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Abstract: Cancer is a multifactorial, complex disease exhibiting extraordinary phenotypic plasticity
and diversity. One of the greatest challenges in cancer treatment is intratumoral heterogeneity, which
obstructs the efficient eradication of the tumor. Tumor heterogeneity is often associated with the
presence of cancer stem cells (CSCs), a cancer cell sub-population possessing a panel of stem-like
properties, such as a self-renewal ability and multipotency potential. CSCs are associated with
enhanced chemoresistance due to the enhanced efflux of chemotherapeutic agents and the existence
of powerful antioxidant and DNA damage repair mechanisms. The distinctive characteristics of CSCs
make them ideal targets for clinical therapeutic approaches, and the identification of efficient and
specific CSCs biomarkers is of utmost importance. Aldehyde dehydrogenases (ALDHs) comprise a
wide superfamily of metabolic enzymes that, over the last years, have gained increasing attention
due to their association with stem-related features in a wide panel of hematopoietic malignancies and
solid cancers. Aldehyde dehydrogenase 1B1 (ALDH1B1) is an isoform that has been characterized
as a marker of colon cancer progression, while various studies suggest its importance in additional
malignancies. Here, we review the basic concepts related to CSCs and discuss the potential role of
ALDH1BI1 in cancer development and its contribution to the CSC phenotype.
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1. Introduction

Cancer is a term used to describe a wide panel of diseases that mainly involve un-
controlled cellular proliferation, and in aggressive cases, the metastatic invasion of cancer
cells to the circulatory system and eventually to new, healthy tissue(s) [1]. It is a major
global health issue, considering that in 2021, 1,898,160 new cases of cancer as well as
608,570 cancer-related deaths occurred in the United States of America alone [2]. Several
risk factors are suggested to be associated with the development of cancer, including
inflammation, aging, smoking, growth factors, hormones, radiation, alcohol, diet, and
obesity [3].

Cancer is defined by 14 different hallmarks, including its limitless replicative potential,
constant proliferative signaling, ability to evade cell death and growth suppressors, activa-
tion of angiogenesis or access to the vasculature, induction of tissue invasion and metastasis,
reprogramming of metabolism, escape from immune destruction, tumor-inducing inflam-
mation, and genetic instability. Additionally, properties that are related to and enable
cancer growth are the abilities of phenotypic plasticity, cellular senescence, polymorphism
of microbiomes, and epigenetic alterations [1,4,5]. The process by which a non-malignant
cell gradually acquires cancer-promoting characteristics is termed malignant transforma-
tion or carcinogenesis. Carcinogenesis is a long, complex and multi-step procedure that
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can be categorized, in a simplified, conceptual manner, into three main stages: initiation,
promotion, and progression (Figure 1) [6].

Normal Cell Initiated Cell Preneoplastic Cell Malignant Cell
Initiation Promotion Progression B

Figure 1. The process of malignant transformation. Cancer is a multi-staged procedure in which
cells gradually acquire malignant characteristics. Initiation includes certain genetic/epigenetic
changes resulting in the deregulated control of processes, such as cell-cycle progression, apoptosis,
and proliferation. The clonal expansion of the initiated cell, which exhibits defective apoptosis,
abnormal cell-cycle arrest, and excessive proliferation, leads to the formation of a preneoplastic
lesion of closely attached cells. During progression, the genetically unstable preneoplastic cells
progressively accumulate novel, malignant-related properties, such as the ability to escape from
immune surveillance, migrate and invade new tissues, and form new tumors.

Initiation is an irreversible process that involves the deregulation of one or more genes
associated with crucial regulatory pathways, either by chromosomal genetic or epigenetic
alterations. These genes are considered to be either oncogenes, the activation of which
results in increased cellular proliferation, or tumor-suppressing genes, the inhibition of
which induces the inactivation of cell-cycle arrest and/or apoptosis [7,8]. A malfunction
of these genes leads to the transformation of a healthy cell into a preneoplastic cell [9,10].
An important aspect of cancer research is identifying the origins of cancer, i.e., the first
cell(s) acquiring preneoplastic properties and the molecular context that supports and
drives this biological process. Up until now, the origins of many cancers remain elusive.
Recent experimental data report that while both stem and non-stem cells can initiate
malignant transformation, the capacity to do so depends on the type of tissue and resulting
cancer [11-15].

Promotion refers to the selective clonal growth of the preneoplastic, initiated cell
and its progeny as a result of their ability to evade apoptosis and/or their enhanced cell
proliferation. At the promotion phase, the expanded clone of the preneoplastic cells forms
a benign tumor in which the cells remain in close contact with each other; thus, they cannot
detach from one another [9,16].

Finally, during progression, the preneoplastic cells acquire a neoplastic phenotype by
progressively acquiring additional malignant-related characteristics, such as invasiveness
and metastatic potential. It has been proposed that the acquisition of these properties could
be attributed to various factors, such as genetic/chromosomal instability and epigenetic
deregulation. At this stage, certain cancer cells have acquired the capacity to detach from
their initial location, invade nearby or distant tissues and, consequently, lead to the for-
mation of secondary tumors (metastasis) [16,17]. Interestingly, the now malignant tumor
comprises cancer cells with various genetic, epigenetic, morphological, and metabolic prop-
erties that exhibit significant differences in their proliferation, tumorigenic, and metastatic
potential. Thus, tumors comprise distinct and highly heterogeneous cell populations [18].

