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Abstract: The current work was undertaken to investigate the chemical composition, antioxidant,
anti-inflammatory, and analgesic properties of a polyphenol-rich fraction from Withania adpressa
Coss. ex Batt. After being extracted, the polyphenol-rich fraction was chemically characterized
through use of high-performance liquid chromatography (HPLC). Antioxidant potency was assessed
through the use of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and total antioxidant capacity (TAC).
Inflammatory and analgesic properties were assessed in vivo through the use of carrageenan and
heat stimulus assays, respectively. Chromatographic analysis of polyphenol-rich fraction revealed
the presence of potentially bioactive phenols including epicatechin, apigenin, luteolin, quercetin,
caffeic acid, p-coumaric acid, and rosmarinic acid. The polyphenol-rich fraction showed interesting
anti-free-radical potency with a calculated IC50 value of 27.84 ± 1.48 µg/mL. At the highest dose
used (1000 µg/mL), the polyphenol-rich fraction scored good total antioxidant capacity with a
calculated value of 924.0 ± 28.29 µg EAA/mg. The polyphenol-rich fraction strongly alleviated the
inflammatory effect of carrageenan injected into the plantar fascia of rats resulting in inhibition up
to 89.0 ± 2.08% at the highest tested dose (500 mg/kg). The polyphenol-rich fraction showed a
good analgesic effect wherein the delay in reaction time to a thermal stimulus caused by 500 mg/kg
had a highly similar effect to that induced by Tramadol used as a positive control. The findings of
the current work highlight the importance of polyphenol-rich fractions from W. adpressa Coss. ex
Batt. as an alternative source of natural antioxidant, inflammatory, and analgesic drugs to control
relative diseases.

Keywords: plants; natural products; free radicals; inflammation; medicinal; caffeic acid

1. Introduction

It is well known that plants have been utilized for medical reasons, cosmetic purposes,
and as a dietary component all over the globe for hundreds of years [1,2]. The presence of
phytochemicals in herbs, especially secondary metabolites, is the most important factor
contributing to their beneficial characteristics [3]. Higher plants synthesize these organic
molecules, which, in most instances, are not required for growth and development but
are instead formed in reaction to biotic and abiotic environmental conditions [4]. In
plants, secondary metabolites consist of terpenoids, alkaloids, and flavonoids, which have
been scientifically shown to be promising bioactive agents with antioxidant, antibiotic,
anti-inflammatory, anti-aging, and antitumor properties [5–7]. Depending on the use,
plants may be used fresh, dried, or processed into essential oils or crude extracts [7]. The
compounds responsible for particular biological potential in a plant have been examined in
many studies [8].

Diets high in antioxidants have been shown to protect humans against degenerative
illnesses including cancer and cardiovascular disease [9]. To avoid the oxidative degrada-
tion of foodstuffs caused by free radicals, natural antioxidants tend to be favored by users
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in the food business over synthetic antioxidants, according to recent research [10]. Free
radicals have the potential to generate cytotoxic effects and tissue lesions, as well as DNA
damage. The human body requires antioxidant agents in order to fight itself against free
radicals. These antioxidant agents are found in fruits and vegetables and almost all plants.
Because of their secondary metabolites, plants are able to supply potent antioxidant agents
that help to manage and alleviate the effects of free radicals [11].

Inflammatory disorders are growing more widespread throughout the globe [12].
Inflammation may be triggered by several factors, including physical injury, ultraviolet
irradiation, microbial invasion, and immunological responses. Sclerosis, inflammatory
bowel disease, chronic asthma, and psoriasis are among disorders that may be caused by
inflammation cascades. Inflammation is also involved in the development of chronic fatigue
syndrome [13,14]. The disadvantages of clinically utilized anti-inflammatory medications
include the presence of side effects as well as the high expense of treatment [12]. Traditional
remedies and natural products may be used as an alternative to these treatments, and they
hold significant promise in the discovery of bioactive lead compounds into therapeutics for
the treatment of inflammatory illnesses. Traditional remedies and phytopharmaceuticals
have been utilized for the treatment of inflammatory and other illnesses for many years [12].

