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Abstract: Genetic association studies, testing the relationship between genetic variants and disease
status, are useful tools for identifying genes that grant susceptibility to complex disorders. In such
studies, an inadequate sample size may provide unreliable results: a small sample is unable to
accurately describe the population, whereas a large sample makes the study expensive and complex
to run. However, in genetic association studies, the sample size calculation is often overlooked or
inadequately assessed for the small number of parameters included. In light of this, herein we list
and discuss the role of the statistical and genetic parameters to be considered in the sample size
calculation, show examples reporting incorrect estimation and, by using a genetic software program,
we provide a practical approach for the assessment of the adequate sample size in a hypothetical
study aimed at analyzing a gene–disease association.

Keywords: genetic association study; SNP; sample size; genetic software; complex diseases;
diabetic nephropathy

1. Introduction

The prevalence of hypertension, diabetes, heart failure and cancer is continuously
rising worldwide [1]. These complex clinical conditions are influenced by the function of
multiple genes that, along with environmental factors, induce the development and/or
progression of these morbid conditions. In this setting, a risk variant is not deterministic
like in Mendelian monogenic disorders but only increases the risk of disease, typically
contributing a weak effect on the etiology of the disease itself [2].

Genetic association studies, analyzing the relationship between genetic variants and
disease traits, are a useful tool for detecting susceptibility variants that contribute to com-
plex diseases [3]. In this respect, if a genetic variant occurs more often than expected
by chance in affected subjects, then it could be suggested that this variant is associated
with an increased risk for the disease [4]. During the last two decades, the Human
Genome Project, by providing a deeper comprehension of human diversity, provided
a great boost to such studies, allowing us to exploit genetic variants, i.e., microsatellites,
insertions/deletions, variable number tandem repeats (VNTRs), copy-number variants
(CNVs) and single nucleotide polymorphisms (SNPs), as essential tools to unravel the
genetics of multifactorial disorders [5]. Even just focusing on SNPs, the most common
type of genetic variant, the likelihood of identifying numerous genetic determinants that
contribute to the pathogenesis of rare and common diseases is high [6]. Indeed, although
the human genome variable portion is less than 0.1%, it is equivalent to several million
nucleotide differences per individual. However, to date, despite the fact that most genetic
association studies are adequately designed and analyzed [7], there are some studies in
this field that have not completely fulfilled their promises for the inconsistency of scientific
data, mainly due to inadequacies in study designs [8–10]. In particular, an inadequate
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number of patients is one of the major and most common limitations in these studies, thus
demonstrating that sample size is a crucial factor for the success of a study [2,11,12]. Indeed,
a small sample may include a disproportionate number of outlier subjects that skew the fair
picture of the population, whereas too large a sample makes the study complex, expensive
and time-consuming to run. Thus, selecting the correct sample size is the only way to
ensure reliable results.

With this perspective, we will focus on the thorny issue of sample size in genetic
association studies in unrelated individuals and analyze the parameters to be considered
for determining the adequate number of subjects to enroll. Then, we will examine tools
designed for sample size calculation in genetic association studies and apply them to
examples from the nephrology literature to critically evaluate the reliability of the results.

Despite the relevant role of gene–gene and gene–environment interactions in the
comprehension of the gene–disease link, we will overlook the issue because it is beyond
the aim of the manuscript.

2. Sample Size Definition and Parameters for Its Calculation

When the number of subjects in a population is too large to be studied, the investiga-
tion is often restricted to a subset of manageable size of randomly collected individuals. As
a consequence of random sampling, virtually no difference exists regarding the characteris-
tics between individuals from the sample and those from the source population; thus, any
conclusion in the sample can be inferred to apply to the entire population. However, the
fact that we test hypotheses in a sample rather than in the population poses a problem of
agreement between the results observed in the sample and those observed in the population.
In the source population, a given effect may not exist or exist, thus raising two mutually
exclusive hypotheses, the null hypothesis (H0) and the alternative hypothesis (H1). To put
it simply, in genetic association studies, H0 asserts that a variant is not associated with the
phenotype of interest, whereas H1 states the opposite.