The phenotypic and genomic diversity of cancer constitutes, perhaps, one of the
greatest challenges to overcome for improving current clinical approaches as well as for
developing novel, efficient therapeutic strategies. To this day, most anticancer protocols
manage to kill bulk tumor populations efficiently, however, they fail to target all the dif-
ferent cancer cell types [19]. Considering the detrimental clinical effects of intratumoral
heterogeneity (e.g., chemo/radio-resistance, increased aggressiveness, metastasis, and dis-
ease recurrence), it is of crucial importance to investigate the underlying mechanism(s) [20].
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2. Cancer Stem Cells (CSCs)

The diversity of cancer cells in the same tumor bulk has led to the development of
several theories for explaining tumor progression. Among them, there are two prevailing
models that do not necessarily contradict one another: the clonal or stochastic and the
hierarchical or cancer stem cell models [21-24]. According to the clonal model (Figure 2),
the genetic and epigenetic instability of cancer cells is the driving force of tumor hetero-
geneity [25]. Consequently, all cancer cells initially have the same capacity to acquire the
properties required for leading the formation of a new tumor [26]. On the other hand,
the CSC model (Figure 3) designates that tumors are organized in a hierarchical man-
ner, similar to that of a normal tissue, in which only a small subset of cells, CSCs, are
responsible for driving tumor development as well as leading to metastasis and/or disease
recurrence [27,28].

Cancer cells with
different phenotypes

Normal cell Cancer cell

@
® ©
(®)

Malignant Genetic instability Tumor heterogeneity
transformation

Figure 2. The clonal or stochastic cancer development model. In the clonal model, every cancer cell has
the potential to promote the development of a new tumor. The driving force of tumor heterogeneity is the
genetic instability of cancer cells that results in the accumulation of DNA alterations and, consequently,
the formation of cancer cells with different genotypes and, thus, phenotypes.

Cancer stem cells attribute their name to the stem-like properties they possess, such
as their self-renewal potential, asymmetrical cell division, multi-lineage differentiation
capacity, ability to remain in a non-differentiated-quiescent state, potential to form new
heterogeneous tumors, and their capability to exhibit phenotypic plasticity [29-31]. CSCs
were first identified in an immunodeficient NOD/SCID mouse model of acute myeloid
leukemia (AML) [32]. Specifically, a CD34+/CD38- sub-population, which constituted
approximately 0.1-1% of the total population of leukemic cells, was found to exhibit
properties similar to that of normal stem cells in addition to having the ability to initiate
AML [32]. Since then, CSCs and their tumorigenic potential have been identified in a wide
spectrum of both hematopoietic and solid malignancies [33].
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Figure 3. The hierarchical or cancer stem cell development model. In the hierarchical model, cancer
stem cells are able to self-renew and differentiate into multiple, different cancer cell types and, thus,
induce the formation of a new tumor with the same heterogeneity as the initial one. Some studies
support the existence of distinct CSC subpopulations within a tumor. An important aspect that
has not yet been clarified is whether CSCs originate from normal stem cells undergoing malignant
transformation or whether they derive from differentiated cells that acquire stem-related properties
during carcinogenesis. Finally, certain reports demonstrate the plasticity of CSCs, which appear to
have the potential to switch between the CSC and the non-CSC states through unknown mechanisms.

CSCs have been the subject of extensive studies over the past several years; never-
theless, their origin remains unclarified, and it is unknown whether they originate from
normal stem cells undergoing neoplastic transformation or whether their stem-like proper-
ties derive from the accumulation of genetic alterations in differentiated cancer cells [34,35].
The concept of CSCs becomes even more complex when considering that, within the same
tumor, various subpopulations of CSCs with distinct phenotypes and properties are able to
co-exist. Furthermore, newly presented data describe CSCs as a dynamic rather than a static
population, having the ability to inter-convert both between the CSC and non-CSCS states,
as well as between the different CSC phenotypes through unclarified mechanisms [36—40].

Even though CSCs represent only a small proportion of cancer cells, they have an
important impact on the clinical course of the disease due to their increased radio/chemo-
resistance as well as their enhanced tumorigenic and metastatic abilities. Conventional
therapeutic approaches do not effectively target the CSC population, and these cells can then
initiate new tumors and, consequently, lead to disease recurrence and/or metastasis [41,42].

2.1. Methods for Isolating CSCs

Due to their high clinical importance, several methods have been developed for
efficiently distinguishing and isolating CSCs from the tumor bulk. The most prevailing
methods for CSCs’ isolation include the sorting of cells based on their cell-surface markers,
a side-population (SP) analysis through Hoechst 33342 exclusion, a sphere formation assay
and the utilization of ALDH enzymatic activity (Figure 4) [43,44].
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Figure 4. Methods for isolating CSC-like cells. A variety of different methods have been developed
for isolating and enriching CSCs from different samples. Often these methods are combined to
achieve efficient isolation of CSCs. (A) Selection based on the expression of certain cell-surface
markers. (B) Isolation based on the ability of cells to efflux certain stains. (C) Enrichment based on
the formation of 3D tumorspheres. (D) Isolation through determining ALDH enzymatic activity.

