numerous 22 nt covalently closed tRNA rings converged and accreted to homologous and
ordered tRNA forms. The uroboros model cannot be correct for tRNA evolution. Some
authors employ convergent and accretion tRNA evolution models without realizing their
obvious mistake [29–34].

2. The Evolutionary History of Life on Earth

Top-down strategies to describe pre-life evolution have the potential advantage of
identifying dominant, successful pathways because only routes that survived can be
detected [1,2]. The 3 31 nt minihelix theorem relates a top-down, sequence-based argu-
ment for two stages of pre-life evolution: (1) polymer world and (2) 31 nt minihelix world.
The central focus of the top-down argument is that highly ordered tRNA sequences have
been conserved from pre-life to life and maintained since LUCA. Bottom-up strategies
would be attempts to create life or a potential pre-life chemical state in vitro [35–41].
Bottom-up strategies result in novel chemistry but may represent evolutionary dead-
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ends. When top-down and bottom-up descriptions can be linked, understanding of the
pre-life-to-life transition is significantly enriched. Because tRNA sequences are ordered,
the 3 31 nt minihelix tRNA evolution theorem describes hundreds of millions of years of
pre-life chemical evolution.

The history of the evolution of life on Earth embedded in the tRNA sequence is shown
in Figures 1–4. Remarkably, tRNA evolution reduces to a simple sequence puzzle that
anyone who can read a four-letter code can solve or verify. Figures 1 and 2 explain type
II tRNA evolution [42]. Figures 3 and 4 explain type I tRNA evolution, which is a very
similar process [3,21,23–25]. Both type II and type I tRNAs evolved from the same 93 nt
tRNA precursor. Type II tRNA evolution converted the 93 nt precursor, which was formed
by ligation of 3 31 nt minihelices with two distinct 17 nt core sequences, into type II tRNA
through a single internal 9 nt deletion (Figure 1). Generation of a pre-life type II tRNA
required only a single internal 9 nt deletion within ligated 3′- and 5′-acceptor stems, as
shown (red arrows). In Figure 1, 7 nt of a 3′-acceptor stem (yellow) and 2 nt of a 5′-acceptor
stem (green) were deleted, leaving a 5 nt fragment of a 5′-acceptor stem (initially GGCGG;
green). The internal deletion fused a magenta segment (a 17 nt UAGCC repeat) to a green
segment (a 5′-acceptor stem fragment; 5 nt). The initial type II tRNA body (lacking the 4 nt
ACCA adapter) was 93 − 9 = 84 nt (so the total type II tRNA length was initially 88 nt).

Life 2023, 13, x FOR PEER REVIEW 3 of 22 
 

 

strategies result in novel chemistry but may represent evolutionary dead-ends. When top-
down and bottom-up descriptions can be linked, understanding of the pre-life-to-life tran-
sition is significantly enriched. Because tRNA sequences are ordered, the 3 31 nt minihelix 
tRNA evolution theorem describes hundreds of millions of years of pre-life chemical evo-
lution. 

The history of the evolution of life on Earth embedded in the tRNA sequence is 
shown in Figures 1–4. Remarkably, tRNA evolution reduces to a simple sequence puzzle 
that anyone who can read a four-letter code can solve or verify. Figures 1 and 2 explain 
type II tRNA evolution [42]. Figures 3 and 4 explain type I tRNA evolution, which is a 
very similar process [3,21,23–25]. Both type II and type I tRNAs evolved from the same 93 
nt tRNA precursor. Type II tRNA evolution converted the 93 nt precursor, which was 
formed by ligation of 3 31 nt minihelices with two distinct 17 nt core sequences, into type 
II tRNA through a single internal 9 nt deletion (Figure 1). Generation of a pre-life type II 
tRNA required only a single internal 9 nt deletion within ligated 3′- and 5′-acceptor stems, 
as shown (red arrows). In Figure 1, 7 nt of a 3′-acceptor stem (yellow) and 2 nt of a 5′-
acceptor stem (green) were deleted, leaving a 5 nt fragment of a 5′-acceptor stem (initially 
GGCGG; green). The internal deletion fused a magenta segment (a 17 nt UAGCC repeat) 
to a green segment (a 5′-acceptor stem fragment; 5 nt). The initial type II tRNA body (lack-
ing the 4 nt ACCA adapter) was 93 − 9 = 84 nt (so the total type II tRNA length was initially 
88 nt).  

