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Abstract: Natural and technical phytoremediation approaches were compared for their efficacy
in decontaminating oil-polluted soil. We examined 20 oil-contaminated sites of 800 to 12,000 m2

each, with different contamination types (fresh or aged) and levels (4.2–27.4 g/kg). The study was
conducted on a field scale in the industrial and adjacent areas of a petroleum refinery. Technical
remediation with alfalfa (Medicago sativa L.), ryegrass (Lolium perenne L.), nitrogen fertilizer, and soil
agrotechnical treatment was used to clean up 10 sites contaminated by oil hydrocarbons (average
concentration, 13.7 g/kg). In technical phytoremediation, the per-year decontamination of soil was as
high as 72–90%, whereas in natural phytoremediation (natural attenuation with native vegetation)
at 10 other oil-contaminated sites, per-year decontamination was as high as that only after 5 years.
Rhizodegradation is supposed as the principal mechanisms of both phytoremediation approaches.

Keywords: oil hydrocarbons; technical phytoremediation; natural phytoremediation; Medicago sativa;
Lolium perenne; soil microorganisms

1. Introduction

After nearly three decades of close study and application, phytoremediation has
proven a sustainable, cost-effective, environmentally benign, and highly socially acceptable
technology [1–4]. The range of pollutants treated by phytoremediation is wide and includes
organic (petroleum hydrocarbons, pesticides, and antibiotics) and inorganic (heavy metals
and radionuclides) pollutants [3,4]. Despite its limitations, such as the long processing
time and the dependence on climatic conditions and plant competence toward certain
pollutants [5–7], phytoremediation has undoubted advantages, such as low cost and the
possibility of restoring large areas in situ [4,7,8]. For these reasons, phytoremediation
is used widely in the eco-management of petrochemical enterprises. In some countries,
including Russia and the USA, the use of plants and associated microorganisms for the
cleanup of oil-contaminated areas is regulated by specific documents [9,10].

Phytoremediation is based on the natural recycling and utilization of pollutants
present in the plant root zone. These processes are affected by root exudates and the
metabolic activity of the soil microbiota. In response to environmental pollution by
petroleum hydrocarbons, plants activate antioxidant enzymes [11–13]. Some of these
enzymes (e.g., peroxidases, which have a wide substrate range) are present in root ex-
udates and are implicated in the degradation of organic pollutants both in planta and
ex planta [14–17]. Other root exudate components, such as organic acids, carbohydrates,
and flavonoids, function as inducers of microbial metabolic activity or substrates for micro-
bial growth in the plant root zone [18,19]. The plant promotion of soil microbial growth
and the pollutant induction of microbial degradative activity constitute the main pathway
for the soil degradation of petroleum hydrocarbons, rhizodegradation, which is the key
mechanism of the phytoremediation of oil-contaminated soils [20–22].

The knowledge that has accumulated on the fundamentals of phytoremediation leads
to the following question: Is natural vegetation in a contaminated area sufficient for soil
rehabilitation, or is it necessary to resort to agrotechnical measures such as fertilization or
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special plant growing? Obviously, the duration of remediation will be different in either
case. The decision in favor of natural or technical phytoremediation would be influenced by
considerations such as the level of pollution (severe pollution hinders the growth of native
vegetation), the period needed to make soil suitable for recultivation, and the suitability
of other techniques (depending on the characteristics of the economic exploitation of the
contaminated area). In this context, it is important to understand the difference between
natural and technical phytoremediation, so that recultivation results could be predicted.

We compared the efficacy of natural versus technical phytoremediation of oil-contaminated
soil in the industrial and adjacent areas of a petroleum refinery. In this study, the term “nat-
ural phytoremediation” means natural processes resulting in the cleanup or attenuation of
oil pollution of soil covered with natural vegetation. The term “technical phytoremediation”
means special agrotechnical remediation measures, such as soil tilling, soil fertilization, and
the planting and watering of remediating plants. The progress of phytoremediation was
assessed by measuring the vegetation cover, the oil concentration, the available nitrogen
content, and the soil microbial content.