A wide variety of specific transmembrane proteins, such as SSEA3, CD24, CD26, CD34,
CD44, CD55, CD133 (or prominin-1), CD166, CD326 (or EpCAM), ABCG2, CD49%f, and
CXCR4 can be used as biomarkers for the isolation of CSC populations via fluorescence-
activated cell sorting (FACS) as well as through the utilization of magnetic beads with
immobilized antibodies (magnetic-activated cell sorting (MACS)) (Figure 4A) [33,45,46].
However, the expression of these markers is not universal. On the contrary, the expression
of most of these markers is highly dependent on various factors, such as the type of cancer,
the histotype of the tumor, and the cell model used (primary cell cultures, tumor specimens,
or established cell lines). Additionally, certain technical aspects, for instance, the protocol
applied for isolating and /or disassociating cancer cells or even the culturing conditions,
are associated with the proteolysis of cell-surface proteins and, thus, affect the use of these
markers. The FACS procedure itself can also induce stress and, consequently, abnormal
cellular behavior [47-51]. Finally, the usage of different sets of cell-surface markers often
leads to the isolation of CSCs with different characteristics. Due to these limitations, the
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use of cell-surface markers is most often used in combination with other isolation protocol
methods [52-54].

Side-population (SP) analysis is a widely used assay for isolating cancer cells with
the ability to efflux DNA-binding fluorescent dyes via the ATP-binding cassette (ABC)
transporters, such as BCRP/ABCG2 and MDR1/ABCB1 (Figure 4B) [55-57]. Specifically,
cancer cells are stained with Hoechst 33342 or Rhodamine 123 and then analyzed through
flow cytometry. SP cells effectively pump out the dye and, thus, appear unstained. The
analysis is repeated in the presence of a pump inhibitor such as reserpine or verapamil to
validate the specificity of the procedure [48]. Notably, the ABCB1 and ABCG2 transporters
are correlated with multidrug chemoresistance by exporting a panel of chemotherapeutic
agents, such as paclitaxel, cisplatin, and doxorubicin out of the cell [57-60]. It should
be noted that even though SP is highly enriched for cells sharing common CSC-related
features, such as self-renewal, multipotency, and tumorigenicity, the two populations are
not always entirely identical [61,62].

The sphere formation assay is a relatively simple in vitro method for dissociating
and enriching CSCs based on their anchorage-independent growth and self-renewal abili-
ties [63,64]. It is suitable for isolating both healthy as well as undifferentiated cancer cells. It
has been demonstrated that stem cells have the potential to form three-dimensional, multi-
cellular spheres, named tumorspheres, when grown in non-adherent, serum-free conditions.
Under the microscope, they appear as rounded spheres of various sizes (approximately
50-250 uM) in which the cells are tightly held together. Distinguishing tumor spheres is
one of the most efficient and quick methods for isolating CSCs. A great number of studies
report the enrichment of cells possessing enhanced chemoresistance, tumor formation, and
self-renewal abilities [65-69].

Finally, one of the most commonly used approaches for the identification and isolation
of CSCs is the Aldefluor assay [70]. This technique is a fluorescent reagent system, useful for
discriminating CSCs based on their aldehyde dehydrogenase enzymatic (ALDH) activity
and is related to the metabolism of BODIPY aminoacetaldehyde (BAAA). Specifically, the
Aldefluor assay quantifies the ALDH activity by measuring the conversion of BODIPY
aminoacetaldehyde to the negatively charged fluorescence compound BODIPY aminoac-
etate (BAAA-) [71,72]. Subsequently, BAAA- is retained by the ALDH-expressing cells that
can then be easily detected based on their high fluorescence profile. An ALDH inhibitor,
diethylaminobenzaldehyde (DEAB), reduces fluorescence and is used as a negative control,
ensuring specificity [73]. The Aldefluor assay has been vastly applied for efficient CSC
enrichment over the past few years, either alone or, most commonly, in combination with
other methods, prominently with cell-surface markers. It should be mentioned that while
Aldefluor was initially introduced as a method for identifying cells with high ALDH1A1
activity, a great number of later studies demonstrated that several other ALDH isoforms,
such as ALDH1A2, ALDH1A3, ALDH1B1, ALDH2, ALDH3A1, ALDH3A2, ALDH3B1, and
ALDHS5AT1 are also involved in this assay. Consequently, Aldefluor is not isoform-specific,
and it is impossible to distinguish which specific enzyme is responsible for the monitored
ALDH activity [44,74-77].

2.2. Methods for Characterizing CSCs

Apart from CSC identification, various methods are currently available for evaluating
and characterizing the CSC-related phenotype of a certain sample of cancer cells. The
most commonly used methods include the xenotransplantation of cancer cells in immune-
deficient animals, examination of radio and chemoresistance, evaluation of the expression,
activity, and sub-cellular localization of stem-related markers and finally, determination of
the multipotency (Figure 5) [78].
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Figure 5. Techniques for evaluating the CSC-related properties of cancer cells. Several methods can
be applied to characterize the CSC phenotype of a certain sample of cancer cells. A holistic approach
should apply more than one method. (A) Assessing the ability of cancer cells to induce heterogeneous
tumors in xenograft models. (B) Monitoring the endurance against chemotherapeutic agents and/or
radiation. (C) Examining the regulation of CSC markers. (D) Evaluating their multipotency.