W. adpressa Coss. ex Batt (Solanaceae), which is a herb commonly known by its
name Winter Cherry, grows in North Africa and the Mediterranean basin; it has been
shown to have pharmacological properties, including anti-tumor, immunomodulatory,
anti-convulsant, and anti-stress properties. Importantly, diseases such as conjunctivi-
tis, inflammation, anxiety, nervous system diseases, bronchitis, ulcers, liver disease, and
Parkinson’s disease have been treated with plants in the genus of Withania for a long
time [15]. Previous reports showed that the gnus withania possesses many phenols, notably
glycowithanolides and withanolides, as well as volatile chemicals [16].

The current study was conducted to investigate the chemical composition, antioxidant,
anti-inflammatory, and analgesic properties of a polyphenol-rich fraction from leaves
W. adpressa Coss. ex Batt.

2. Materials and Methods
2.1. Plant Material

From the Sahara area (29.7519◦ N, 7.9756◦ W) in March 2021, W. adpressa Coss. ex Batt
was collected. Following the confirmation of the plant’s identity by a botanist, it was placed
in the University Herbarium under the reference A2/WDBF21. Consequently, the leaves
were washed and dried for seven days in the dark and a well-ventilated environment
before being extracted.

2.2. Extraction of Phenols

The extraction of phenols was successfully conducted by using maceration as previ-
ously described [17]. To summarize, a total of 100 g of W. adpressa leaves was macerated
with 300 mL of methanol. Following that, the solvent was removed through the use of a
rotary evaporator at decreased pressure and low temperature to obtain the concentrated
extract. The obtained extract was solubilized in 500 mL of distilled water before extracting
it three times further through the use of liquid–liquid extraction using 200 mL of each of
the following solvents: hexane, chloroform, and ethyl acetate. Following that, the ethyl
acetate layer was evaporated at decreased pressure using a rotary evaporator, which was
used to remove the solvent. The residue was dissolved in 300 mL water once more and
freeze-dried in order to obtain a polyphenol-rich fraction [12].

2.3. HPLC Analysis

The polyphenol-rich fraction was phytochemically characterized using the HPLC
as described by Amrati [17], with minor modifications. The HPLC system was used for
separation and identification of compounds. Polyphenol and standard samples were
filtered using a 0.2 m membrane filter to eliminate particle residues before being injected.
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After that, a volume of 5 mL of polyphenol extract was injected over a C18 ZORBAX
Eclipse column at an injection rate of 0.7 mL/min and a column temperature of 30 ◦C.
Acidified water (acetic acid 0.1%) (A) and acetonitrile (B) were utilized as the mobile phase
in this experiment, and the reaction was allowed to proceed for 65 min. Compounds
were recognized by comparing their spectra to those of reference compounds under the
same conditions.

2.4. In Vitro Antioxidant Activity of Polyphenol-Rich Fraction

In the current work, assessment of the antioxidant activity of polyphenol-rich extract
was carried out through the use of DPPH and molybdate in triplicate assays.

2.4.1. Antioxidant Power of Polyphenol-Rich Fraction Using DPPH Assay

This test was performed according to the methodology described by Kuramasamy et al. [18].
Briefly, 1000 µL of a methanolic DPPH (0.2 mM) solution was combined with the polyphenol-
rich fraction (0–1 mg/mL). The obtained mixture was then held at room temperature for
30 min in the darkness, and the absorbance was measured at 517 nm. A blank solution
consisting of 1000 µL of DPPH solution and 1000 µL of methanol was used to serve as a
negative control. The blank solution, as well as samples and positive controls (quercetin
and BHT), was produced under identical working conditions. Next, a spectrophotometer
was used to quantify the absorbance decline, and the inhibition percentage was determined
through the use of the following formula:

Inhibition (%) = [1 − (sample/control)] × 100

2.4.2. Total Antioxidant Capacity of Polyphenol-Rich Fraction

A reagent was prepared by mixing H2SO4, (0.6 M), Na2PO4 (28 mM), and ammonium
molybdate (4 mM) to measure the total antioxidant capacity of the polyphenol-rich fraction.
Briefly, one milliliter of reagent was added to 0.1 mL of the polyphenol-rich fraction at
various concentrations (0.2, 0.5, and 1 mg/mL). Thereafter, a blank solution composed of
1 mL reagent and 0.1 mL methanol was incubated in a water bath set to 95 ◦C for 90 min.
Next, the absorbance was measured at 695 nm. The results were expressed in mg ascorbic
acid equivalent per gram of dry extract (µg EAA/mg) [19].