2. Materials and Methods
2.1. Monitoring of Oil-Contaminated Areas

The areas of study are located in the steppe zone of Russia’s Middle Volga region. The
industrial and adjacent areas of the local petroleum refinery were monitored for 5 years.
The total inspected area was about 340 ha and was divided into 297 sites. The soils of the
surveyed area were based on shallow chernozems (WRB: Mollic Vertisols Eutric or FAO:
Mollic Vertisols). The soils had a pH of 7.0–7.8, and their buffering capacity was high. The
content of total organic carbon ranged from 1.5 to 6%; that of NO3, from 4 to 16 mg/kg;
that of NH4, from 14 to 30 mg/kg; and that of P2O5, from 84 to 120 mg/kg.

During inspection, 20 oil-contaminated sites were identified. The predominant plant
inhabitants, the foliage projective cover, and the soil content of total petroleum hydrocar-
bons (TPHs) were determined. The foliage projective cover (percentage of ground area
occupied by the vertical projection of foliage) was determined by using the Ramenskiy
mesh, as described [23]. Ramenskiy mesh is a small plate in which a rectangular 2 × 5-cm
hole is made and is divided into 10 square cells of 1 cm2 each by using a thin wire. By
looking at the herbage through the mesh hole, we determined how many 1 cm2 cells could
be attributed to the foliage projection and how many to the uncovered soil surface, seen
through the herbage. The plant species were counted and identified, as reported earlier [24].

2.2. Phytoremediation Approaches

As a result of monitoring, we chose 10 oil-contaminated sites that had a satisfactory
(>20%) foliage projective cover. These were observed for a few years to evaluate the rate of
natural phytoremediation. Once a year, we determined the soil content of TPHs, N-NO3,
and N-NH4; the number of microorganisms; and the number of plants inhabiting the sites.

The other 10 sites were used for technical phytoremediation, which included soil
tilling, soil fertilization, and planting and watering of remediating plants (Table 1). We
used a mixture of legume and cereal plants. The principal remediating plants were alfalfa
(Medicago sativa L.) and ryegrass (Lolium perenne L.). Preliminary laboratory and pot
experiments had led us to find that both species were effective at reducing the content of
all hydrocarbon fractions in oil-sludge-contaminated soil [25]. Watering and soil rotary
cultivation are trivial soil-remediation approaches.

Soil was sampled before plant sowing, after 3 and 12 months, and then annually.
Samples were taken at several local points from a depth of 5–15 cm by using the envelope
method. Mixed samples (~1.0 kg), combined from 5–8 local point samples from each site,
were divided into replications (n ≥ 3) to measure the soil content of TPHs, N-NO3, N-NH4,
and the number of microorganisms.
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Table 1. Procedures used for technical phytoremediation.

Procedure Quantity Period

Soil milling
WM1100BE walk-behind tractor

(Weima China)
Processing depth, 25–30 cm

Before remediation

Fertilization:
Azophoska mineral

fertilizer
(NPK, 22:11:11)