A great number of studies support that the xenotransplantation of cancer cells to
animal models (xenograft models), typically mice that are immune-compromised (non-
obese diabetic/severe combined immunodeficient mice, NOD/SCID mice), is the golden
standard for examining the ability of a certain population of cancer cells to initiate tumor
growth [79]. There are a number of xenograft models; however, the most prevailing in CSC
research are the patient-derived xenografts (PDX) and the cell line-derived xenograft (CDX)
models. In these models, mice are engrafted with either patient or cell line-derived cells,
respectively [80-84]. It has been shown that CSCs, even when injected at low numbers,
have the capacity to efficiently generate tumors that are heterologous and which exhibit
similar histological properties as the tumor of origin. These results are repeated with serial
tumor transplantations [85-88].
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Radio- and chemoresistance are key features of CSCs and are related to metastasis and
disease recurrence [47]. The increased endurance of CSCs against radiation and chemother-
apy does not come as a surprise, taking into account the following: their low proliferative
or even quiescent state, the altered reactive oxygen species (ROS)-related metabolism,
over-expression of drug export pumps, such as members of the ATP-binding cassette
(ABC) (e.g., ABCB1 and ABCG2), upregulation of the signaling pathways participating in
DNA damage repair (e.g., base-excision repair, homologous/non-homologous end joining),
deregulation of apoptosis, and the ability to adopt a mesenchymal phenotype through an
epithelial-to-mesenchymal transition (EMT) [89-95]. A plethora of studies have analyzed
the viability and cellular response of CSCs after treatment with a panel of chemotherapeutic
agents and/or y-irradiation both in vitro and in vivo [96-99]. For instance, patients with
a higher frequency of CSCs, as illustrated by higher rates of CSC markers (e.g., ALDH
activity), exhibited a poor response to therapy [100-102]. Similar results were also ob-
tained in experiments with established / patient-derived cells and patient-derived xenograft
models [98,103-106]. Consequently, in certain studies, chemotherapy enriched the CSC
population, while inhibition of the ATP-binding cassette transporter, ALDH and NOTCH
reversed the resistance phenotype [99,103,104,106].

Similar to cell-surface proteins, additional markers expressed inside the cell can be
utilized to distinguish CSCs from non-CSCs. Some of these proteins, including OCT4, MYC,
KLF4, and SOX2 (Yamanaka factors), are universal, considering that they are typical of both
cancer and normal stem cells and are considered essential for stem-related phenotypes [107].
The regulation of other markers, though, for instance, NANOG, BMI-1, SNAIL, ALDHs,
LGR5, CXCR4, REX-1, Musashi-1, LETM1, and C-met, is considered to be dependent on
both the cancer type and the specific phenotype of the CSCs that we want to analyze (e.g.,
drug-resistant, tumorigenic, metastatic) [35,108-117]. Studying the expression of specific
genes both at the transcriptional and translation level, as well as the activity and localization
of these proteins, is useful in assessing the enrichment of CSC properties [118-123].

Finally, the ability of asymmetric division is a key property of CSCs. Several ap-
proaches can be employed to examine cancer cell multipotency [124,125]. Xenografts are
an example of such an experimental approach, considering that inducing a heterogenous
tumor in immunodeficient mice entails the existence of cells that possess not only tu-
morigenicity and self-renewal abilities but also a transdifferentiation potential. Beyond
transplantation, another method that can be used is the multicolor lineage-tracing assay.
This involves genetic labeling, e.g., through a lentiviral vector, of distinct cellular popu-
lations with different fluorescent markers. Subsequently, these cells can either be grown
in culture or be used in xenograft transplantations. Either way, their single-cell lineages
can be monitored to identify whether they can generate differentiated cellular descendants
through in vitro or in vivo asymmetric divisions [85,126-128].

3. Aldehyde Dehydrogenase 1B1
3.1. Aldehyde Dehydrogenases

Aldehyde dehydrogenases (ALDHs) are a superfamily of nicotinamide adenine dinu-
cleotide (phosphate) (NAD(P)+)-dependent enzymes that catalyze the oxidation of endoge-
nous (lipids, amino acids, and vitamins) and exogenous (ethanol and drugs) aldehydes to
their carboxylic acids (Figure 6) [129]. They are multifunctional enzymes with distinct chro-
mosomal locations, which can be found in primates, rodents, birds, fish, and zebrafish [130].
In the human genome, there are 19 ALDH putatively genes, classified into 11 families
and 4 subfamilies. Each ALDH isoform exhibits different cellular localizations (cytoplasm,
nucleus, mitochondria, endoplasmic reticulum), tissue distributions, substrate specificity,
and expression patterns [131]. Moreover, these enzymes have a vital metabolic role in
the anti-oxidative defense system through the metabolism of aldehydes. Several ALDH
isoforms are associated with RA, betaine, and y-aminobutyric acid (GABA) production
(Figure 6) [129,132].
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Figure 6. Aldehyde dehydrogenases catalyze the oxidation of an aldehyde to its corresponding
carboxylic acid.