By definition, the sample size is the number of subjects included in a study to represent
the real population. The greater this number, the more representative it is of the population
as a whole. However, “bigger is not better” and the assessment of the adequate number of
individuals needed to answer the research question is crucial to avoid wasting time and
resources [13]. The process of sample size calculation is known as power analysis and has
the purpose of determining the smallest sample size suitable to detect the occurrence of
a “true” effect that is necessary to reject the null hypothesis. Normally, power analysis
should be carried out before the data collection, at the design stage of a quantitative
study, but it can also be formally performed during the study (adaptive design—sample
size reassessment) if no reliable information on parameters is available in the planning
phase [14].

The sample size calculation depends on several parameters whose values, if inappro-
priately assumed, determine the inconsistency of the results. Although the probabilistic
nature is the intrinsic limitation of this procedure, the power analysis is the unique strategy
that allows researchers to grant robustness to the studies.

In the genetic field, the associations between genes and complex diseases can reliably
be detected and replicated if the sample size is appropriately large. In this setting, the
sample size calculation is a complex question that includes a number of assumptions about
a series of basic and specific parameters such as the alpha and beta errors, the power
of the study, the variability of the outcome, the prevalence of the disease, the effect size,
the allele frequency, the strength of linkage disequilibrium, the genetic models and the
misclassification errors (Table 1).
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Table 1. Basic and genetic parameters for the sample size calculation in the genetic association studies.

Definition

Basic

Alpha (Type I error or
significance level)

The probability of incorrectly rejecting H0 according to sample results when it is
actually true in the source population (false positive).
The conventional value of the significance level is set at 0.05 indicating that there is
a 5% probability of incorrectly rejecting the true H0.

Beta (Type II error)

The probability of incorrectly retaining H0 according to sample results when it is false
in the source population (false negative).
The conventional value of this second kind of error is set at 0.20, meaning that the
probability of failing to detect a statistically significant difference when it does exist, is
no more than 20%.

Power (1-beta)

The probability of correctly detecting a significant difference in the sample when it
actually exists in the source population.
Being the complement of beta, the conventional value of the power is 0.80, indicating
that there is 80% probability of avoiding a false negative result.

Genetic Prevalence The proportion of individuals with the disease in a population at a given point in time.
The smaller the proportion of affected subjects, the larger the sample size required.

Effect size

The numeric value that indicates the strength of the association between a gene
variant and a disease or the magnitude of the difference in the allelic/genotypic
frequency between groups (i.e., cases and controls).
For binary outcomes, it is expressed as a relative risk/odds ratio, while for continuous
outcomes, as a percentage of the phenotypic variance.
The smaller the effect size, the larger the sample size required.

Minor allele frequency (MAF)

The frequency of the second most frequent allele for a polymorphism. According to
MAF, a genetic variant can be classified as common (MAF > 5%), uncommon (1–5%
MAF) and rare (MAF < 1%).
The higher the MAF, the smaller the number of patients to be studied.

Linkage disequilibrium (LD)

The non-random association of two or more alleles at different loci that occur together
on the same haplotype more often than expected.
The stronger the linkage between the marker allele and the disease allele, the higher
the power of the study and the lower the sample size required to detect the
gene–disease association.

Genetic inheritance model

The model of inheritance of a genetic variant. Three genetic models are usually
adopted: dominant, recessive and additive model.
Genetic model misspecification reduces the study power and thus requires a higher
sample size.

Errors
They result from genotype/phenotype misclassification and/or missing
genotype data.
Their effect on the power loss cannot be quantified at the design stage of the study.

2.1. Alpha and Beta Errors

In the planning phase of a genetic association study, two errors, namely the Type I
error (or alpha) and the Type II error (or beta), should be considered.

These errors measure the probability of incorrectly rejected or retained H0, generating
false positive or false negative results, respectively.

Specifically:

- Alpha (α) or the probability of Type I error occurs when H0, although actually true
in the source population, is falsely rejected based on sample results (false positive
result) [14]. The magnitude of this error is chosen in advance and conventionally fixed
at 0.05 or 5%.