3 kg/100 m2 × 2
Before and 1.5 months

after sowing

Watering 30 L/m2 One day before sowing
Sowing: Medicago sativa

Lolium perenne
0.4 kg/100 m2

0.5 kg/100 m2 April–May

Rolling seedlings After sowing

Soil sampling

One mixed sample was made
from five to eight local point

samples taken from a depth of
5–15 cm at each site

Before sowing, after 3,
12 months, then annually

Watering 20 L/m2 × 2
Before sowing, and 3 weeks
after seedling appearance

2.3. Soil Chemical Analysis

The soil content of TPHs was measured by gravimetric analysis, as described in the
federal regulatory document [26]. The method is based on the extraction of oil products with
chloroform from air-dried soil, separation of polar compounds by liquid chromatography
after solvent replacement with hexane, and measurement by gravimetric analysis. A soil
sample (~30 g dry weight) was placed into a 150 mL flask, and 10–15 mL of chloroform
was added. For extraction, the flask was shaken for 5 min, and the chloroform extract
was decanted and filtered through ashless paper (pore diameter, 8–12 µm) into a beaker.
The procedure was repeated 3–4 times until the extract was decolorized. The extracts
were combined and evaporated. The residue was redissolved in 5–10 mL of hexane and
was passed through a column (120–150 mm × 10 mm) containing 6–8 g of activated
alumina. The eluate was collected in preweighed beakers. After the solvent evaporated,
the beakers were reweighed, and the TPH content was calculated. All soil samples were
analyzed in triplicate. The tentative allowable concentration of TPHs in nonindustrial soil,
as recommended at the regional level, is 1.0 g/kg [27].

Soil nitrates and water-soluble ammonium were measured by standard photocol-
orimetric methods [28,29]. The determination of nitrates included the following steps:
extraction of nitrates from soil with a potassium chloride solution, reduction of nitrates
to nitrites with hydrazine in the presence of copper as a catalyst, and photometric mea-
surement of the colored diazo compound formed. The determination of exchangeable
ammonium included the following steps: extraction of exchangeable ammonium from soil
with a potassium chloride solution, generation of a colored indophenol compound formed
by the interaction of ammonium with hypochlorite and sodium salicylate in an alkaline
medium, and photometry of the colored solution.

2.4. Soil Microbiological Analysis

Total cultivable heterotrophic microorganisms (THMs) were enumerated by the plating
dilution technique by using a beef extract agar medium. The membrane filter technique
and Bushnell and Haas’s medium [30] with sterilized crude oil were used to enumerate
hydrocarbon-oxidizing microorganisms (HOMs), as described previously [25].

2.5. Statistics

Data were processed by calculating the means of at least three replicates. Standard
deviations (SD) and confidence intervals were used at p ≤ 0.05. Spearman’s rank correlation
analysis was used to find the relations between the measured parameters. Statistica 13
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(TIBCO Software Inc. 2017, Statsoft Russia, Palo Alto, CA, USA) and Microsoft Excel 2007
(Microsoft, Redmond, WA, USA) software were used for analysis.

3. Results
3.1. Monitoring of Oil-Contaminated Areas

Table 2 lists the principal characteristics of the oil-contaminated sites. The average
TPH content in the soil of the sites was 13.7 g/kg, ranging from 4.2 to 27.4 g/kg in the
mixed samples taken from five locations at each site. The foliage projective cover at sites
S-1–S-10 was about 20–70%. With the allowance for the economic purpose of these sites,
they were considered suitable for natural attenuation (natural phytoremediation). The
foliage projective cover at sites S-11–S-20 was too low, and the contaminated areas were not
too large. These sites were considered suitable for remediation by the planting of effective
remediating plants (technical phytoremediation).

Table 2. Characterization of the oil-contaminated sites.

Site No. Characterization Area (m2) Foliage Projective Cover (%) TPHs (g/kg)

S-1 Former oil sludge pit (aged oil pollution) 12,000 * 25–30 5.3 ± 0.3
S-2 Fresh and aged oil spills near oil pipelines 2800 65–70 18.8 ± 2.6
S-3 Fresh and aged oil spills near oil pipelines 5000 50–55 4.2 ± 0.2
S-4 Fresh and aged oil spills near oil pipelines 4800 60–65 6.6 ± 0.5
S-5 Fresh and aged oil spills near oil pipelines 1400 50–55 6.8 ± 0.4
S-6 Aged subsurface oil pollution near oil pipelines and tanks 2100 25–30 6.1 ± 0.3
S-7 Fresh and aged oil spills near oil pipelines 16,200 40–45 24.5 ± 2.3
S-8 Aged subsurface oil pollution near oil pipelines and tanks 5100 35–40 12.6 ± 0.7
S-9 Aged subsurface oil pollution near oil pipelines 1800 40–45 27.4 ± 2.5