2.5. Animal Material

Male rats weighing between 100 and 150 g were during the two-week acclimatization
period; the animals were housed in cages with five rats each and maintained at 22 ◦C with
a 12 h light–dark cycle. The method used in the present study complied with the globally
recognized Guide for the Care and Use of Laboratory Animals. The animals were given
unrestricted access to food and water at all times [20].

2.6. Anti-Inflammatory Activity

The anti-inflammatory activity of the polyphenol-rich fraction was assessed as de-
scribed in earlier work. Animals were divided into groups of five rats each, of which two
groups served as negative and positive controls, which received 0.9% saline and Diclofenac
(1%), respectively, while other groups served as treatments, which received the polyphenol-
rich fraction. Ninety minutes after local applications or one hour after oral administration
of the polyphenol-rich fraction at different doses (200, 400, and 500 mg/kg), the plantar
fascia of the right hind leg of rat was injected with 0.1 mL of carrageenan intradermally. The
circumference of the applied sample was measured before the injection of carrageenan and
then after every hour from the third hour until the sixth hour after the administration of
carrageenan. The following formula was used to compute the % inhibition of inflammation:

% inhibition= [((St − S0) control − (St − S0) sample)/((St − S0) control)] × 100
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2.7. Analgesic Activity

The animals were divided into groups of five rats each, of which two groups served
as negative and positive controls, which received 0.9% saline and Tramadol, respec-
tively. Each animal was individually placed in an enclosed space on a glass surface
(L × W × H = 10 × 20 × 14). After 10 min of adaptation, rats received oral administration
of polyphenol-rich fraction before being subjected to the heat stimulus (50 ◦C) onto the
plantar surface of each hindpaw. The increase in temperature under the plantar fascia of the
right hind leg resulted in rat movement. The delay in reaction time to the thermal stimulus
was recorded.

2.8. Statistical Analysis

Data were expressed in means with standard deviations of triplicate tests using Graph-
Pad Prism software (version.7). Normality of distributions was tested by the use of Shapiro–
Wilk’s test, whilst the homogeneity of variances was checked by the use of Levene’s test.
Analysis of variance (ANOVA) was performed, with Tukey’s HSD test as a post hoc test for
multiple comparisons. A significant difference was considered at p < 0.05.

3. Results
3.1. Chemical Characterization

The chemical characterization of the polyphenol-rich fraction from leaves of W. adpressa
allowed the identification of seven major compounds including flavonoid compounds;
epicatechin, apigenin, luteolin, and quercetin; phenolic acids; caffeic acid and p-coumaric
acid; and polyphenols derived from hydroxycinnamic-acid-like rosmarinic acid (Figure 1,
Table 1). The chemical composition of different extracts from the genus Withania has been
widely investigated. Notably, Jain et al. (2012) revealed that extracts from Withania somnifera
and Withania coagulans possessed alkaloids; isopelletierine, anaferine, and saponins with
an additional acyl group; sitoindoside VII and VIII; withanolides with glucose at carbon
27; withanolides; and withaferines [21]. Matsuda and co-authors (2001) showed that W.
somnifera possessed withanolide glycosides and withanosides [22]. The genus Withania
possessed various fatty acids; octacosan; oleic and stearic fatty acids; steroids; and oleanolic
acid as reported in earlier work [23].
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Table 1. Chemical structure of major compounds identified in polyphenol-rich fraction using HPLC.

RT Identification Compound Standard Use Concentration in µg/mg Molecular Structure

31.91 Caffeic acid Cafeic acid 71.28
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3.2. Antioxidant Activity

The antioxidant activity of the polyphenol-rich fraction using the DPPH method, as
represented in Figure 1, showed that the polyphenol-rich fraction exhibited good antioxi-
dant activity in a dose-dependent manner. From this figure, it can be seen that increasing
the concentration of the polyphenol-rich fraction increased the inhibition percentage of
DPPH free radicals, i.e., 10 and 100 µg/mL of the polyphenol-rich fraction inhibited
42% and 72%, respectively (Table 1). The polyphenol-rich fraction recorded an IC50 value of
27.84 ± 1.48 µg/mL, which can be considered important when compared to that obtained
with BHT (13.42 ± 0.87 µg/mL) and quercetin (14.27 ± 0.59 µg/mL) (Table 2). Antioxidant
capacity evaluated by the use of ammonium molybdate showed that the polyphenol-rich
fraction possessed important antioxidant capacity as shown in (Figure 2b). From this figure,
it can see that 1000 µg/mL of the polyphenol-rich fraction recorded antioxidant capacity in
the order of 924.0 ± 28.29 µg EAA/mg and 500 µg/ml recorded antioxidant capacity in the
order of 387.1 ± 25.45 µg EAA/mg (Figure 2b).