ALDHs are multifaceted proteins, and apart from their role as metabolic enzymes,
they are involved in a plethora of biological processes, such as differentiation, embryo-
genesis, and DNA damage response [133-135]. In addition, ALDHs have been identified
as markers of CSC [72,135-138]. The Aldefluor assay is one of the most commonly used
techniques for enriching the CSC population, based on the finding that cells which ex-
hibit high ALDH enzymatic activity (ALDHhigh cells) have enhanced tumorigenicity
in various malignancies, including breast [139-142], liver [143,144], colorectal [145-148],
lung [149,150], prostate [151,152], pancreatic [153,154], ovarian [155], esophageal [156,157],
nasopharyngeal [158], gastric [159,160], bone [103,161,162], neuroblastoma [163], skin [164],
and blood [165,166] cancer. ALDH activity is characterized by CSC-related character-
istics, such as chemo- and radio-resistance [146,167-169], hypoxia [170], EMT [146,160],
cell proliferation, and invasion [146,147,167]. Aldehyde dehydrogenase 1A1 was one
of the first isoforms identified as a CSC biomarker. Since then, research has mainly fo-
cused on ALDH1AL1 for its ability to metabolize retinaldehyde, its association with normal
hematopoietic stem cells, and the idea that Aldefluor specifically isolates cells with high
ALDH1A1 activity. However, over the past few years, cumulative evidence highlights
the involvement of additional isoforms in Aldefluor activity and the CSC phenotype, in
general. Consequently, an accurate experimental approach needs to be able to distinguish
the involvement of specific ALDHs, by utilizing, for instance, isoform-specific antibodies
and/or real-time PCR analysis. This has led to the identification of a panel of ALDH
isoforms that are specifically characterized as CSC biomarkers in different types of cancer.
The ALDH1B1 isoform has not been extensively studied, however novel data support its
association with cancer development and the CSC phenotype [44,74-77].

3.2. Historical Overview of ALDH1B1 Discovery and Research

The gene of aldehyde dehydrogenase, 1B1, was initially identified in 1991 when
Hsu et al. (1991) screened a cDNA library with a synthetic probe of 29 nucleotides based
on a conserved amino acid sequence that is found both in ALDH1 and ALDH2 [171].
The authors found that the coding region of the ALDHX gene (later named ALDHS and,
finally, ALDH1B1) is located at the 9.p13.1 chromosomal region and not interrupted by
introns [171,172]. The gene encodes a protein of 517 amino acids that exhibits 72% simi-
larity to ALDH2 and 64% similarity to ALDH1A1 [173]. Its high similarity with ALDH2
proved important for gaining information on the origin, the features, and the function
of the protein, considering that ALDH2 had been extensively studied and, thus, is better
characterized [174,175]. This was utilized by Jackson et al. (2013), who comparatively
studied ALDH1B1 and ALDH?2 in different vertebrates and created a phylogenetic dia-
gram describing the relationship between these genes [173]. This diagram showed that
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ALDHI1BI1 is present only in mammals and amphibians, unlike ALDH2, which is also
present in birds and zebrafish. Along these lines, the genomic analysis of human and
mouse ALDH1B1 and ALDH2 genes revealed certain similarities, which encouraged
researchers to suggest that the ALDHI1B1 gene originates from ALDH?2 through the
retroviral transposition of ALDH2 cDNA into an ancestral chromosome. This evolu-
tion process has been described for many vertebrate genes [176,177]. Additionally, the
alignment of the amino acid sequences of ALDH1B1 and ALDH2 demonstrated that
the essential residues for the function of ALDH2 are also conserved in the sequence of
ALDHI1BI1 [173]. Consequently, the active site of ALDH1B1 is suggested to comprise
Cys319 (nucleophile), Glu285 (proton acceptor), and Asn186 (transition state stabilizer),
and the NAD-binding residues to be in the area between residues 262 and 267. Fur-
thermore, a mitochondprial localization signal peptide comprising 17 amino acids at the
N-terminal of the protein has also been identified [173]. These data corroborate the
findings of a previous report by Lutfullah et al. (2011) on the tertiary structure of human
ALDH1B1 using the software MODELLER. Based on the structure of ALDH?2, there is
a high similarity with ALDH1B1 at the residues that are involved in the formation of
homotetramers (quaternary structure) [178].

The first in vitro study on the function of human ALDH1B1 was performed by
Stewart et al. (1995) and indicated that ALDH1B1 is a NAD-dependent enzyme, in contrast
to other ALDH isoforms, which require NADP as a co-factor, and that it exhibits speci-
ficity for short-chain aldehydes, such as acetaldehyde and propionaldehyde (Km: 30 pM).
The same study also demonstrated that the highest enzymatic activity of ALDH1B1 was
observed at mitochondrial pellets, demonstrating for the first time its mitochondrial lo-
calization, verifying the potential utility of the mitochondrial localization signal peptide,
previously reported by Jackson et al. [179]. Furthermore, Stagos et al. (2010) heterolo-
gously expressed human ALDH1B1 in insect cells (S5f9) and purified it through affinity
chromatography [180]. The purified protein was used to assess the kinetic properties
and specificity of ALDH1B1 against different aldehydes, confirming the specificity of
ALDH1B1 for NAD+ (Km = 3.6 uM) as a co-factor and esterase activity of ALDH1B1 in
addition to its ALDH function. ALDH1B1 exhibited high specificity for medium-chain
aldehydes (hexanal and nonalan with Km values below 1 pM), short-chain aldehydes
(acetaldehyde with Km = 55 uM and propionaldehyde with Km = 14 pM) and aromatic
aldehydes (benzaldehyde with Km = 50 uM). The esterase activity was identified using
p-nitrophenyl acetate (p-NPA) as the substrate, and the Km of the reaction (KmALDH1B1
= 288 uM) was estimated to be much higher compared to the respective Km of ALDH2
(KmALDH2 = 1895 uM), as reported previously by Sheikh et al. (1997) [181]. In the same
perspective, Jackson et al. (2015) applied a similar methodology to Stagos et al. (2010)
and determined all-trans retinaldehyde as a substrate of ALDH1B1 with Km = 24.9 uM,
implying the involvement of ALDH1B1 in the retinoic acid signaling pathway—a finding
that was occasionally overlooked in studies focused on RA-related ALDHs (Figure 7) [182].
Finally, recent crystallographic data by Feng et al. (2022) revealed the completed tertiary
and quaternary structures of ALDH1B1 [183].
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Figure 7. Enzymatic activities of aldehyde dehydrogenase 1B1 (ALDH1B1) (Chemical structures are
from PubChem (https:/ /pubchem.ncbi.nlm.nih.gov/) accessed on 5 December 2022) [184-191].