S-10 Former oil sludge pit (subsurface aged oil pollution) 10,000 20 18.2 ± 1.0

S-11 Fresh and aged oil spills near oil pipelines and tanks 800 <20 10.8 ± 0.5
S-12 Fresh and aged oil spills near oil pipelines and tanks 850 <20 8.4 ± 0.8
S-13 Fresh and aged oil spills near oil pipelines and tanks 820 <20 16.6 ± 1.8
S-14 Fresh and aged oil spills near oil pipelines and tanks 860 <20 9.4 ± 0.5
S-15 Fresh and aged oil spills near oil pipelines and tanks 920 <20 15.6 ± 1.4
S-16 Fresh and aged oil spills near oil pipelines and tanks 800 <20 14.8 ± 0.8
S-17 Former oil sludge pit (aged oil pollution) 1200 <20 5.5 ± 0.3
S-18 Former oil sludge pit (aged oil pollution) 1200 <20 19.4 ± 0.9
S-19 Former oil sludge pit (aged oil pollution) 1100 <20 27.1 ± 1.4
S-20 Former oil sludge pit (aged oil pollution) 800 <20 16.3 ± 0.7

* Values are means ± SD (p ≤ 0.05) of at least three samples.

3.2. Natural Phytoremediation

As a result of monitoring, oil-contaminated sites S-1–S-10, which had a satisfactory
foliage projective cover, were observed for a few years to evaluate the rate of natural
phytoremediation. Once a year, we determined the soil content of TPHs and available
nitrogen; the numbers of THMs and HOMs; and the number of plants inhabiting the sites.
Figure 1 shows the time course of changes in the diversity of plant species and in the
abundance of culturable microorganisms in the soil subjected to natural phytoremediation.
As can be seen, within 5 years, the diversity of plant species increased at all sites surveyed
(Figure 1a). In total, 203 species were identified, with the predominant species being
Elytrigia repens, Bromus squarrosus, Calmagrostis epigeios, Poa pratensis, Polygonum aviculare,
Euphorbia virgata, Medicago falcata, Cichorium intybus, and Artemisia austriaca and absinthium.

The increases in plant species diversity and the vegetation cover in plots S-1–S-10 were
accompanied by increases in the numbers of soil microorganisms (Figure 1b,c). At all sites,
the THM number increased steadily for 5 years (Figure 1b). The HOM number peaked in
the third year, after which it decreased at the sites at which the TPH content decreased to
less than 1.0 g/kg (sites S-1–S-6; Figure 1c). By contrast, the HOM number at sites S-7–S-10
continued to increase.
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Figure 1. Numbers of plant species and culturable microorganisms in the oil-contaminated soil subjected
to natural phytoremediation: (a) numbers of plant species; (b) THM number; and (c) HOM number.

With increased foliage projective cover and species diversity, the content of ammonium
nitrogen gradually increased from 12 to 28 mg/kg at the beginning of the observation
period to 26–38 mg/kg after 5 years (Table 3). The nitrate content also increased from 2 to
4 mg/kg to 3–6 mg/kg in the same period. No unidirectional dynamics were found in the
phosphorus content (data not shown), which ranged from 29 to 123 mg/kg throughout the
observation period. The soil pH remained close to neutral, with a gradual increase of 6.8 to
7.3 within 5 years.

Table 3. Time course of the content of available nitrogen and TPHs in the oil-contaminated soil
subjected to natural phytoremediation.

Site No.
N-NH4

+ (mg/kg) N-NO3− (mg/kg) TPHs (g/kg)

Initial 1st Year 3rd Year 5th Year Initial 1st Year 3rd Year 5th Year Initial 1st Year 3rd Year 5th Year