- Beta (β) or the probability of Type II error occurs when H0, although false in the source
population, is incorrectly not rejected according to sample results (false negative
result) [14]. It is usually set at 0.20 or 20%.
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Power is the complement of beta, i.e., 1 − β or Type II, error probability. Consequently,
if β is 0.20, the power is 0.80, meaning that there is 80% probability of avoiding a false
negative result or the chance of correctly detecting a significant difference in the sample
when it actually exists in the source population [15].

As a general rule, the greater the number of subjects, the lower the errors (α and β),
the higher the study power and the more robust the study conclusions.

2.2. Outcome

The outcome is the dependent variable of a study that changes in relation to one or
more independent variables. Based on the number of values that it can take, this variable
may be categorical (limited values) or continuous (infinite values). In genetic association
studies, if the outcome is a binary variable (i.e., presence or absence of the disease), the
parameter to be considered for the calculation of the sample size is the prevalence of
the disease, which is the proportion of individuals with the disease at a given point in
time. If the outcome is a continuous variable (i.e., systolic blood pressure, body mass
index), the parameter used to assess the sample size is the estimate of its variability, i.e., the
standard deviation (SD). The greater the SD, the larger the sample size needed to obtain that
an observed effect is actually true. When the prevalence of the disease and the variability
of the outcome in the population of interest are unknown, these data may be retrieved from
the literature.

2.3. Effect Size

The effect size is a numeric value that measures the magnitude (or size) of the relation-
ship between two variables or the difference between groups as it would be expected to
occur in a population [16]. The larger the effect size, the stronger the relationship between
two variables or the greater the difference between groups. The effect size is essential to
interpret results that, despite being statistically significant, may have such a small effect
that they are considered clinically irrelevant. Specifically, in genetic association studies, the
effect size measures the strength of the association between a gene variant and a disease or
the magnitude of the difference in the allelic/genotypic frequency between groups (i.e.,
cases and controls).

For binary outcomes, it is expressed as a relative risk to odds ratio depending on the
study design, while for continuous outcomes, as a percentage of the phenotypic variance.
An odds ratio of three indicates triple odds of disease, and an effect size of 25% means that
a quarter of the variability of a continuous trait is attributable to the risk allele.

The effect size and the sample size are two measures inversely related; the larger the
effect size, the smaller the number of patients to be studied [16]. Nevertheless, the genetic
effect on complex diseases is usually modest and characterized by relative risks/odds ratios
of 1.1–1.5 (a 10–50% increase in the probability of developing a disease) and a contribution
to a continuous genetic trait of about 0.05% [17]. Such small effects explain, at least in part,
why large samples are usually needed to perform reliable genetic association studies.

2.4. Minor Allele Frequency

A single nucleotide polymorphism is a genetic variant present in at least 1% of the
population. It results from a single nucleotide substitution at one specific locus in the
genome and provides two alternative forms of a gene, known as alleles [18]. Depending on
the DNA regions where they fall, SNPs may change the amino acid sequence of proteins
or affect the expression levels of the genes. However, independently of their functional
role, SNPs are crucial for the inter-individual variability of the human genome and, as
a consequence, the person’s genetic makeup that is predisposed to diseases [19]. According
to the frequency of the minor allele (MAF), a genetic variant can be classified as common
(MAF > 5%), uncommon (1–5% MAF) and rare (MAF < 1%). Typically, genetic association
studies are sufficiently powered only to test common genetic variants because uncommon
and rare variants are found in a small number of individuals and need of huge samples
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to be studied. For the most complex diseases, the allele with the least frequency implies
risk more often than protection in populations of European ancestry [20]. However, since
allele frequencies vary considerably across populations [21], a variant which is common in
a population may be rare in another one, making the sample size assessment a population-
dependent calculation.

2.5. Linkage Disequilibrium

Linkage disequilibrium (LD) is the non-random association of two or more alleles
at different loci that occur together on the same haplotype more often than expected.
Alleles in high LD are closely linked on a chromosome and thus are seldom separated by
recombination events. They can be grouped into clusters of variable size, termed LD blocks,
which are inherited as such and whose pattern varies across the populations depending on
the genetic processes which concurred to structure the genome of each population. The
standard pairwise measures of LD are D’ and r2, namely Lewontin’s coefficient and the
equivalent to the Pearson correlation coefficient, respectively [22]. Both these coefficients
measure the strength of the association between alleles and range from 0 to 1, that is, from
unlinked alleles to alleles in complete LD. In common practice, r2 is more widely utilized,
and the threshold of r2 > 0.8 is used to assume that two alleles are strongly associated.