The association of ALDH1B1 with the stem cell phenotype was initially shown by
Stagos et al. (2010), using immunohistochemistry to study the distribution of ALDH1B1 in
human tissues. ALDH1B1 was mainly expressed in the small intestine, liver, and pancreas
and at lower levels in the lung and colon, where its expression appeared to be associated
with stem cells [180]. Along these lines, Chen et al. (2011) reported high expression rates of
ALDH1B1 in samples of colon adenocarcinoma [192]. Similarly, Singh et al. (2015) revealed
that the inhibition of ALDH1B1 attenuated the ability of SW 480 colon adenocarcinoma
cells to form spheres in vitro and induce xenograft tumors in vivo while deregulating the
Notch, Wnt/ 3-catenin and PI3K/ Akt pathways [145]. ALDH1B1 has also been identified
by Ioannou et al. (2013) as a putative marker of progenitor and stem cells in the pancreas,
and inhibition of ALDH1B1 activity enhanced the differentiation and led to the formation
of smaller embryonic explants [193]. The importance of ALDH1B1 in pancreatic stem cells
has been validated by Anastasiou et al. (2016) by constructing mouse aldh1b1 knockout
cell lines and demonstrating that the absence of ALDH1B1 led to an acceleration of the dif-
ferentiation processes, dysregulation of beta cell-related factors, disruption of the function
of beta cells and, ultimately, the induction of glucose intolerance [194].

There is plenty of valuable information on the properties and biological role(s) of
ALDHI1BI. Its great importance is highlighted by the multiple pathological conditions,
both cancer (Table 1) and non-cancer related (Figure 8), with which ALDH1B1 has been
associated over the years. In the following section, we will discuss ALDH1B1's role in the
development of cancer and the CSC phenotype.
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Figure 8. ALDH1B1-associated non-cancer pathologies [195-201].
Table 1. Studies on the association of ALDH1B1 with cancer.
Type of Cancer Techniques Used Samples Used Ref.
Colon and rectum
Computational analysis adenocarcinoma (TCGA [202]
samples)
Western blot/Flow .
cytometry /PCR/Comet assay Cell line/TCGA samples [134]
shRNA /Immunoblot/qPCR Cell line [203]
Immunohistochemistry /Computational analysis  Patient and tissue samples [204]
Macroscopic
evaluation/Immunohistochemistry Xenografts [205]
Colorectal Cancer ShRNA /Western blot Cell lines [145]
qPCR/Western blot/Flow Cytometry Cell line [146]
qPCR/Western blot/ Aldefluor assay Cell lines/Tissue [206]
Immunohistochemistry Tisue [192]
Colorectal Tissue Micro .
Array/Immunohistochemistry Patients [207]
p53 lentiviral sShRNA Colon cancer stem cells [208]
FACS/Immunofluorescence In vivo [209]
P tic C
ancreatic Lancet shRNA /Immunohistochemistry /RT-PCR Cell lines/Tissue [153]
Osteosarcoma siRNA /Flow cytometry/Western blot Osteosarcoma patients/Cell [162]

lines/In vivo
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Table 1. Cont.
Type of Cancer Techniques Used Samples Used Ref.
Nasopharyngeal . . . . . .
Carcinoma (NPC) Immunohistochemistry / Bioinformatic analysis Patients [158]
Hepatocellular Carcinoma Kaplan-Meier survival analysis Patients [210]
Kaplan-Meier survival analysis Patients [211]
Gastric C
astHicancet PCR MKN-45, SGC-7901 and (160]
1 MKN-45, SGC-7901 spheres
Prostate cancer SNPs Prostate cancer patients [212]
Esophageal Squamous Cell . . .
Carcinoma (ESCC) Computational analysis Patients [213]
Lung adenocarcinoma/Lung
Lung Adenocarcinoma/Lung Computational analysis Squamous Cell Carcinoma [202]
Squamous Cell Carcinoma (TCGA samples)
Flow cytometry/Western blot/qPCR Cell line [214]
ional analysi B TCGA 1 202
Breast Cancer Computational analysis reast cancer (TCGA samples) [202]
RNA-seq/survival data Breast cancer patients(TCGA) [215]
Glioblastoma Computational analysis Glioblastoma (TCGA samples) [202]