 
Figure 1. Type II tRNA evolved via RNA ligation and a 9 nt internal deletion within ligated 3′- and 
5′-acceptor stems [42]. Also, 3 31 nt minihelices (one D loop minihelix (magenta 17 nt core) and two 
anticodon stem-loop-stem minihelices (blue 17 nt core)) were fused by ligation for minihelix repli-
cation. The 93 nt tRNA precursor was processed by an internal 9 nt deletion (see below) within fused 
3′-acceptor (yellow) and 5′-acceptor (green) stems. In the type II tRNA structure, the red arrow in-
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Figure 1. Type II tRNA evolved via RNA ligation and a 9 nt internal deletion within ligated 3′- and
5′-acceptor stems [42]. Also, 3 31 nt minihelices (one D loop minihelix (magenta 17 nt core) and
two anticodon stem-loop-stem minihelices (blue 17 nt core)) were fused by ligation for minihelix
replication. The 93 nt tRNA precursor was processed by an internal 9 nt deletion (see below) within
fused 3′-acceptor (yellow) and 5′-acceptor (green) stems. In the type II tRNA structure, the red arrow
indicates the fusion of the magenta segment (17 nt D loop minihelix core; UAGCC repeat) and the
green segment (5′-acceptor stem fragment; initially GGCGG). Abbreviations: SLS) stem-loop-stem;
Ac) anticodon. Molecular graphics were created using ChimeraX [43].
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Figure 2. Type II tRNA resulted from failure to process a 14 nt V loop (initially a 7 nt 3′-acceptor
stem ligated to a 7 nt 5′-acceptor stem) rather than by accretion. Colors: green) 5′-acceptor stem and
5′-acceptor stem fragment; magenta) 17 nt D loop core; cyan) 5′-anticodon and T stem; red) anticodon
and T loops; cornflower blue) 3′-anticodon and T stem; and yellow) 3′-acceptor stem. Arrow colors:
blue) U-turns; red) processing site in evolution; light yellow) discriminator base (D); and gold) site of
amino acid placement. The structure is of an unmodified Pyrococcus horikoshii tRNALeu in complex
with LeuRS-IA. At the right of the figure are tRNALeu and tRNASer V loops from Pyrococcus furiosis,
an ancient Archaeon. Colors: red) V loop UAG that binds LeuRS-IA in tRNALeu recognition in P.
furiosis [44]; yellow) unpaired bases just 5′ of the Levitt base; and green) tRNASer bases at the 3′-end
of the V loop. PRE indicates an initial pre-life sequence. Parentheses indicate stems; * indicates
unpaired bases.

The original pre-life type II tRNA V loop (V for variable) was a 7 nt 3′-acceptor stem
(yellow) ligated to a 7 nt 5′-acceptor stem (green) (initially, CCGCCGC_GCGGCGG) [42].
Because the pre-life V loop sequence was self-complementary along its entire length, the
V stem-loop-stem evolved to sequences such as those found in archaeal tRNALeu and
tRNASer. V loops for tRNALeu and tRNASer from Pyrococcus furiosis were selected to be
distinct (i.e., for separate discrimination by LeuRS-IA and SerRS-IIA) and are shown in
the right panel of Figure 2, compared to the initial pre-life V loop [5]. V loops for tRNALeu

are numbered V1 to V14 (14 nt was the primordial length). UV1 forms a wobble pair with
G26 (standard tRNA numbering). CV14 forms a reverse Watson–Crick pair to G15 (the
Levitt base pair; see below). Two unpaired bases are found at V12 and V13 (UU or UG). The
number of unpaired bases just 5′ to the Levitt base pair determines the trajectory of the V
stem-loop-stem from the tRNA body. V6-UAG-V8 binds the tRNALeu charging enzyme
LeuRS-IA (leucine aminoacyl–tRNA synthetase; structural class and subclass IA) [44]. None
of the corresponding tRNASer V loop sequences are sufficiently similar to UAG (UUC, UGG,
UUU; green shading), so LeuRS-IA will not bind to a tRNASer V loop, even if the loop could
be accessed by LeuRS-IA. For P. furiosis, the length of the tRNASer V loop expanded from
14 to 15 nt. In tRNASer, only 1 nt is unpaired just 5′ of the Levitt base pair. The tRNASer

V stem-loop-stem, therefore, has a different trajectory from the tRNASer body compared
to tRNALeu. SerRS-IIA binds the V stem [45], not the V loop, so SerRS-IIA is dependent
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on the trajectory of the V stem-loop-stem from the tRNASer body compared to the distinct
trajectory of the V stem-loop-stem of tRNALeu. In summary, type II tRNA evolution is
described to the last nucleotide by the 3 31 nt minihelix theorem. The longer V loop in type
II tRNAs was initially generated by a failure to process ligated 3′- and 5′-acceptor stems,
rather than by insertion of bases (accretion).
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Most tRNAs are type I, with a shorter V loop (i.e., 5 nt) compared to type II tRNAs
(initially 14 nt). Notably, the 3 31 nt minihelix theorem describes type I tRNA evolution to
the last nucleotide (Figures 3 and 4). In Figure 3, type I tRNA evolution is shown from the
same 93 nt tRNA precursor. In this case, two closely related 9 nt deletions occurred within
ligated 3′- and 5′-acceptor stems. The more 5′ internal 9 nt deletion was identical to the
processing event that generated type II tRNAs (Figure 1). The more 3′ 9 nt deletion removed
7 nt of the 5′-acceptor stem (green) and 2 nt of the 3′-acceptor stem (yellow), leaving
5 nt of the 3′-acceptor stem (initially CCGCC; yellow). Thus, in type I tRNA evolution,
CCGCC (yellow) was linked to CCGGG (cyan). In type I tRNA, the more 5′ and 3′ 9 nt
deletions within ligated acceptor stems are closely related. If the deletions occurred on
complementary RNA strands, the more 3′ 9 nt deletion was identical to the more 5′ 9 nt
deletion. Below, we suggest a ribozyme/primitive catalyst processing mechanism to
describe the internal 9 nt deletions. In summary, type II and type I tRNAs evolved by a
common mechanism that involved ligation of the same 3 31 nt minihelices to form the same
93 nt tRNA precursor followed by internal processing and deletion of complementary 9 nt
segments. The original type I tRNA was 93 − 18 = 75 nt (tRNA body) plus the 4 nt ACCA
adapter sequence (so 79 nt total). It is likely that the first tRNAs were mixtures of type II
and type I tRNAs.
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Figure 4. Type I tRNA. Colors and arrow colors are as in Figures 1 and 2. G* (OMG) is 2′-O-methyl-G.
YYG is Wy-butosine [46]. The V loop (3′-As*; yellow) is fused to the cyan (5′-T stem), in slight contrast
to type II tRNA processing (Figures 1 and 2).