The power of a genetic association study is a function of LD, being maximal if the
causal variant and the marker SNP are in complete LD. Otherwise, if the causal variant and
the marker SNP are incompletely associated, the power decreases parallel to the reduction
of LD between the disease and the marker allele. Therefore, the stronger the correlation
of the marker allele to disease allele, the higher the power of the study and the lower the
sample size required to detect the gene–disease link.

Some genetic association studies consider a set of variants, called tag SNPs, that
are the minimum number of SNPs able to capture the whole variability of the gene in
strong linkage disequilibrium with all the other SNPs mapping on the gene itself. These
studies require testing multiple associations; then, to avoid increasing alpha error and false
positive results, a correction for multiple comparisons and, consequently, a proportional
enhancement in the size of the sample are recommended steps.

2.6. Genetic Inheritance Model

The model of inheritance of a genetic variant is often unknown; then, for the assess-
ment of the clinical effect of an SNP, a genetic model needs to be assumed [23]. Three genetic
models are usually adopted: a dominant, recessive and additive model. In the dominant
model, the A allele is assumed to prevail on the a allele, thus generating two genotypes, AA
and Aa, that, identically influencing the risk of disease, are grouped in a single category,
opposed to the one including the aa genotype (AA + Aa vs. aa). Conversely, in the recessive
model, the aa genotype is the only one with clinical relevance, compared to Aa and AA
genotypes, which are then both included in a single group, providing again a binary model
(aa vs. Aa + AA). Finally, in the additive model, the dichotomization of the genotypes is
lost in favor of an independent categorization of the three genotypes that are assumed to
contribute differently to phenotype (AA vs. Aa vs. aa).

The additive model is frequently assumed when there is no biological evidence re-
garding the underlying genetic model of an SNP [24]. However, misspecifying the true
genetic model results in a reduction of the study power [25]. Indeed, if a binary (dominant
or recessive) model is incorrectly modelled as additive, the risk of disease for heterozygous
individuals is under- or overestimated, and this imprecision represents an error that de-
creases the power of the association. Of note, the magnitude of the error changes in relation
to the frequency of the SNP because the more common the SNP, the larger the proportion
of heterozygotes and, hence, the number of individuals with an inaccurate estimate of the
risk. Therefore, at the design stage of a genetic association study, the most conservative
sample size under the three genetic models should be selected in order to ensure adequate
power, even when a misspecification error can occur.
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As a general rule, under the same assumptions, the dominant model needs the smallest
sample size to achieve adequate statistical power, whereas the recessive model is the one
that requires the largest number of participants.

2.7. Errors

Genotype/phenotype misclassification and missing genotype data are common errors
in genetic association studies and their effect on the power loss is, actually, impossible to
quantify at the design stage of the study. Although statistical strategies may be adopted to
deal with such errors, a convenient solution is to design a study with a higher power [26],
though the improvement of data quality remains the best approach to minimize errors and
limit the number of individuals enrolled in the study [27].

3. Examples of the Sample Size Calculation

The calculation of the sample size should be performed for all genetic association
studies and each assumption underlying the power analysis should be accurately reported.
However, the majority of studies indicate only the power and the alpha error values,
completely neglecting to show the estimates of all the parameters conventionally used for
sample size calculation. In particular, in nephrological research, studies designed to test the
effect of gene variants on renal diseases rarely include the sample size calculation. To assess
the prevalence of power analysis in genetic studies in nephrology populations, we carried
out a search of Medline, as shown in Box 1. In the overwhelming majority of the retrieved
articles (N = 1660), sample size calculation was not reported. Specifically, the proportion of
the studies including the power analysis was 15/1660 (0.9%) (Box 1); this result provides
evidence that, although the number of studies investigating the effect of SNPs in renal
disease is relevant, the sample size calculation is an extremely overlooked issue.

Box 1. Search strategy and selection criteria.