S-1 12.1 ± 0.6 * 18.2 ± 1.0 26.1 ± 1.7 27.9 ± 1.3 2.4 ± 0.2 2.3 ± 0.1 3.5 ± 0.2 3.5 ± 0.1 5.3 ± 0.3 3.8 ± 0.3 1.0 ± 0.1 0.2 ± 0.0
S-2 25.0 ± 0.1 29.3 ± 1.3 31.7 ± 1.5 37.3 ± 1.8 4.5 ± 1.9 5.2 ± 0.3 6.3 ± 0.3 6.5 ± 0.3 18.8 ± 2.6 6.4 ± 0.4 4.5 ± 0.3 0.2 ± 0.0
S-3 28.2 ± 1.5 30.9 ± 1.4 32.3 ± 1.4 36.7 ± 2.0 6.1 ± 0.3 5.4 ± 0.2 5.6 ± 0.2 6.1 ± 0.4 4.2 ± 0.2 1.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0
S-4 26.1 ± 1.2 31.3 ± 1.5 34.3 ± 1.5 35.9 ± 1.4 5.9 ± 0.4 6.2 ± 0.3 6.1 ± 0.4 6.1 ± 0.3 6.6 ± 0.5 1.2 ± 0.1 0.4 ± 0.0 0.4 ± 0.0
S-5 18.3 ± 1.0 26.2 ± 1.4 25.4 ± 1.6 29.1 ± 1.6 2.2 ± 0.1 4.8 ± 0.2 4.4 ± 0.3 5.2 ± 0.3 6.8 ± 0.4 2.2 ± 0.1 1.7 ± 0.1 0.7 ± 0.1
S-6 18.2 ± 0.9 26.8 ± 1.5 26.2 ± 1.2 31.3 ± 1.5 3.1 ± 0.1 5.3 ± 0.3 5.2 ± 0.3 5.1 ± 0.3 6.2 ± 0.3 4.8 ± 0.3 2.1 ± 0.1 0.5 ± 0.1
S-7 16.4 ± 0.7 23.8 ± 1.1 25.1 ± 1.2 32.2 ± 1.5 2.5 ± 0.1 3.6 ± 0.4 4.8 ± 0.2 5.5 ± 0.5 24.5 ± 2.3 15.3 ± 0.9 8.7 ± 0.6 1.6 ± 0.1
S-8 15.0 ± 0.7 20.3 ± 0.9 21.9 ± 1.4 31.4 ± 1.7 5.1 ± 0.2 5.2 ± 0.2 5.4 ± 0.3 6.3 ± 0.3 12.6 ± 0.7 7.4 ± 0.3 4.7 ± 0.3 1.8 ± 0.1
S-9 14.2 ± 0.8 181 ± 1.1 21.7 ± 1.0 26.1 ± 1.8 5.3 ± 0.3 5.4 ± 0.3 5.7 ± 0.4 5.6 ± 0.3 27.4 ± 2.5 18.5 ± 1.5 13.2 ± 0.7 4.1 ± 0.3
S-10 1.3 ± 0.2 11.4 ± 0.5 24.4 ± 1.6 30.8 ± 1.4 2.6 ± 0.1 4.7 ± 0.2 5.5 ± 0.2 6.0 ± 0.5 18.2 ± 1.0 17.4 ± 0.9 11.3 ± 0.6 7.9 ± 0.6

* Values are means ± SD (p ≤ 0.05) of at least three samples.

The increase in plant diversity was accompanied by a reduction in the soil TPH
content. The average initial content of TPHs at sites S-1–S-10 was about 13.0 g/kg. Natural
phytoremediation decreased the average TPH content to 7.8, 4.8, and 1.8 g/kg in the first,
third, and fifth years, respectively.

The phytoremediation rate differed markedly between sites (Figure 2), possibly be-
cause of the nature of oil pollution (Table 2). In the first year, the phytoremediation rate
was highest at freshly polluted sites (S-2–S-5) and minimal at the sites with a history of oil
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pollution (S-1, S-6, and S-10). The decontamination of these latter sites was more effective
in the subsequent years. Notably, during the first year, the phytoremediation efficiency
ranged widely from 4% (at S-10) to 82% (at S-4).
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Figure 2. Natural phytoremediation rates recorded for the five years of treatment.

In the third year, the TPH content at sites S-3 and S-4 already was within the maximum
permissible limits (<1000 mg/kg [27], Table 3). In the fifth year, the same picture emerged
at four more sites (S-1, S-2, S-5, and S-6). Among these sites, S-2 had a high initial TPH
content (about 19 g/kg) and eventually showed the highest phytoremediation rate (98.9%).