4. Current Knowledge on the Association of ALDH1B1 with Cancer Progression and
CSC Phenotype

4.1. Colorectal Cancer

A substantial number of studies are available on the association of ALDH1B1 and
colorectal cancer, mainly investigating tumor expression and, in certain cases, in comparison
to the respective non-cancerous tissues [145,146,192,204,206,207]. For instance, Chen et al.
(2011) suggested that ALDH1B1 can serve as a putative colorectal cancer biomarker on
the basis of its high expression levels in human colon cancer tissues [192]. In accordance
with these findings, Matsumoto et al. (2017) demonstrated high ALDH1B1 and ALDH2
transcriptional and translational levels in human CRC cell lines and tissue samples [206].
Specifically, six CRC cell lines (BE, Caco-2, COLO320DM, HCT116, HT29, and SW480),
as well as patient-derived tissues, were utilized to evaluate the expression levels of eight
different ALDH isoforms. Both ALDHI1B1 and ALDH2 were expressed in all the cell
lines tested, suggesting they play a crucial role in colon cancer [206]. In concordance,
Wang et al. (2021) showed that ALDH1B1 expression is significantly higher in colorectal
adenomas and adenocarcinomas compared to normal and cancer-adjacent tissues [204].
Golla et al. (2020) took a step further and explored whether ALDH1B1 was essential for
colon tumorigenesis by utilizing an inducible mouse model in which the adenomatous
polyposis coli gene (APC) is inactivated after exposure to tamoxifen. Generating double
knockdowns of ALDH1B1 and APC showed that mice with the absence of 1B1 still formed
adenoma colorectal tumors; however, the volume was significantly lower compared to
the mice with physiological levels of ALDH1B1. Furthermore, the inhibition of ALDH1B1
expression led to the downregulation of both p53 and b-catenin in these models [205].

These findings are consistent with the utilization of ALDH1B1 as a biomarker, and
several studies also support its association with stem-like characteristics, also suggesting its
potential utilization as a CSC marker in CRC. Singh and colleagues (2015) demonstrated the
implication of ALDH1B1 in different CSC-related cellular signaling pathways, including
Wnt/ 3-catenin, Notch, and PI3K/ Akt in CRC [145], and ALDH1B1 shRNA in the colon ade-
nocarcinoma SW480 cell line, led to the downregulation of various proteins, such as LEF1, C-
Myc, JAGI, c-Notchl, Akt, PI3K, FABP5, and MMP2 [145]. Langan et al. (2012) showed that
high ALDH1B1 expression is significantly associated with poor and /or moderate differen-
tiation and metastasis in patient-derived CRC tumors [207]. We (Tsochantaridis et al. 2021)
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have shown that ALDH1B1 expression is associated with increased migratory potential,
altered cell-cycle regulation and increased chemoresistance (against doxorubicin and 5-
fluorouracil (5-FU)), accompanied by ZEB1-related EMT induction as well as lower p21
protein levels in HT-29 cells [146]. Additionally, we (Tsochantaridis et al. 2022) reported that
ALDHI1B1 expression in HT-29 cells led to resistance against the genotoxic and apoptotic
effects of etoposide along with higher total and phosphorylated (Serl5) p53 levels. In the
same study, it was demonstrated that ALDH1B1 expression was associated with the upreg-
ulation of various DNA damage-related genes [134]. The positive effect of ALDH1B1 on
DNA damage repair was also illustrated by Spearman’s rank correlation coefficient analysis,
performed with public data from 531 samples of colorectal adenocarcinoma patients [134].
This finding is of importance, considering that the CSCs exhibit highly elaborative and
effective DNA damage response machinery [216]. Finally, Baek et al. (2021) reported that
AMBRA, a negative regulator of several CSC-related genes, negatively regulates ALDH1B1
through K27- and K33-associated ubiquitination [203].

Given the well-established significance of ALDH1B1 in colon cancer, studies have now
started to focus on how to accomplish its inhibition in order to enhance the efficiency of
current therapeutic protocols. Feng et al. (2022) identified a group of bicyclic imidazolium
that inhibited the activity of ALDH1B1 inside cells. Significantly, both the knockdown
of the ALDH1B1 gene through CRISPR, as well as the inhibition of its enzymatic activity
resulted in attenuated colon spheroid and xenograft tumor growth, accompanied by the
downregulation of colorectal CSC markers, such as the KRT15 and DCLK1 [183]. Similarly,
Lin et al. (2022) reported that shikonin downregulates ALDH1B1 in a colitis-associated
mouse colorectal cancer model [217].

4.2. Pancreatic Cancer

Studies by Singh et al. (2016) have demonstrated a high variance of ALDH1B1 expres-
sion in a spectrum of 16 different pancreatic cancer cell lines and that ALDH1B1 expression
is higher in tissues with more invasive characteristics [153]. Additionally, the knockdown
of ALDH1B1 expression through siRNA resulted in significantly lower proliferation rates
in vitro and the attenuation of tumorigenicity in xenograft experiments [153]. Centroaci-
nar cells are quiescent, self-renewal progenitors capable of generating various pancreatic
lineages and are considered tumor-initiating cells in pancreatic cancer [209]. Such cen-
troacinar cells have been isolated based on their ALDH1B1 expression in adult mice, and
the expression of ALDH1B1 was both sufficient and necessary for the maintenance of
stem-like properties. ALDH1B1 expression was also positively correlated with the expres-
sion of KRAS, an oncogene implicated in pancreatic carcinogenesis, and the expression
of ALDH1B1 was necessary for tumor development in a Kras-induced pancreatic mouse
model [209].

4.3. Other Types of Cancer

ALDH1B1 has been associated with survival in several different types of cancer,
leading to contradictory results. For example, Wang et al. (2018) investigated osteosar-
coma patient-derived samples and demonstrated a poor prognosis for patients with high
ALDH1BI1 expression levels [162]. Along these lines, Leung et al. (2017) analyzed the
survival data from TCGA and found that ALDH1B1 may be implicated with cancer devel-
opment in ER-positive breast cancer female patients [215]. Additionally, Zhu et al. (2022)
reported that high expression levels of ALDH1B1 are associated with poor overall and
progression-free survival rates for patients with nasopharyngeal carcinoma [158]. On the
contrary, upregulation of ALDH1B1 at the transcriptional level was significantly associated
with higher overall survival in gastric cancer [211], while Yang et al. (2017) demonstrated
that high expression levels of ALDH1B1 were correlated with a favorable prognosis in the
case of hepatocellular carcinoma [210].