In a search strategy aimed at identifying the genetic association studies in patients with kidney
disease that include power analysis, we searched Medline database for the effect of SNPs on
various renal outcomes in case-control and prospective studies. We identified papers combining
the following search terms in the title: “genotype” or “polymorphism” or “isoform” or “genome-
wide” or “GWAS” or “genetic” or “allele” or “gene” AND “kidney” or “renal” or “dialysis” or
“hemodialysis” or “nephropathy” or “transplant” or “glomerular filtration rate” or “allograft” AND
“death” or “mortality” or “cardiovascular” or “myocardial infraction” or “stroke” or “peripheral
arterial disease”. After removing duplicates, the research produced 1660 articles and only 15 studies
included the power analysis in the Methods section.

Of the 15 retrieved studies, 5 included a post hoc power analysis, 4 only reported a brief
sentence about the sample size calculation without specifying the parameters considered
to perform this analysis and 3 were GWAS studies reporting poor information about
the power analysis. The remaining 3 were the studies that we took into account for our
didactic purposes.

3.1. Example 1

The study by Yang et al. analyzed the association between the Pro12Ala polymorphism
in the peroxisome proliferation-activated receptor γ 2 (PPARγ2) gene and the progression
of diabetic nephropathy in patients with type 1 diabetes [28]. The authors genotyped
197 Caucasian patients with type 1 diabetes (116 with diabetic nephropathy and 81 without
renal complications) and 151 ethnically matched healthy controls and found no association
between the Pro12Ala polymorphism and the rate of decline in renal function in terms of
estimated glomerular filtration rate (GFR).

The power of the study was assessed by a post hoc analysis carried out by UCLA Binomial
power calculation software. The analysis shows that the sample size reported in the study had
a 75% power, at a 0.05 significance level, to detect a difference of 2 mL/min/year in the rate
of GFR decline between the two genotype groups (Pro12Pro vs. Pro12Ala + Ala12Ala) of the
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Pro12Ala polymorphism in diabetics and healthy controls, as well as in diabetic patients
with and without nephropathy.

Criticisms

In this study, the power calculation has several flaws. First and foremost, the UCLA
Binomial power calculation software is inadequate to assess the study power in genetic
association studies because it lacks any information about a series of genetic parameters
that strongly influence this calculation. Second, the authors do not provide any details
about the expected effect size in the two groups, actually making the power calculation
unreproducible. Third, a study with a power less than the conventional threshold of 80% is
usually considered quite unreliable [29].

3.2. Example 2

Scientific evidence supports a key role for some allelic variants located in genes
involved in the immune response and bioavailability and kinetics of immunosuppressive
therapy in acute rejection [30]. Screening for these SNPs prior to transplantation may
provide valuable information to clinicians who can tailor personalized drug dosage to
ensure maximum immunosuppression with minimum toxic side effects.

On this background, Scalzotto et al. tested the association between 19 SNPs within five
different genes (IL10, TNFα, ABCB1, UGT1A9 and IMPDH2) involved in the inter-individual
variability in immunosuppressive treatment response and the incidence of acute rejection in
kidney transplant (KT) patients [31]. They enrolled 220 subjects and divided them in three
experimental groups: 41 KT recipients with acute rejection (Case group), 109 KT recipients
without acute rejection (Control I group) and 70 healthy blood donors (Control II group).
Genetic analyses revealed that patients with C allele at rs1045642 and A allele at rs2032582
of the ABCB1 gene were at high risk for acute rejection after transplantation.

Criticisms

In this study, the issue of the sample size is shortly addressed in the Statistical Analysis
paragraph where the authors report having performed power analysis using the QUANTO
program. With the exception of α = 5% and power (1 − β) = 80%, the authors do not
include any further information about the parameters used to estimate the sample size,
making this process unreproducible.

3.3. Example 3

This study is an extension of the study reported above and was carried out by the
same authors after having increased the number of KT recipients with acute rejection (Case
group) from 41 to 74 patients [32]. The size of the Control I and Control II groups remained
unchanged, and the total number of enrolled individuals was 253. The aim of this new
study was to reassess the genetic associations previously observed in light of a larger Case
group, which was underpowered in the preliminary study. The results of the current
analysis did not confirm the associations between the polymorphic variants in the ABCB1
gene and the risk of acute rejection after transplantation.

