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Highlights:

• Cldnd was specifically expressed in adult gonads.
• Cldnd RNA was enriched in spermatogonia and early oocytes and decreased with gametogenesis.
• Gfp-Cldnd 3′ UTR mRNA could identify primordial germ cells in medaka.

Abstract: Spinyhead croaker (Collichthys lucidus) is an economically important fish suffering from
population decline caused by overfishing and habitat destruction. Researches on the development
of primordial germ cell (PGC) and reproduction biology were an emergency for the long-term
conservation of the involved species. Dead end (dnd) gene plays an indispensable role in PGC
specification, maintenance, and development. In the current study, we report the cloning and
expression patterns of dnd in C. lucidus (Cldnd). RT-PCR analysis revealed that Cldnd was specifically
expressed in both sexual gonads. In the ovary, Cldnd RNA was uniformly distributed in the oocytes
and abundant in oogonia, and gradually decreased with oogenesis. A similar expression pattern was
also detected in testis. Dual fluorescent in situ hybridization of Cldnd and Clvasa demonstrated that
they almost had the same distribution except in oocytes at stage I, in which the vasa RNA aggregated
into some particles. Furthermore, Cldnd 3′ UTR was sufficient to guide the Green Fluorescent Protein
(GFP) specifically and stably expressed in the PGCs of medaka. These findings offer insight into that
Cldnd is an evolutionarily conserved germline-specific gene and even a potential candidate for PGC
manipulation in C. lucidus.

Keywords: dnd; Collichthys lucidus; PGC

1. Introduction

Primordial germ cells (PGCs) are the germline precursor which are specified from
somatic cells and migrate into the genital ridges, ensuring population and intergenera-
tional inheritance of genetic information. The specification, migration, proliferation, and
differentiation of PGCs are precisely regulated by a sophisticated molecular network. As
well, it has been demonstrated that a number of functional genes play critical roles in the
development of PGCs [1,2]. Among these, dead end (dnd) gene attaches attention not only
for its indispensable role in PGC development, but also for its successful application to
prepare germ cell-deficient recipients for germ cell transplantation [3].

Dnd was initially identified in zebrafish as an RNA-binding protein that is specif-
ically expressed in germ cells causing aberrant PGC migration and germ cell-deficient
when blocked by specific antisense morpholinos [4]. Additionally, homologous dnd
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genes are characterized in diverse vertebrates, such as mice (Mus musculus) [5], frog
(Xenopus laevis) [6], chickens (Gallus gallus) [7], medaka (Oryzias latipes) [8], Chinese stur-
geon (Acipenser sinensis) [9], gibel carp (Carassius Gibelio) [10], orange-spotted grouper
(Epinephelus coioides) [11] and Celebes medaka (Oryzias celebensis) [12]. All these studies
suggest that dnd is primarily expressed in PGCs during embryogenesis, but it is shown
sexually dimorphic in adult gonads across species. In mice, dnd is only detectable in
testis [5], whereas it is restricted to the ovary in frog [6]. Dnd occurs in germ cells of
both sexes in medaka [8], zebrafish (Danio rerio) [4], carp (Carassius gibelio) [10], turbot
(Scophthalmus maximus) [13] and starry flounder (Platichthys stellatus) [14].

It is proven that dnd is essential for primordial germ cell (PGC) specification, mainte-
nance, and development. In mice, dnd mutation causes germ cell loss or testicular germ cell
tumors [5]. Dnd knockdown leads to abnormal migration and loss of PGCs in frogs [6] and
zebrafish [4,15,16]. Especially in medaka, dnd is a specifier that can abolish or increase the
PGC in a dosage-dependent manner [1]. Dnd is of great importance in the capability of the
PGCs fate protection from somatic differentiation [16,17]. Dnd has been broadly used to
produce PGC-deficiency individuals for the application of surrogate broodstock technology
(SBT) in some teleosts, such as medaka [18], Atlantic cod (Gadus morhua) [19], olive flounder
(Paralichthys olivaceus) [20], carp [21,22], grouper [11], salmon (Salmo salar) [23] and rainbow
trout (Oncorhynchus mykiss) [24]. The SBT [18,25–27] is recognized as a promising approach
for preventing endangered species or expanding valuable fish species from suffering popu-
lation decline. Furthermore, the fact that rescue of dnd crispant embryos enables inherited
sterile offspring production benefits the actual application of sterile fish as an approach to
avoid genetic introgression in the aquaculture industry [28].

Spinyhead croaker (Collichthys lucidus) is an economically important fish in the east
coastal areas and estuaries of China. Due to its delicious taste and high nutritional value,
it is popular among other fish species [29]. The market-oriented demand that ascends
gradually pushes up the price of C. lucidus and leads to its population decline due to
overfishing [30]. Therefore, large-scale artificial reproduction is imperative to compensate
for the limited natural reproductive rate. Nevertheless, research on C. lucidus is mainly
limited to morphology, immune-related gene identification, population genetics, genome
assembly, and transcriptome assembly with few reports on sex determination [29,31–36].
In the previous study, C. lucidus germ cells marker gene vasa was isolated by us [37]. In
the present study, another gem cells gene dnd(Cldnd) was cloned, and ClDnd protein was
highly conserved across species. Cldnd was only expressed in the germ cells of both sexual.
Furthermore, Cldnd 3′ UTR was sufficient to guide the Green Fluorescent Protein (GFP)
specifically and stably expressed in the PGCs in medaka, suggesting that Cldnd is an
evolutionarily conserved germline-specific gene and even a potential candidate for PGC
manipulation in C. lucidus.