Table 2. Antioxidant power of polyphenol-rich fraction tested by the use of DPPH bioassay.

Samples
Anti-Radical Activity by the DPPH Method

IC-50 in µg/mL
10 µg/mL 100 µg/mL 1000 µg/mL

Polyphenol-rich fraction 42% 72% 91% 27.84 ± 1.48

Quercetin 46% 87% 94% 14.27 ± 0.59

BHT 48% 89% 96% 13.42 ± 0.87
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The results of antioxidant activity showed that the polyphenol-rich fraction possessed
excellent antioxidant power, which can be explained by its richness in phenols with an-
tioxidant power such as epicatechin, apigenin, luteolin, quercetin, caffeic acid, p-coumaric
acid, and rosmarinic acid (Figure 1). Previous work on caffeic acid (phenolic acid) revealed
an inhibition percentage of DPPH radicals in the order of 93.9% (DPPH), even at a low
concentration (20 µg/mL) [24]. This antioxidant power may be due to the richness of
polyphenol-rich fractions in polyphenols, which could react with free radicals, whether
separately or in synergy, resulting in an antioxidant effect [25]. Catechin and epicatechin
contained in the polyphenol-rich fraction are the predominant compounds with antioxidant
power as reported in earlier work [26]. Our findings are in agreement with those reported
by El Moussawi and co-authors who showed that the genus Withania possessed antioxidant
potency, particularly Withania frutescens, which revealed an anti-free-radical activity of the
order of 477.65 µg EAA/mg [27].
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3.3. Anti-Inflammatory Activity of Polyphenol-Rich Fraction

The anti-inflammatory activity of the polyphenol-rich fraction was studied by mea-
suring the amount of edema induced by carrageenan in rats. The results are presented
in Figure 3, which shows the percentage of anti-inflammatory evolution of edema as a
function of time. From this table, it can be seen that the polyphenol-rich fraction given to
mice via oral administration alleviated the inflammatory effect of carrageenan injected into
the plantar fascia of the right posterior leg of rats within three hours following injection,
resulting in inhibition of 13.02 ± 1.27 % at 400 mg/kg and 18 ± 1.20% at 500 mg/kg. The
anti-inflammatory effect increased progressively and reached a maximum inhibition after
six hours of post-treatment, which reached 57.32 ± 2.05% at 200 mg/kg, 69.46 ± 2.13% at
400 mg/kg, and 89. 0 ± 2.08% at 500 mg/kg, while the positive control (Diclofenac 1%)
inhibited edema by 91.51 ± 2.41% (Figure 3). The pretreatment of rats with the different
doses of polyphenol-rich fraction induced a strong inhibition of inflammation at the sixth
hour when compared to Diclofenac used as a drug reference.
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significant difference.

Carrageenan injection triggers an increase in the levels of cyclooxygenase 2 (COX-2)
mRNA synthesis, resulting in an increased concentration of this enzyme, which peaks
at 1 h [28]. This is accompanied by an increase in the synthesis of prostaglandins (PGs),
mainly prostaglandin E2 (PGE2) (maximum at 2 h) which is mainly involved in certain
pain and inflammation processes [29]. This feature helps explain why non-steroidal anti-
inflammatory drugs (NSAIDs), such as aspirin, have no effect at 1 h. This delay is due to
their mechanisms of operation, namely the inhibition of PGs by simultaneously stimulating
the two enzymes COX-1 and COX-2, for which the inhibition curve consolidates after 3 h,
reflecting the stabilization of the mediators [30]. As for steroidal anti-inflammatory drugs
(AIS) such as dexamethasone, their action is apparent from the first hour, thanks to their
direct interaction with DNA, whose effect is associated with the action of several molecular
pathways including pro-inflammatory cytokines, phospholipase, and COX, mainly through
the nuclear transcription factor NF-kB [30,31].