ALDHI1B1 also appeared to be implicated with chemoresistance. He et al. (2015) used
both A549 and cisplatin-resistant A549 /DDP cell lines to assess the expression levels of
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different ALDH subtypes. Notably, the ALDH1B1 mRNA and protein expression levels
were significantly elevated in A549/DDP compared to the A549 indicating the correlation of
ALDH1B1 with cisplatin chemoresistance in these cell lines [214]. In accordance, Wang et al.
(2018) reported that knocking down ALDH1B1 by siRNA in osteosarcoma cell lines (U20S
and SAOS) resulted in increased chemosensitivity against doxorubicin [162], and Zhu et al.
(2022) demonstrated that high ALDH1B1 expression levels in nasopharyngeal carcinoma
may be associated with increased patient’s age and increased chemoresistance [158].
Only a few studies have evaluated ALDH1B1 in relation to other CSC-related prop-
erties. Yan et al. (2014) investigated a panel of ALDH isoforms for identifying potential
prostate cancer biomarkers and found that ALDH1B1 did not exhibit any significant associ-
ation with the DU145 cancer stem-like cells (spheres) in comparison with the other ALDH
isoforms tested [151]. Hartomo et al. (2013) analyzed the expression levels of the ALDHs
genes through real-time PCR in the tumorspheres of three different neuroblastoma cell lines
(NBTT2D, NBTT1, and NBTT3). Their results indicated that ALDH1B1 was downregulated
in neuroblastoma NBTT3-derived spheres as compared to differentiated NBTT3 cells; how-
ever, there was no significant difference in the expression levels between the differentiated-
versus stem-like NBTT2D and NBTT1 cells [218]. Similarly, Wang et al. (2018) performed
siRNA-mediated knockdowns of ALDH1B1 in osteosarcoma cells (U20S and SAOS) and
reported that, in the absence of ALDH1B1, both cell lines exhibited slower proliferation,
invasion, and migration potentials. Additionally, ALDH1B1 silencing induced apoptosis
through the upregulation of cleaved caspase 3 and cleaved caspase 9, and led to G1-phase
cell-cycle arrest compared to the control group. The inhibition of ALDH1B1 was also related
to the downregulation of various CSC markers, such as CD44, NANOG, OCT4, SOX2, and
NOTCHI1 in U20S cells. Interestingly, ALDH1B1 shRNA attenuated the ability of the U20S
cells to form tumors in xenograft experiments, illustrating its importance in the tumor-
initiating process [162]. Another study of the same group (Wang et al. 2020) demonstrated
that ALDH1BI1 is negatively regulated by microRNA-761; miR-761 appeared to suppress
tumor formation in the xenograft models and regulate cell adhesion, EMT, and TGF-3
by targeting ALDH1B1 in osteosarcoma [219]. Finally, Chen et al. (2022) identified that
the translation initiation factor, EIFAE, promotes ferroptosis by downregulating ALDH1B1
and, thus, leading to 4-HNE accumulation. This finding indicates that the inhibition of
ALDH1B1 could support the effectiveness of anticancer ferroptosis inducers [220].

5. Conclusions

Research on CSCs has come a long way since the hierarchical model of cancer develop-
ment was initially introduced. A wide range of methodologies and techniques are currently
available for efficiently enriching CSCs and characterizing their properties. However, we
are far from fully understanding their origins, properties, and behaviors, and thus, crucial
parts are missing from obtaining a glimpse of the whole picture of how cancer actually
“works”. Identifying biomarkers and, most significantly, understanding how and why these
markers are specifically expressed by the CSCs, will provide us with valuable information
on the molecular mechanisms underlying the biology of cancer. It will provide us with
novel targets for extending and upgrading the effectiveness of our anticancer arsenal. It
is well established that ALDHs have a key role in the CSC phenotype, and even though
the vast majority of studies were, for a long time, focused on the ALDH1A1 isoforms, we
now know that additional ALDH isoforms contribute to the CSC phenotype. However, it is
currently unknown why distinct ALDH isoforms have been “selected” in different cancer
types. ALDHI1BI is considered a valid marker of colon carcinogenesis and cancer stem-like
phenotype, but it also appears to be associated with normal colon stem cells. Similarly, in
the pancreas, though supported by limited experimental data, ALDH1B1 appears to be
involved in both differentiation- and carcinogenesis-related processes. Although ALDH1B1
has not been extensively studied in other types of cancer, the experimental evidence avail-
able so far supports its emergence as a promising candidate marker of CSCs. Indeed,
ALDH1BI1 antioxidant activity, its association with the metabolism of RA, its potential
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to upregulate the DNA damage response cascade, and its involvement with cancer and
stem-related pathways, such as Wnt/ 3-Catenin, Notch, and PI3K/Akt, can provide several
advantages to cancer cells. Along these lines, novel findings also highlight ALDH1B1
as a promising therapeutic target for ameliorating the therapeutic outcome of anticancer
treatments. Further studies are now required to clarify its exact role in stem cell properties,
cancer initiation, and progression.
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