2. Materials and Methods
2.1. Fish and Sampling

C. lucidus were sampled from the East China Sea in Ningde, Fujian province, China.
For the total RNA extraction, tissue samples from the kidney, gill, intestines, brain, heart,
ovary and testis were immediately collected and flash-frozen in liquid nitrogen. Gonad
tissues were fixed for the frozen section. The O. latipes was kept at 26 ◦C in a 14-h light/10-h
dark cycle and its embryos were maintained and staged as described [38]. All experiments
were conducted in strict accordance with the guidance of the Committee for Laboratory
Animal Research at Shanghai Ocean University.

2.2. RNA Isolation and cDNA Synthesis

Total RNA was isolated from the adult tissues mentioned above by using TRIzol®

Reagent (Invitrogen, Carlsbad, CA, USA), and the integrity of the RNA was detected by 1%
agarose gel electrophoresis with ethidium bromide (EB) staining. The first-strand cDNA
was synthesized with 1 µg total RNA and oligo dT18 primers following the manufacturer’s
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manual for the M-MLV reverse transcription kit (Takara, Shiga, Japan). Additionally, using
BD SMART® RACEs kit (Clontech, Beijing, China), two cDNA libraries from the ovary and
testis were constructed for the full-length sequence amplification.

2.3. Molecular Cloning and Analysis of C. lucidus dnd Gene

To identify the full-length sequence of Cldnd, the classic RACEs approach was per-
formed. Briefly, according to the conserved amino acid sequences (WEFRLMM and
MAKKVLVE) of Dnd protein, a pair of degenerate primers were designed to explore
the corresponding fragment of Cldnd (Figure 1A). Subsequently, specific RACEs primers
were designed based on the above fragment to amplify the 5′ and 3′ cDNA ends of Cldnd
by using BD SMART® RACEs kit (Clontech). All the primers used in the present research
were listed in Table 1. Finally, the full-length mRNA sequence of Cldnd was assembled
via DNAMAN and aligned to the Dnd protein across the examined species by Vector NTI
Suite 11.0 (Invitrogen). Dnd proteins in vertebrates, from teleosts, amphibians to mam-
mals, were achieved from NCBI (https://www.ncbi.nlm.nih.gov/protein) to investigate
ClDnd conservatism in evolution. Afterwards, the phylogenetic tree was constructed by
the neighbor-joining method based on Mega 7.0 package.

2.4. RT-PCR

To confirm the tissue distribution of Cldnd, a pair of gene-specific primers targeting
to its coding sequence (CDS) together with β-actin as an internal control was designed
and RT-PCR was carried out by using Ex-Taq® (Takara, Beijing, China). PCR program was
performed in a 25 µL reaction system for 28 cycles: denaturation at 95 ◦C for 20 s, annealing
at 58 ◦C for 20 s, and extension at 72 ◦C for 1 min.

2.5. Cryosection and In Situ Hybridization

Spinyhead croaker gonads were fixed with 4% paraformaldehyde, and then were
sliced into 6 µm. To investigate the subcellular location of Cldnd RNA, in situ hybridization
(SISH) and dual fluorescence in situ hybridization (FISH), which could hybridize labeled
probes with nucleic acids in cells or tissues, were performed as described [39,40]. Plasmid
(pT-Cldnd) was constructed by inserting CDS of Cldnd into the pGEM-T vector. Then, pT-
Cldnd was linearized for sense and antisense RNA probes from SP6 polymerase by using
FITC RNA Labeling Kit (Roche, Basel, Switzerland). Clvasa probe labeled by digoxigenin
(DIG) was prepared as described previously [37].

2.6. Preparation of Chimeric mRNAs and Microinjection

The recombinant plasmid of pCSpfCldnd 3′ UTR (gfp-Cldnd 3′ UTR) was constructed
by replacing the Clvasa 3′ UTR (amplified by primers Clu-dnd 3UF and 3UR) with Cldnd 3′

UTR in pCSpfClvasa 3′ UTR (gfp-Clvasa 3′ UTR) [37]. The plasmid, pCSchDrnos1 3′ UTR
(rfp-Drnos1 3′ UTR), was described [12]. Capped mRNAs used for microinjection were syn-
thesized by using the mMessage Machine kit (Amibtion) from linearized gfp-Cldnd 3′ UTR
and rfp-Drnos1 3′ UTR. Two chimeric mRNAs were co-injected at 100 ng/µL concentration
into one-cell stage embryos from medaka for PGCs visualization.