3.3. Technical Phytoremediation

The technical phytoremediation efficiency was evaluated after three months and then
after one, three, and five years of treatment. During technical phytoremediation, the foliage
projective cover at the worst polluted sites increased from 20 to 40% in the first year. As
early as next year, sites S-11–S-20 had native plants such as Melilotus officinalis and Agropyron
cristatum, as well as cultivated plants such as Medicago sativa and Lolium perenne. In the
third year, the vegetation cover included both introduced and native plant species, and the
number of the latter was much larger than that of the former.

Figure 3 and Table 4 show the results of the soil microbial and chemical analyses
for technically remediated sites S-11–S-20. One can see that in the first three months of
treatment, soil microorganisms were activated (Figure 3). The number of THMs increased
by 10 times in response to nitrogen fertilization. The number of HOMs increased as well. A
year later, however, the number of THMs dropped sharply. The soil content of available
nitrogen also decreased (Table 4). The increased content of available nitrogen in the third
month of treatment was associated with the application of nitrogen fertilizer.
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Figure 3. Numbers of culturable microorganisms in the oil-contaminated soil subjected to technical
phytoremediation: (a) THM number; (b) HOM number.
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Table 4. Time course of the content of available nitrogen and TPHs in the oil-contaminated soil
subjected to technical phytoremediation.

Site No.
N-NH4

+ (mg/kg) N-NO3− (mg/kg) TPHs (g/kg)

Initial 3rd Month 1st Year Initial 3rd Month 1st Year Initial 1st Year 3rd Year 5th Year

S-11 23.5 ± 1.1 * 37.2 ± 1.8 29.1 ± 1.7 1.8 ± 0.1 17.5 ± 0.8 5.4 ± 0.2 10.8 ± 0.5 2.5 ± 0.1 1.5 ± 0.1 1.1 ± 0.1
S-12 24.1 ± 1.3 37.5 ± 2.0 28.5 ± 1.4 3.4 ± 0.2 20.2 ± 1.0 4.3 ± 0.3 8.4 ± 0.8 0.9 ± 0.1 0.8 ± 0.1 0.7 ± 0.1
S-13 19.4 ± 0.9 38.4 ± 1.8 28.2 ± 1.4 2.7 ± 0.1 18.4 ± 1.1 5.2 ± 0.2 16.6 ± 1.8 2.9 ± 0.2 2.6 ± 0.1 1.3 ± 0.1
S-14 24.5 ± 1.1 40.6 ± 2.0 27.4 ± 1.5 2.3 ± 0.1 24.0 ± 1.1 6.5 ± 0.3 9.4 ± 0.5 0.9 ± 0.1 0.8 ± 0.1 0.7 ± 0.1
S-15 22.1 ± 1.4 37.1 ± 1.9 29.0 ± 1.3 1.6 ± 0.2 21.0 ± 0.9 6.1 ± 0.4 15.6 ± 1.4 2.9 ± 0.1 2.4 ± 0.1 1.0 ± 0.1
S-16 20.3 ± 1.2 39.5 ± 1.6 26.2 ± 1.2 1.9 ± 0.2 25.4 ± 1.2 5.0 ± 0.2 14.8 ± 0.8 2.9 ± 0.2 2.4 ± 0.1 1.0 ± 0.1
S-17 16.2 ± 0.7 22.5 ± 1.1 16.4 ± 1.1 3.7 ± 0.1 15.4 ± 0.9 1.7 ± 0.1 5.5 ± 0.3 1.5 ± 0.2 1.1 ± 0.1 1.1 ± 0.1
S-18 15.5 ± 0.7 25.2 ± 1.5 16.3 ± 1.2 4.2 ± 0.2 15.5 ± 0.7 1.8 ± 0.2 19.4 ± 0.9 2.9 ± 0.1 2.2 ± 0.1 1.2 ± 0.1
S-19 21.1 ± 1.5 35.1 ± 1.6 20.0 ± 0.9 1.6 ± 0.1 11.8 ± 0.6 2.4 ± 0.2 27.1 ± 1.4 4.9 ± 0.2 3.2 ± 0.2 1.9 ± 0.2
S-20 28.4 ± 1.4 42.3 ± 2.1 19.5 ± 1.0 2.4 ± 0.1 16.5 ± 0.7 2.9 ± 0.2 16.3 ± 0.7 2.5 ± 0.1 1.8 ± 0.1 1.0 ± 0.1

* Values are means ± SD (p ≤ 0.05) of at least three samples.