3. The 3 31 nt Minihelix Theorem

The 3 31 nt minihelix theorem is shown in Figure 5 as a linear sequence. The inset in
the figure shows a mechanism to generate the 5′- (type I and type II tRNAs) and 3′- (type I
tRNA only) acceptor stem fragments found in tRNAs. The proposed mechanism involved
a ribozyme/primitive catalyst endonuclease to cleave RNAs at stem-loop boundaries
followed by RNA ligation. RNA stem-loop-stems cannot maintain a 2 nt loop because
a 2 nt loop is too constrained, so 4 nt loops were the expected substrates for processing
(as shown).

Embedded in tRNA sequences is evidence for the minihelix world and, before that,
the polymer world [1,2,21]. Surprisingly, precursor tRNA sequences from pre-life were
highly ordered: RNA repeats and inverted repeats [3,24,25,42]. Initially, this was a shock
to us because we thought tRNA was generated by a chaotic process. Inspection of tRNA
sequences, however, shows that pre-life tRNA precursors were ordered. Because tRNAs
were generated from ordered sequences, pre-life tRNA precursors were arranged as RNA
repeats and inverted repeats, as shown. Analysis of tRNA sequences, therefore, reveals
a history of pre-life worlds on Earth. It is not reasonable to consider that ordered tRNA
precursors were generated by any chaotic process. We stress that these recovered sequences
from living organisms are fossils from the pre-life-to-life transition on Earth ~4 billion
years ago.
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Figure 5. The 3 31 nt minihelix theorem, and evolution of tRNA world from polymer world and 31 nt
minihelix world. The inset describes the 9 nt deletions to generate tRNAs: the more 5′ processing
event involves deletion between the blue arrows; the more 3′ processing event (type I tRNA only)
involves deletion between the red arrows. Internal deletions were at stem-loop junctions. Colors and
arrows are consistent with previous figures. Yellow arrows mark the cornflower blue-yellow junction,
indicating the degree of order in tRNA assembly.

4. Polymer and 31 nt Minihelix Worlds

In pre-life, the polymer world, minihelix world and tRNA world were overlapping
and more complex than can now be described just from the tRNA sequence. The surviving
history was limited to tRNA sequences. This is a limitation of top-down and sequence-
based analyses of pre-life. The polymer world included GCG repeats, CGC repeats and
UAGCC repeats, which are sequences found in tRNAs. We posit that the polymer world
included ACCA as the most primitive RNA-amino acid adapter. Attaching glycine at
the 3′-end, ACCA becomes ACCA-Gly, which can be used for polyglycine synthesis. A
GCG repeat includes multiple CGGC sequences, which can anneal with ACCA-Gly for
polyglycine synthesis. Hydration–dehydration cycles may have supported polyglycine
synthesis with multiple ACCA-Gly immobilized in proximity [38,47]. Phase separations
supported by water, supercritical CO2 and lipid within the Earth’s crust under high pressure
may also have contributed to polypeptide polymerization reactions [39–41].

Figure 6 shows some of the features expected in polymer and 31 nt minihelix worlds.
Figure 6A shows that the D loop minihelix core is self-complementary and can present
anticodon GCC to pair codon GGC. GGC is found in the GCG repeat identified in the
polymer world from analysis of tRNA sequences (Figure 5). Figure 6B shows the anticodon
and T stem-loop-stem sequences. The codon recognized would depend on the ??? sequence
(i.e., anticodon GCC would recognize codon GGC). If ACCA-Gly were ligated at the
RNA 3′-ends, these sequences could be utilized for polyglycine synthesis. In pre-life,
the stem-loop-stem sequence CCGGG_CU/???AA_CCCGG indicates that some form of
complementary replication was present in the polymer world. Also, a stem-loop-stem can
function as a primer for complementary replication. We posit that the anticodon stem-loop-
stem was the most central intellectual property in pre-life on Earth. The 7 nt loop sequence
(CU/???AA) allowed tRNA to learn to code.



Life 2023, 13, 2224 8 of 20

Life 2023, 13, x FOR PEER REVIEW 8 of 22 
 

 

thesis with multiple ACCA-Gly immobilized in proximity [38,47]. Phase separations sup-
ported by water, supercritical CO2 and lipid within the Earth’s crust under high pressure 
may also have contributed to polypeptide polymerization reactions [39–41]. 

Figure 6 shows some of the features expected in polymer and 31 nt minihelix worlds. 
Figure 6A shows that the D loop minihelix core is self-complementary and can present 
anticodon GCC to pair codon GGC. GGC is found in the GCG repeat identified in the 
polymer world from analysis of tRNA sequences (Figure 5). Figure 6B shows the antico-
don and T stem-loop-stem sequences. The codon recognized would depend on the ??? 
sequence (i.e., anticodon GCC would recognize codon GGC). If ACCA-Gly were ligated 
at the RNA 3′-ends, these sequences could be utilized for polyglycine synthesis. In pre-
life, the stem-loop-stem sequence CCGGG_CU/???AA_CCCGG indicates that some form 
of complementary replication was present in the polymer world. Also, a stem-loop-stem 
can function as a primer for complementary replication. We posit that the anticodon stem-
loop-stem was the most central intellectual property in pre-life on Earth. The 7 nt loop 
sequence (CU/???AA) allowed tRNA to learn to code. 

 
Figure 6. Features of polymer world. (A) The D loop minihelix core could function as a primitive 
translational adapter to recognize codon GGC. (B) The anticodon and T stem-loop-stems could func-
tion as a translational adapter. The dotted blue line indicates a Hoogsteen A–C pair that stabilizes 
the U-turn loop. Ligation of 3′-ACCA-Gly converted these sequences into primitive translational 
adapters in the pre-life world. Parentheses indicate paired bases. Asterisks indicate loop bases.  