In the present work, the anti-inflammatory effect of the polyphenol-rich fraction by
the carrageenan-induced edema test showed interesting results, whereby the inflammation
was reduced by 89% at 500 mg/kg. These results are in agreement with those reported
by Elmoussaoui et al. [29], who revealed 82.20% ± 8.69 as a percentage of inhibition
induced by 450 mg/kg Withania frutescens extract [29]. These results could be explained by
various polar phenolic compounds identified by HPLC in polyphenol-rich fractions such as
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epicatechin, apigenin, luteolin, quercetin, caffeic acid, p-coumaric acid, and rosmarinic acid.
Other phytoconstituents in the genus Withania, particularly tannins, mucilages, alkaloids,
coumarins, and free quinone, could be also responsible for the anti-inflammatory activity
investigated in the present work. These compounds can act by preventing the synthesis of
prostaglandins through cyclooxygenase [14,17,32,33].

Withania somnifera exerted an anti-inflammatory role by repressing the expression of
certain cytokines including tumor necrosis factor-(TNF-) α, interleukin-(IL-) 8 and 1, nitric
oxide, and reactive oxygen species. Leukocyte adhesion and migration, as well as cell
adhesion molecules, the production of IL-6 and TNF-a, and the activation of NF-k (nuclear
factor kappa-luminous chain-enhancer of activated B-cells), were successfully blocked
by withaferin A, one of the active components in W. somnifera. [18,20]. In addition, this
compound blocked the activation of PMA-induced phosphorylation of the transcription
factor p38, extracellular-regulated kinases (ERK 12), and the transcription factor c-Jun N
terminal kinase (c-Jun N-terminal kinase) (JNK) [18,21].

3.4. Analgesic Activity of Polyphenol-Rich Fraction

Regarding analgesic activity, Figure 4 provides the result of the paw withdrawal test
performed using the plantar thermal hyperalgesia model. The results showed that the paw
withdrawal latency of the animal treated with the polyphenol-rich fraction was significantly
higher than that of the negative control group which received only 0.9% NaCl physiological
solution. The delay in reaction time to the thermal stimulus was directly related to the
increase in doses of the sample. Notably, the delay in reaction time for 400 mg/kg and
500 mg/kg was 35.51 ± 1.04 s and 39.64 ± 1.17 s, respectively, while the delay in reaction
time for the negative control group was 12.38 ± 1.28 s. Rats treated with Tramadol (1%),
the reference analgesic, had a longer delay in reaction time to the thermal stimulus than
the groups treated with the different doses of the polyphenol-rich fraction, which was
42.68 ± 0.78 s.
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The results show that the delay in reaction time to the thermal stimulus caused
by 500 mg/kg of the polyphenol-rich fraction had a similar effect to that induced by
the drug used as a positive control. This result can be considered a strong indication
of the analgesic effect of the plant extract. The analgesic effect of the polyphenol-rich
fraction can be explained by the property of phytochemicals identified using HPLC without
excluding other phytochemicals in the genus Withania such as withanolides, withaferin
A, withanolide F, coagulin L, and nicotiflorin, which are known to possess a notable anti-
nociceptive property [34–38]. All these results are in agreement with those reported by
Moussaoui et al. (2020) who revealed an important analgesic effect of the methanolic extract
of Withania frutescens leaves at the dose of 450 mg/kg using the acetic acid method [29]. In
addition, the current study was in accordance with Kumar et al. (2015), who demonstrated
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that Withania somnifera extract significantly increased the potency and time of the pain
threshold as well as the potency and time of pain tolerance compared to placebo, reflecting
a significant analgesic effect [39,40]. The analgesic effect presented here can be explained by
the fact that phenols exhibited a central anti-nociceptive effect via the activation of opioid
receptors whose activation results in a decrease in the release of pain mediators such as
substance P [5,22].

4. Conclusions

The current work highlighted the antioxidant, anti-inflammatory, and analgesic prop-
erties of chemically characterized polyphenols from Withania adpressa Coss. This study
concluded that polyphenols from Withania adpressa Coss. possess a potential for being used
as an alternative reservoir of natural antioxidant, inflammatory, and analgesic drugs to
control relative diseases. Even though the outcome of the present work is highly interesting,
further pre-clinical and clinical investigations on nonhuman primates and humans will be
required before any possible use of polyphenol-rich fractions as a natural drug.
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