The average initial content of TPHs at sites S-10–S-20 was about 14.4 g/kg. Technical
phytoremediation decreased the average TPH content to 2.5, 1.9, and 1.1 g/kg in the first,
third, and fifth years, respectively.

At all sites, technical phytoremediation was noticeably effective as early as after a year
of treatment, regardless of the history and level of oil pollution (Figure 4).
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Figure 4. Technical phytoremediation rates recorded for the five years of treatment.

The average phytoremediation rate was 82%, ranging from 72 to 90% at different sites.

4. Discussion

Which method is chosen for the recultivation of oil-contaminated soil is primarily de-
termined by the type and properties of the soil, the kind and concentration of the pollutant,
the area of the land, the natural conditions, and the economic purpose of the contaminated
area. All these factors may limit the period and scale of use of the chosen technology.
Comparative studies of bioremediation techniques such as natural attenuation, biostimula-
tion, bioaugmentation, mycoaugmentation, and phytoremediation have been conducted
mainly in the laboratory [31–33], and few have been conducted in the field [34,35]. Many re-
searchers agree that although phytoremediation is inferior to other bioremediation methods
in terms of the decontamination rate [7,31], it is sustainable, cheap, and effective in terms of
the completeness of decontamination [7,31,32]. Actual large-scale field phytoremediation
trials are few [36–41], and we did not find comparisons of the efficacy of natural versus
introduced vegetation in the restoration of oil-contaminated soils. In this sense, our results
may be of some interest.

In this five-year study, the establishment of a vegetation cover was a fundamental
component of phytoremediation. The oil-contaminated areas were naturally revegetated.
The increase in species diversity at the sites with a history of oil pollution was higher (219%
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on average, 10 sites) than at the freshly polluted sites (194% on average, 10 sites) (Figure 2),
possibly owing to the toxicity of not yet volatilized light oil hydrocarbons [42].

Correlation analysis confirmed that as the contaminated areas developed a vegetation
cover, the total number of microorganisms, including oil degraders, increased (rs = 0.77;
p < 0.05). This dependence can be explained by the rhizosphere effect, i.e., stimulation by
plant root exudates of the abundance and activity of the root zone microorganisms [19,43].
Soil microorganisms, particularly oil-degrading bacteria, are major actors involved in the
removal of petroleum hydrocarbons from the environment [20,21,44].

The numbers of THMs and HOMs changed differently between natural and tech-
nical phytoremediation treatments. In natural phytoremediation, the microbial num-
bers increased gradually from 4.2 to 21.1 × 106 CFU/g soil (THMs) and from 3.3 to
9.1 × 105 CFU/g soil (HOMs) (average figures for 10 sites). The THM and HOM numbers
peaked in the fifth year of study as the contaminated sites developed a vegetation cover.
Technical phytoremediation, including soil agrotechnical treatment, stimulated the devel-
opment of a soil indigenous microflora and accelerated the natural revegetation of the
sites, ultimately leading to the cleaning and ecological restoration of the soil. The microbial
numbers at the sites subjected to technical phytoremediation increased by 10 times (from
3.1 to 29.0 × 106 CFU/g of soil (THMs) and from 5.0 to 11.7 × 105 CFU/g of soil (HOMs)
(average values for 10 sites)), and they were highest after nitrogen fertilizer had been
applied. However, as early as a year after the start of remediation, the microbial numbers
decreased to the initial level (to 1.7 × 106 CFU/g of soil (THMs) and to 6.8 × 105 CFU/g
of soil (HOMs) (average values for 10 sites)). A significant inverse correlation was found
between the THM number and the pollutant content in the soil (rs = −0.59; p < 0.05). Grad-
ually, the number of THMs at the sites subjected to technical phytoremediation increased
as the ecosystem was restored, and in the fifth year of study, it was comparable to the
microbial number in the soil of the sites subjected to natural phytoremediation.