We posit that the minihelix world evolved and was selected alongside the polymer 
world as an improved means to generate polyglycine [37,48]. When we invoke polygly-
cine or GADV world, we do not mean to imply that the synthesis of these sequences was 
particularly accurate. Other available amino acids could have been incorporated, as well. 
Translational fidelity coevolved with the genetic code only as sequence-dependent pro-
teins became more strongly protected by selection. Judging from the tRNA sequence, the 
minihelix world was the clear precursor of the tRNA world because tRNA was evolved 
by ligation of 3 31 nt minihelices of almost completely known sequence (Figures 1–5). To 
generate the minihelix world from the polymer world required a small number of ribo-
zymes/primitive catalysts, most or all of which have been generated by scientists in vitro. 
Similarly, a small set of ribozymes/primitive catalysts would be sufficient to convert the 
minihelix world into the tRNA world. Most likely, these conversions could be reproduced 
in vitro. 

Organisms have lived in the tRNA world for about 4 billion years. The advantage of 
the tRNA world over the polymer and minihelix world was, initially, that tRNA evolved 
and was selected as an improved means to synthesize polyglycine as a component of pro-
tocells [1,2]. From the tRNA–polyglycine world, the tRNA–GADV world emerged [36,49–
52]. From an 8 amino acid stage (i.e., GADVLSER), the genetic code and sequence-depend-
ent proteins emerged [1,2,21]. Thus, no chicken and egg problem need be invoked in the 
evolution of the genetic code because the system did not need the foresight that it would 
eventually encode sequence-dependent proteins. Polyglycine and GADV polypeptides 
were selected for coacervate functions (i.e., supporting membrane-less organelles in pro-

Figure 6. Features of polymer world. (A) The D loop minihelix core could function as a primitive
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the U-turn loop. Ligation of 3′-ACCA-Gly converted these sequences into primitive translational
adapters in the pre-life world. Parentheses indicate paired bases. Asterisks indicate loop bases.

We posit that the minihelix world evolved and was selected alongside the polymer
world as an improved means to generate polyglycine [37,48]. When we invoke polyglycine
or GADV world, we do not mean to imply that the synthesis of these sequences was
particularly accurate. Other available amino acids could have been incorporated, as well.
Translational fidelity coevolved with the genetic code only as sequence-dependent proteins
became more strongly protected by selection. Judging from the tRNA sequence, the
minihelix world was the clear precursor of the tRNA world because tRNA was evolved
by ligation of 3 31 nt minihelices of almost completely known sequence (Figures 1–5).
To generate the minihelix world from the polymer world required a small number of
ribozymes/primitive catalysts, most or all of which have been generated by scientists
in vitro. Similarly, a small set of ribozymes/primitive catalysts would be sufficient to
convert the minihelix world into the tRNA world. Most likely, these conversions could be
reproduced in vitro.

Organisms have lived in the tRNA world for about 4 billion years. The advantage of
the tRNA world over the polymer and minihelix world was, initially, that tRNA evolved
and was selected as an improved means to synthesize polyglycine as a component of proto-
cells [1,2]. From the tRNA–polyglycine world, the tRNA–GADV world emerged [36,49–52].
From an 8 amino acid stage (i.e., GADVLSER), the genetic code and sequence-dependent
proteins emerged [1,2,21]. Thus, no chicken and egg problem need be invoked in the
evolution of the genetic code because the system did not need the foresight that it would
eventually encode sequence-dependent proteins. Polyglycine and GADV polypeptides
were selected for coacervate functions (i.e., supporting membrane-less organelles in proto-
cells) [1,2,53]. With added complexity, the genetic code and sequence-dependent proteins
evolved and were selected and coevolved with tRNAomes [21,23]. Once the genetic code
evolved, living systems began.

5. Arguments for and against the 3 31 nt Minihelix Theorem

For reasons that we do not understand, the 3 31 nt minihelix theorem, which is
fully supported by the tRNA sequence, has not gained universal acceptance. The 3 31 nt
minihelix theorem is important because it relates the history of the pre-life-to-life transition
on Earth. We understand that there are competing tRNA evolution models, but alternate
models are falsified. The competing models are all chaotic, convergent, accretion and
2 minihelix models. None of these models can possibly be reasonable.

Statistics strongly favor the 3 31 nt minihelix theorem (Table 1) [24]. Remarkably,
every feature of the theorem was predicted and is supported by statistical analysis. As
the analysis was performed, a p-value of 0.001 indicated a similar sequence with a 1 in
1000 chance of being due to random chance. So, a p-value of 0.001 indicates homology. A
p-value approaching 1 indicates sequences are not homologous. A p-value of <0.05 would
indicate similarity and probable homology. First of all, as expected, the 5′-acceptor stem is
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apparently homologous to the complement of the 3′-acceptor stem with which it pairs. Also,
as expected, the 3′-acceptor stem is homologous to the complement of the 5′-acceptor stem.
The demonstrated complementarity of the 5′- and 3′-acceptor stems appears to partly verify
the statistical test. The 5′-acceptor stem fragment tests as homologous to the 5′-acceptor
stem, positions 3–7. The 3′-acceptor stem fragment (type I V loop) tests as homologous to
the 3′-acceptor stem, positions 66–70, as expected from the theorem. The 17 nt anticodon
stem-loop-stem tests as homologous to the 17 nt T stem-loop-stem, as anticipated from
the theorem. As expected, neither the 17 nt anticodon stem-loop-stem nor the 17 nt T
stem-loop-stem test is homologous to the 17 nt D loop core (initially, a UAGCC repeat).
Both the type II tRNALeu and tRNASer V loops test as homologous to a 3′-acceptor stem
ligated to a 5′-acceptor stem (Table 1) [42]. In summary, every aspect and prediction of the
3 31 nt minihelix theorem is reinforced by statistical tests. The theorem completely describes
the evolution of type II and type I tRNAs to the last nucleotide.