Criticisms

In this study, the crucial role of the sample size is clearly addressed, mentioned in
the title and extensively discussed in the paper. The authors claim that the sample size
calculation is a fundamental but usually neglected aspect of the scientific research design,
highlighting it as the reliability of study results may be compromised by an inadequate
sample size. However, they do not report any information about the procedure applied to
assess the sample size. In particular, they do not provide any important parameter, such
as the prevalence of acute rejection in KT patients or the effect size of the SNPs on acute
rejection in renal allograft recipients, limiting themselves to stating in the Methods section
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that, according to the QUANTO program, the number of cases and controls was adequate
to achieve an 80% study power at the significance level of 0.05.

4. Sample Size Calculation: A Practical Approach

Neuropeptide Y (NPY) is a 36 amino-acid peptide with various physiological actions
present in both central and peripheral nervous systems. It is a strong vasoconstrictor and is
abundantly released from post-ganglionic sympathetic neurons in response to sympathetic
stimulation [33]. Chronic kidney disease is a condition characterized by high sympathetic
activity, whose detrimental effects on blood pressure and glomerular filtration rate (GFR)
are partly mediated by NPY [34]. NPY derives from the pre-proneuropeptide NPY (prepro-
NPY) that, by undergoing a series of enzymatic cleavages, yields the mature molecule [35].
The genetic polymorphism 1128T>C (rs16139) in the signal sequence of the prepro-NPY
causes an amino acid change from leucine to proline at codon 7 (Leu7Pro) that, by altering
intracellular processing of the precursor, increases NPY bioavailability [36]. The functional
role of this polymorphism is consistent with higher plasma levels of NPY in Pro7 carriers
in response to maximal stress conditions [37].

In European countries, the frequency of the C allele (Pro7) increases according to a
geographical south-to-north gradient [38], and in Swedish female patients with type 1
diabetes, this allele has been significantly associated with diabetic nephropathy [39].

As an example, we will perform a power analysis aimed at determining the smallest
sample size suitable to detect whether such an association holds true in CEU patients with
type 1 diabetes as well. For this purpose, we will use the QUANTO program [40] and
illustrate, step-by-step, the parameter settings required by the software to test the main
effect of the NPY 1128T>C polymorphism on diabetic nephropathy in a case-control study.

We open the calculator, choose Parameters in the toolbar on the top of the screen, and
proceed as follows:

4.1. Outcome/Design (Figure 1)

The study is aimed at comparing the genotype frequencies of the 1128T>C poly-
morphism between diabetic patients with renal complication (cases) and those without it
(controls). Therefore, we select Disease and not Continuous outcome, because our outcome
is a binary variable (having/not having the disease), and choose an unmatched case-control
design. In the Controls per Case dialog, we type the value of 1, meaning that we choose an
equal number of controls and cases. In this respect, by increasing the number of controls
per case, the study power linearly increases up to a control-to-case ratio of 4:1 [41].
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We select Gene Only because we are interested in the main effect of the gene on the
disease and not in the gene–environment or gene–gene interaction.
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4.3. Gene G (Figure 3)

In the dialog, under Allele Frequency, we type the frequency of the C allele; that is
0.04 (4%) in CEU population. Sometimes the frequency of the minor allele may vary across
subpopulations belonging to the same ethnic group and, thus, the boundary values should
be typed together with a fixed incremental rate.

In the same dialog, under Inheritance mode, we select the dominant model for the C
allele, given that in CEU population the CC (Pro7/Pro7) genotype is extremely rare.

The values reported in the Susceptibility Frequency box are automatically computed
based on the allele frequency and inheritance model selected.
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4.4. Outcome Model (Figure 4)

In the Disease Risk Parameters dialog, we select Population Risk and type 0.30 (30%);
that is the prevalence of the disease (Kp) in the population and, specifically, the risk of
diabetic nephropathy in CEU patients with type 1 diabetes, as retrieved from the litera-
ture [42].

Then, in the Genetic Effect box, we type the genetic relative risk/odds ratio (Rg); that
is 2.614, as reported by Ma et al. [39]. As for the minor allele frequency, the size of the
genetic effect may also have a precise value or range between two values.