It is known that soil nitrogen fertilization causes a priming effect—an increase in the
number and activity of microorganisms and an increase in the decomposition of organic
matter [45]. This is what we observed during technical phytoremediation. Previous
work has shown that the application of nitrogen fertilizer promotes the biodegradation of
petroleum hydrocarbons in soil [46,47]. Our study revealed a close correlation between
the content of ammonium nitrogen and the efficiency of phytoremediation at each stage
(first year, rs = 0.57; third year, rs = 0.76; and fifth year, rs = 0.50; p < 0.05). The explosive
growth in the number of microorganisms resulted in the high degradation of petroleum
hydrocarbons in the same period, regardless of the concentration and age of the pollution.
By the end of the first year, the utilization of organic matter and the depletion of nutrient
nitrogen, intensified by competition for nitrogen from the introduced plants, led to a
decrease in the number of soil microorganisms, but in this period, the soil had already been
clean. We believe that this is how the events associated with technical phytoremediation
occurred under the described conditions.

In natural phytoremediation, decontamination proceeded more slowly than in techni-
cal phytoremediation. However, it was stably supported by the developing vegetation. As
a vegetation cover developed, the content of available nitrogen increased slowly. This was
confirmed by the significant correlation found between the area of the foliage projective
cover and the soil content of NO3 (rs = 0.60; p < 0.05). As plant roots grow, they change soil
conditions, contributing to an increase in the number and activity of soil microorganisms
and to the degradation of petroleum hydrocarbons [48]. Thus, the effectiveness of natural
phytoremediation is largely determined by the state of the vegetation cover. According to
Drugov and Rodin [27], the natural decontamination rates for oil-contaminated soils of
different natural biomes but of the same oil-pollution level (5000 mg/kg) are evaluated for
the following periods: up to 5 years (high natural decontamination rate), up to 10 years
(medium natural decontamination rate), and up to 30 years and more (low natural decon-
tamination). According to this classification, the rate of natural decontamination at the
naturally vegetated sites included in this study is high, exceeding 90% in five years.
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This research was conducted in the grounds of a petroleum refinery, and we were
able to compare the economic costs of different phytoremediation approaches. On the
basis of the cost of a year-long technical phytoremediation project, the reclamation of 1 ha
was estimated to cost RUB 1 million (~$14,300/ha or $1.4/m2). Natural phytoremediation
did not require costs other than annual costs, including those of mowing, the collection
and utilization of plant biomass in both remediated and nonremediated areas around
the refinery, and the monitoring of the refinery grounds to find contaminated sites. The
cost of a year-long monitoring of the refinery grounds was RUB 140,000/ha (~$2000/ha
or $0.2/m2).

5. Conclusions

The remediation efficiency for the oil-contaminated sites in the industrial and adjacent
areas of the petroleum refinery was high enough in both technical and natural phytoreme-
diation. However, the rate of technical phytoremediation was higher than that of natural
phytoremediation, permitting an acceptable cleanup level to be attained in a shorter period.
In technical phytoremediation, including the tilling of soil and the planting and watering of
M. sativa and L. perenne, the per-year decontamination of soil from oil hydrocarbons was as
high as 72–90%. The efficiency of natural phytoremediation (natural attenuation of soil with
the native vegetation cover) was as high as that only after 5 years of treatment. Thus, the
high rate and efficiency of technical phytoremediation as a soil rehabilitation approach was
confirmed. However, the possibilities of natural phytoremediation, a cost-free process that
takes more time than does technical phytoremediation but yields the same results, should
not be underestimated. When time permits, the duration of natural phytoremediation may
be no bar to its being chosen for the rehabilitation of contaminated areas.
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