Table 1. Internal homologies within archaeal tRNAs. C indicates a sequence complement. In type II
V loops, n indicates the total length of the V loop. In type II tRNAs, V1 was selected to be U to form a
G26~UV1 wobble pair. Vn was selected to be C to form the G15-CVn reverse Watson–Crick Levitt
base pair. Similar statistics were obtained for Bacterial tRNAs [24,42].

Sequence #1 Sequence #2 Length (nt) p-Value

5′-As 3′-As-C 7 0.001
3′-As 5′-As-C 7 0.001
5′-As* 5′-As (3 to 7) 5 0.001

3′-As* (V loop) 3′-As (66 to 70) 5 0.001
Ac SLS T SLS 17 0.001
D loop Ac loop 17 0.979
D loop T loop 17 ~1

3′-As and 5′-As (66 to 71 and 2 to 7) V-loop Leu V2 to V7 and Vn-7 to Vn-1 12 0.001
3′-As and 5′-As (66 to 71 and 2 to 7) V-loop Ser V2 to V7 and Vn-7 to Vn-1 12 0.001

Typical tDNA sequences from the tRNA database are shown in Figure 7 for Pyrococcus
furiosis (Figure 7A) and a large collection of Archaea (Figure 7B) [5]. The greener image in
Figure 7A indicates a stronger consensus, indicating that some Archaea are more derived
from LUCA compared to P. furiosis. We consider the ancient Archaeon P. furiosis as a
reasonable model organism for LUCA. Strangely, Di Giulio has argued that the 17 nt
anticodon and 17 nt T stem-loop-stems, each with a compact 7 nt U-turn loop, with the U-
turn positioned between loop positions 2 and 3, are not homologs [11]. Di Giulio’s assertion
is not credible. The anticodon stem-loop-stem and the T stem-loop-stem are homologous
by inspection and by statistical test (Figure 7; Table 1). According to Di Giulio’s tRNA
evolution model, the 17 nt anticodon stem-loop-stem and the 17 nt T stem-loop-stem
must take on apparent homologous sequences and common structures by convergent
evolution [12,14,54].

One might argue that acceptor stems are not based on a GCG (5′-acceptor stem)
and complementary CGC (3′-acceptor stem) repeat, although inspection and statistical
analyses support the sequence repeats [24]. The typical P. furiosis tRNA sequence gives
the 5′-acceptor stem sequence as GCGGCGG (a perfect GCG repeat) and the 3′-acceptor
stem sequence as CCGC??C (G pairs with both C and U; ? indicates that the typical base
was not scored) (Figure 7A). For a larger collection of Archaea in the tRNA database, the
typical 5′-acceptor stem sequence is GC?GCGG and the typical 3′-acceptor stem sequence
is CCG??GC (Figure 7B). Acceptor stems diverge from a perfect GCG repeat for distinct
recognition by cognate AARS enzymes. In P. furiosis, the tRNASer D loop core begins with
two perfect UAGCC repeats UAGCCUAGCC. A tRNAGly 17 nt D loop core sequence is
UAGUCUAGCCUGGUCUA, which is a very close match to a UAGCC repeat [5]. The
P. furiosis tRNAGly sequence is the closest to tRNAPri (the pre-life, primordial tRNA
sequence; Figure 5). The closest homology of tRNAPri and tRNAGly is consistent with life
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evolving from a tRNA–polyglycine world [23]. Because acceptor stems and their fragments
in tRNA evolved from GCG and CGC repeats and the 17 nt D loop core evolved from
a UAGCC repeat, the pre-life world generated RNA repeats, and, at least in some cases,
their complement (GCG and CGC repeats are complementary). Anticodon and T stem-
loop-stems are snap-back primers and self-complementary at the stems. One might try
to argue that the RNA repeats and homologous inverted repeats conserved in tRNAs for
~4 billion years were all caused by convergent evolution, but such an argument would
be untenable. For the highly skeptical, at the very least, the 3 31 nt minihelix theorem is
a remarkably good model for tRNA evolution from ~4 billion years ago. Our position is
that tRNA sequences embed an unambiguous history of the most central process in the
pre-life-to-life transition on Earth.
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6. Evolution of the Genetic Code

An appreciation of tRNA evolution appears to demand an anticodon-centric view
of genetic code evolution [1,2,21]. We posit that the genetic code evolved around the
tRNA anticodon according to how the anticodon was read on the coevolving ribosome.
Wobbling at tRNA-34 evolved as the ribosome “learned” to read the anticodon. We posit
that tRNA-34 and tRNA-36 were originally both wobble positions but that, as the code
and ribosome coevolved, wobbling was suppressed at tRNA-36 by chemical modifications
at tRNA-37 and by the closing of the ribosome 16S rRNA in order to tighten recognition
of the tRNA–mRNA anticodon–codon interaction [55–57]. A comprehensive model for
genetic code evolution has been published in which the placements and distributions of all
amino acids in the code are rationalized according to principles of genetics and molecular
biology [1,2,21]. Consistent with a polyglycine–tRNA world [37,48], glycine occupies the
most favored anticodon (BCC). Consistent with a GADV–tRNA world [36,49–52,58], GADV
occupies the most favored row of the code, row 4 (BNC). The model explains the evolution
of related amino acids within code columns (i.e., column 1 (BAN) encodes closely related
amino acids Val, Ile, Met and Leu; ValRS-IA, IleRS-IA, MetRS-IA and LeuRS-IA are closely
related AARS enzymes). Features of the genetic code model include explanations for the
coevolution of amino acid metabolism, amino acid chemistry, homologous AARS enzymes,
tRNAomes and stop codons.