The OR Summary box automatically reports the genetic effect size according to the
genetic model assumed, where 1.0 is the reference risk and 2.614 the risk of disease that is
associated to the C allele.
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4.5. Power (Figure 5)

In the Power dialog, the arbitrary value of 0.80 is automatically reported, as well as
the value of 0.05 for the significance level (Type I error rate) of a two-tailed statistical test.
These values can be freely modified according to stringency conditions.
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4.6. Calculate (Figure 6)

The Calculate selection provides a table reporting the number of case-control pairs (N)
needed to achieve the desired power.
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If the genetic effect size ranges between two values, the output provides a table
including a list of sample size values that decrease parallel to the increase of the effect size.

Specifically, if we consider that the effect size may vary between 2.614 and 3.379 [39]
and type this interval in the Genetic Effect box using an arbitrary incremental rate of 0.20,
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we obtain a table including four values of sample size, each calculated according to a
corresponding value of effect size (Figure 7).
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5. Software Programs for the Sample Size Calculation

Various software programs for sample size calculation in genetic association studies
are currently available. They can be used to calculate the sample size based on different
types of data and study designs. Several programs require a paid license but there are also
some websites that allow sample size calculation for free. Examples of freely available
programs are:

- QUANTO. It is a program that allows one to address hypotheses related to gene and
environment only; gene–environment and gene–gene interactions. It is applicable to
discrete and continuous phenotypes and deals with a large range of study designs
including matched and unmatched case-control studies, case-sibling, case-parent trio
and case only. In addition to the basic parameters, it requires specific parameters
such as the MAF, the disease prevalence, the genetic effect size and the inheritance
model [40].

- ESPRESSO.G. It is an R script sample size calculator aimed at investigating the role
of genes and environment on discrete and continuous phenotypes. It supports cal-
culations for stand-alone case-control studies and for case-control analyses nested
in cohort studies. In particular, this tool takes into account genotype/phenotype
misclassification errors [43].

- GENPWR. It is an open-source R package that defines the sample size for dichotomous
or continuous outcomes in gene only and gene–environment interaction studies. By
comparing the various genetic models (additive, dominant and recessive) to find the
one that best fits the data, this tool allows one to calculate sample size in the presence
of genetic model misspecification [44].

- OSSE (Online Sample Size Estimator). It is the simplest online sample size estimator
for case-control study design. The unique parameters required are the alpha error,
the study power, the MAF for cases and controls and the ratio of cases to controls.
No assumptions about the nature of the phenotype, the genetic inheritance model
or the effect size are needed. This software does not address gene–environment
interactions [16].

- PAWE (Power for Association With Error). It is a sample size calculation web-based
tool available on the Rockfeller site and designed for genetic case-control studies
that evaluate the association between SNPs and complex discrete traits. Among the
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specific parameters, it requires the effect size, the MAF and the LD and allows for
misclassification errors [45].

- GPC (Genetic Power Calculator). It is a user-friendly computer software that performs
power calculations for genetic association studies. It computes statistical power
under varying disease allele frequency, disease prevalence, genotype relative risk and
inheritance models. This tool requires a priori the number of cases and controls and
graphically plots the relation between sample size and study power [46].

- PGA (Power for Genetic Association analyses). It is a package tailored to estimate sam-
ple size in case-control studies of SNPs in unrelated individuals. However, being able
to account for statistical multiple comparisons, it can also be used for fine-mapping
association studies and whole-genome scans. The program provides a computational
and graphical interface for the relation between statistical power and sample size un-
der different genetic inheritance models, disease allele frequency, disease prevalence
and relative risk and accounts for LD between the marker and the disease allele [47].

6. Conclusions

The sample size critically affects the reliability of scientific studies. If the sample
is too small, the results may not accurately describe the population, while if it is too
large, the study may become unwieldy and wasteful in terms of time and resources.
Therefore, planning an accurate estimation of the sample size at the design stage of a genetic
association study is crucial to obtain consistent results. Unfortunately, in the nephrology
field of the genetic research, the sample size calculation is an overlooked issue being rarely
performed and, when provided, it is often inadequately reported. In this context, the
knowledge of the parameters that play a role in sample size calculation and the software
programs developed for its estimation are essential components for improving the quality
of scientific research.
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