During code evolution, previously encoded amino acids initially occupied larger
segments of the code. For instance, we posit that glycine initially filled the genetic code
using all available anticodons to encode glycine. To accommodate the entry of newly
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encoded amino acids, previously encoded amino acids retreated, retaining the most favored
available anticodon positions. Favored positions in the code relate to favored anticodons
according to clear preference rules. For tRNA-34 wobble, A is not utilized in Archaea [5].
Wobble tRNA-34G is favored. Also, at the base of code evolution, wobble tRNA-34C and
tRNA-34U are approximately equivalent, limiting the creation of 1 codon sectors (i.e., for
Met and Trp; see below). For tRNA-35 and tRNA-36, the anticodon preference rules are
C > G > U >> A. So, glycine occupies the most favored anticodon (BCC). GADV occupies
the most favored row 4 (BNC). Phenylalanine, tyrosine and tryptophan occupy disfavored
row 1 (BNA) and are late additions to the code. Stop codons occupy disfavored row 1. The
model explains why unmodified A is not utilized at a wobble position (i.e., unmodified
tRNA-34A is not utilized). A rational model is proposed for serine jumping from column
2 to column 4 of the genetic code (see also [59]). Essentially, all aspects of genetic code
evolution are potentially explained.

Moreover, the 1 codon sector encoding Met and Trp is explained as a somewhat
special case. In Archaea, tRNAMet (CAU) is utilized with minor or no wobble tRNA-34C
modification to recognize Met mRNA codon AUG but not Ile codon AUA. Interestingly,
tRNAIle (CAU) is also utilized but with tRNA-34C modified to agmatidine to recognize Ile
codon AUA but not Met codon AUG. In the case of the tryptophan 1 codon sector, tRNATrp

(CCA) shares a 2 codon box with a stop codon UGA. Stop codons are recognized by binding
of protein release factors to mRNA codons [60], so no tRNA (UCA) ambiguity conflicts
with the tRNATrp (CCA) reading of codon UGG.

The 6 codon sectors encoding leucine, serine and arginine have been explained. We
posit that leucine, serine and arginine probably entered the genetic code at about the same
time (GADVLSER world). These amino acids occupied larger segments of the code and
then retreated to their current positions as new amino acids were added. Serine jumped
from column 2 to column 4 of the code, as we have described. Arginine may have entered
the code initially as ornithine, which was then converted to arginine through the evolution
of tRNA-linked reactions. Because 6 codon sectors have previously been addressed in
detail [1,2,21], the entire discussion is not reproduced here.

Other views of genetic code evolution have been reported [61–74]. We object to codon-
centric models with a complexity of 64 codons to describe the initial establishment of the
code. The genetic code evolved around the tRNA anticodon and its reading on the coe-
volving ribosome. Wobbling at tRNA-34 limits the wobble position to purine–pyrimidine
discrimination, limiting the complexity of the genetic code to 2 × 4 × 4 = 32 assignments
(not 4 × 4 × 4 = 64 assignments, as in mRNA). The standard genetic code gained clo-
sure at 20 amino acids plus stops (21 assignments). Late in the process of code evolution,
translational fidelity limited further expansions of the code.

7. Recorded History of the Pre-Life-to-Life Transition

Sequences of tRNAs relate a history of the pre-life-to-life transition (Figures 1–7). To
replicate RNAs and minihelices in the pre-life world required the ligation of RNAs. The
emergence of tRNAs shows that minihelices were ligated together (Figures 1 and 3). The
importance of RNA ligation in establishing pre-life genetic innovation and complexity
cannot be overstated. Ligation of related and unrelated RNAs led to pre-life chemical and
combinatorial complexity, which led to life. Ligation explains how tRNA evolved from
3 31 nt minihelices (Figures 1 and 3). In order to replicate 31 nt minihelices, RNAs were
ligated together, replicated and then processed to generate new minihelices. Because of
side reactions of ribozymes/primitive catalysts, in the process of replicating existing RNAs,
novel and more complex RNAs, such as tRNAs, were generated. The ribozymes/primitive
catalysts required for these processes include the following: RNA ligases [75–79], RNA he-
licases/chaperones [80], complementary RNA template-dependent RNA replicase [81–87],
and RNA endonucleases [88,89]. Very clearly, to support the polymer world required a
ribozyme/primitive catalyst to generate and replicate RNA repeats.
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Scientists have encountered some difficulties generating a ribozyme RNA template-
dependent RNA replicase [87,90]. Also, to our knowledge, no one has generated a ri-
bozyme/primitive catalyst to generate RNA repeats. These issues may be related. We
suggest that the search for ribozymes/primitive catalysts to generate RNA repeats and
complementary RNA covalent assemblies be broadened to determine alternate routes to
support these activities. Experiments must now be performed to reproduce the polymer
and minihelix world. The RNA reactants and products are known with reasonable cer-
tainty (Figure 5). Only specific ribozymes/primitive catalysts to support the transitions are
lacking. Most of these ribozymes have been generated or approximated in vitro.

We posit that complementary stems of 5 nt and 7 nt, which are found in minihelices
and tRNAs, were selected because shorter stems were unstable and longer RNA duplexes,
generally, were more difficult and slower to unwind using ribozyme/primitive catalyst
helicases/chaperones. We posit that the tRNA U-turn loop (Figures 1–6) was selected
because it is a tight loop that resists attack by ribozyme nucleases. If a 7 nt anticodon
U-turn loop has loop positions 1C and 7A (Figures 6B and 7), a Hoogsteen H-bond forms
that supports U-turn geometry and loop stability [46]. Once tRNA evolved, a genetic code
became inevitable. Given the pre-life chemical milieu, tRNA was a molecule that could
“teach” itself (“learn”) to code [1,2,21].

Carell and colleagues have indicated that modification of the 2′-O of RNA (i.e.,
2′-O-methyl) may have stabilized RNA to OH− hydrolysis and also may have modi-
fied ribozyme activities [38]. RNA modified at the 2′ position is expected to be a precursor
to DNA. We posit that many RNA modifications existed in the pre-life world, and RNA
modification enzymes coevolved with the code [91]. For instance, the evolution of the
genetic code probably required modifications of tRNA-34U, tRNA-37A and tRNA-37G,
at a minimum. Probably tRNA-34U methylation-based modifications were necessary to
suppress “superwobbling” or 4-way wobbling in which tRNA wobble U reads mRNA
wobble A, G, C and U [91–93]. Therefore, tRNA-34U methylation-based modifications were
necessary to generate 2 codon sectors in the genetic code (i.e., column 3 of the genetic code).
It appears that tRNA-37A and tRNA-37G modifications were necessary to read tRNA-36U
and tRNA-36A anticodons, respectively.

8. RNA Ligation, Protein Folding and Protein Pseudosymmetry

The process by which tRNA was generated in pre-life (described above) was critically
dependent on RNA ligation. To replicate minihelices, RNA ligation and endonuclease
processing was necessary. To generate tRNAs, RNA ligation and then processing to novel
products occurred. We posit that RNA ligation was a primary mechanism for generating
chemical complexity and genetic innovation in the pre-life world. Type II and type I tRNAs
were clearly generated by a process in which RNA ligation played a critical role.

The first proteins (i.e., ribosomal proteins, AARS enzymes, (β−α)8 barrels (i.e., TIM
barrels), (β−α)8 sheets (Rossmann folds), RNA modification enzymes, RNA and DNA
polymerases) coevolved with the genetic code [94]. We posit that from about the 8 amino
acid stage of genetic code evolution, sequence-dependent proteins began to coevolve with
the emerging code. We posit that RNA ligation was a central feature in the evolution of
the first proteins. As examples, we show Figures 8–11. Figure 8 shows a (β−α)8 barrel
protein (i.e., a TIM barrel protein; TIM for triose phosphate isomerase). Because β-sheets
require a partner β-sheet, we posit that (β−α)8 barrels were generated by ligation of two
(β−α)2 RNAs encoding parallel β-sheets to form a (β−α)4 RNA encoding all parallel
β-sheets. Ligation of two (β−α)4 RNAs created a (β−α)8 RNA encoding all parallel
β-sheets that was translated and folded into a (β−α)8 barrel [95]. In pre-life, folding
proteins into pseudosymmetrical barrels may have resulted from RNA ligations combining
multiple identical RNAs. Translation of RNA repeats generated protein repeats that could
fold into barrels. Glycolytic enzymes include (β−α)8 barrels, so we have described the
evolution of glycolysis in pre-life.
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We posit that during pre-life (β−α)8 barrels were rearranged into (β−α)8 sheets (Ross-
mann folds) by protein refolding (Figure 9) [96]. TCA cycle enzymes include Rossmann
folds. Thus, significant metabolic capacity coevolved with the genetic code in pre-life via
RNA ligations, much as described for the evolution of type II and type I tRNAs.
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In Figure 10, a domain of a AAA-ATPase is shown [97–99]. This pseudosymmetrical
barrel is a double-Ψ−β-barrel (β−β−α−β)2. We posit that the double-Ψ−β-barrel was
formed from ligation of two (β−β−α−β) RNAs followed by translation and pseudosym-
metrical folding. PolD (an archaeal DNA polymerase) and multi-subunit RNA polymerases
are 2 double-Ψ−β-barrel polymerases. The GD motif in the loop separating β5 and β6
was the precursor to the NADFDGD motif that is highly conserved in multi-subunit RNA
polymerases [100,101]. We posit that these core life functions were generated in pre-life via
RNA ligation, translation and pseudosymmetrical folding. Thus, based on the apparent
RNA ligation mechanism for tRNA evolution, glycolysis, the TCA cycle, AAA-ATPases,
DNA polymerases and RNA polymerases may have been generated during pre-life [102].

AARS enzymes coevolved with tRNAomes and the genetic code. The evolution of
AARS enzymes, however, has been improperly understood [1,2,22]. We have attempted to
clarify how AARS enzymes evolved. Despite their different folds, class II and class I AARS
enzymes are simple homologs (Figure 11). Notably, GlyRS-IIA is a homolog of IleRS-IA
and ValRS-IA. In ancient Archaea, these enzymes often share a Zn finger and significant
homology. At the bottom of the figure, we show local alignments of the same segment of
GlyRS-IIA with homologous segments of IleRS-IA and ValRS-IA. Initially, class II and class
I AARS were not thought to be homologous because these enzymes have distinct folds.
We posit that, in pre-life, a primitive ValRS-IA was derived from a primitive GlyRS-IIA
by ligation of a distinct RNA encoding the ValRS-IA N-terminal segment, followed by
translation and folding. The addition of the N-terminal ValRS-IA extension determined the
distinct class I AARS fold, as we have described.

9. Proof of the 3 31 nt Minihelix tRNA Evolution Theorem

The axioms (i.e., assumptions; obvious statements of proposition) on which the proof is
based are as follows: (1) an obvious GCG repeat (5′ acceptor stem) is a GCG repeat (Figure 7);
(2) a GCG repeat complement, a CGC repeat (3′ acceptor stem) is a CGC repeat; (3) a UAGCC
repeat is a UAGCC repeat; and (4) a homologous anticodon (CCGGG_CU/???AA_CCCGG)
17 nt stem-loop-stem and a T (CCGGG_UU/CAAAU_CCCGG) 17 nt stem-loop-stem are
homologous stem-loop-stems [1–3,21]. The theorem has made the following predictions:
(1) the statistics reported in Table 1 were predicted [3,24,42] and (2) the type II V loop was
initially based on the ligation of a 7 nt 3′-acceptor stem and a 7 nt 5′-acceptor stem (Figure 1
and Table 1) [42]. The very few sequence deviations from the theorem are readily justified
by principles of tRNA folding. For instance, G19 was selected to be G instead of A (in the
third D loop UAGCC repeat) to support D loop–T loop interactions at the elbow of tRNA
(Figure 7) [3]. Minor sequence changes in the D stem and V loop occurred to support the
tRNA fold versus a minihelix fold (i.e., the Levitt base pair in type II tRNAs). The theorem
predicts and justifies all sequences found in tRNAs of Archaea and Bacteria. This is a paper
in which definite and publically available conserved tRNA sequence data were used to
reach definite conclusions about the origin of life on Earth.

10. Discussion and Conclusions

In the context of pre-life, tRNA was a molecule that could teach itself to code. Because
tRNAPri sequences were highly patterned and their order conserved, the evolution of type
II and type I tRNAs is a solved problem. The tRNAomes of LUCA and organisms diverged
from type II and type I tRNAs by duplications, mutations and repurposing. For obvious
reasons (see above), no chaotic convergent or accretion model can be reasonable to describe
the earliest tRNA evolution. To build the genetic code, the evolution of mRNA codons
conformed to the evolution of tRNAome anticodons.

The genetic code coevolved with amino acid metabolism, polypeptides, tRNAomes,
mRNA, AARS enzymes, first proteins and enzymes, tRNA modification enzymes (some of
which depend on relics of (β−α)8 barrels) [103] and protocells. The patterns of relatedness
within tRNAomes and AARS in ancient Archaea relate to a history of the evolution of the
genetic code. We posit that RNA ligation was a major driving force for the evolution of
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the complexity of the first RNAs and the folding complexity and pseudosymmetry of the
first proteins.

Sequences of tRNAs are among the most highly conserved from pre-life. Sequences of
rRNA have been reported to have been derived, in part, from tRNA sequences [29–32]. The
first proteins appear to include sequences and structures that partly reflect the pre-life-to-
life transition (Figures 8–11). So far as we are aware, tRNA sequences represent the clearest
insights into the pre-life-to-life transition on Earth.

To teach the biological sciences, integrate and emphasize genetic coding, evolution,
sequence analysis, translation, structure and the central functions of RNA in biology.
The history of tRNA chemical evolution, as written into and conserved in living genetic
code, relates these fundamental lessons and describes the pre-life-to-life transition from
about 4 billion years ago. Note that we are advocating for a tRNA-centered evolution of
life on Earth based on analysis of tRNA sequences conserved over about 4 billion years
since life began. The RNA world was initially hypothesized for similar reasons because
tRNA, mRNA and rRNA form the functional core of molecular biology. The concept was
to identify core conserved functions and to evolve around them toward more complex
systems. We advocate for centering attention on tRNA. It appears to us that mRNA and
rRNA coevolved to accommodate the central functions of tRNAs in the evolution of coding.
The evolution of tRNA combines aspects of evolution, the birth of biology on Earth, the
origin of life, chemical evolution, sequence pattern recognition, coding and decoding, tRNA
modifications, learning and genetic memory and the evolution of the patterning of the
genetic code. A tRNA-first approach to the evolution of the genetic code makes sense.
Ribosome-first, mRNA-first and genetic code-first approaches are illogical.

Because tRNA evolution was first solved by inspection and as a puzzle, tRNA evolu-
tion should be of interest to gamers and puzzlers. Because tRNA evolution is a problem
in biological coding, learning and problem-solving, tRNA evolution is a subject for pro-
grammers and psychologists. Linguists and mathematicians have shown an interest in the
evolution of the genetic code [68–74]. Sentient humans on Earth must know this content.

TRNA forms the functional core of living systems on Earth. The ribosome apparently
evolved largely after tRNA. For instance, the ribosome includes a tRNA-shaped channel
through the 23S rRNA within the large ribosomal subunit [104]. Also, rRNA is hypothesized
to have evolved partly from tRNA fragments [29–32]. The anticodon 7 nt U-turn loop was
selected in pre-life to support a 3 nt genetic code [1–3,21,24]. We posit that once tRNA
chemically evolved, the evolution of the genetic code became inevitable. Acceptance of
these ideas allows pre-life on Earth to be described. The rejection of these ideas is not useful
in describing the chemical evolution of life on Earth.

On Earth, tRNA is the genetic adapter. Without a genetic adapter, there can be no
genetic code and no life. To re-engineer tRNA to form a different genetic adapter would
be problematic. To design a genetic adapter using another chemistry than RNA seems
unlikely. To redesign the anticodon loop of tRNA would present a significant challenge
(Figure 6B). tRNA evolution presents a remarkable history of the pre-life-to-life transition
on Earth. If life is discovered on Enceladus (or elsewhere in the cosmos), we posit it will
utilize a similar adapter molecule to tRNA. tRNA and the tRNA anticodon loop are core
intellectual properties in the evolution of life.
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