2.7. Microscopy

Observation and photography were carried out on Nikon SMZ25 and Ni-E microscope
with Nikon Ds-Ri2 camera (Nikon, Tokyo, Japan) as described [39].

https://www.ncbi.nlm.nih.gov/protein
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Figure 1. Multiple alignment and phylogenetic tree of Dnd proteins. (A) Multiple alignment of Dnd
proteins. Species and overall sequence identity values compared to the ClDnd protein were at the
end of the alignment. RNA recognition motif (RRM) and five conserved regions were indicated in
the frame (black). (B) Phylogenetic tree of Dnd proteins. Bootstrap values were given. Accession
numbers followed organism.

Table 1. Sequences of primers used in the present study.

Primer Sequence (5′ to 3′ Direction) Purpose

Clu-dnd DF TGGGAGTTCAGGCTCATGATG Degenerate primer
Clu-dnd DR TCNACNARNACYTTYTTNGCCAT
Clu-dnd 3NF ACGCTGGAGGAAGCTTGGCAGGC

3′ RACEClu-dnd 3F GAGATTCACTACAGCCACACCGAG
Clu-dnd 5NR CTTGAGTCAGCTTTGTATTGG

5′ RACEClu-dnd 5R TGGTCCTCCATACTTCCTCTG
Clu-dnd F ATGATGGACCCCAAGCAGAGCC

RT-PCRClu-dnd R GTTGGTGAACCGACTGTT
β-actin F TTTCAACAGCCCTGCCAT GTAC

Internal control
β-actin R CCTCCAATCCAGACAGAGTATT

Clu-dnd 3UF ctcgagCTTGGGTTCAGAGGATATG
3′ UTRClu-dnd 3UR ggtaccCCTTTTAAATCTCATTTA
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3. Results
3.1. Cloning and Characterization of Cldnd

By the approach combining degenerate PCR with RACEs, a 1377 bp Cldnd comple-
mentary (c) DNA (GenBank accession No. MK547285) in full-length containing a 32 bp
5′ UTR, a 244 bp 3′ UTR and a 1098 bp CDS that encodes 366 amino acids was obtained
(Figure S1). Multiple alignment analysis showed that ClDnd had a high identity with
Dnd orthologs across species, ranging from 97.2% in large yellow croaker to 79.6% in
medaka (Figure 1A). In addition, by the blast to the Conserved Domain Database (CDD)
(https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), it was found that the deduced
ClDnd protein carried six conserved domains or motifs, including N-terminal region (NR),
RNA recognition motif (RRM) and four C-terminal regions (CR1-4), which were typically
present in Dnd protein (Figures 1A and S1).

The molecular phylogenetic tree demonstrated that Dnd proteins formed two distinct
clades, which were the fish clade and the other vertebrates’, and ClDnd was the closest
with that of the large yellow croaker in the fish sub-clade (Figure 1B).

3.2. Cldnd RNA Is Specifically Expressed in Germ Cells

As described above, dnd is a gene which is specifically expressed in germ cells [41].
The RT-PCR analysis of seven distinct organs in C. lucidus revealed that only in the testis
and ovary, bands corresponding to Cldnd RNA were shown, but absent in other somatic
tissues such as the brain, kidney, liver, gill, and intestines (Figure 2A). Furthermore, SISH
was carried out to investigate the subcellular localization of Cldnd RNA in the gonads. In
the ovary, Cldnd signals were intensely expressed in oocyte I and were easily detected in
oocyte II. As oogenesis progressed, the signals in stage III oocytes weakened and eventually
vanished (Figure 2B). In the testis, Cldnd RNA was abundant in spermatogonia, then
reduced markedly in primary spermatocytes and was faint in secondary spermatocytes,
and finally disappeared in spermatozoon and sperm (Figures 2C and 3A). On the contrary,
the sense probe was unable to detect any signal (data not shown). According to the findings,
Cldnd RNA was only found in male and female germ cells.
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Figure 2. Cldnd RNA expression. (A) RT-PCR analysis of Cldnd in adult tissues. (B,C) Ovarian and
testicular cryosections using antisense Cldnd probe and the signals were visualized by chromogenic
staining. sc1 and sc2, primary and secondary spermatocytes; st, spermatid; I–III, stages of oocytes.
Scale bar, 200 µm.
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Figure 3. Co-localization of Cldnd and Clvasa mRNA in testis. Dual color FISH with Cldnd and Clvasa
antisense RNA probes on testis and the signals were visualized by fluorescence staining. Nuclei were
stained with DAPI (blue). (A) The signals were stained for the dnd RNA (green) by FISH. (B) The vasa
signals were stained red. (C) The merges of vasa with dnd and DAPI. (D–F) Larger Magnification of
panels C (white frame), highlighting the different cells. sg, spermatogonia; sc1 and sc2, primary and
secondary spermatocytes; st, spermatid. Scale bar, 200 µm.

In several species, including C. lucidus, vasa is referred to as the best-characterized
germ cell marker [37,42]. In this study, Clvasa was selected to explore the Cldnd RNA
expression patterns. By FISH, Cldnd and Clvasa RNA showed the same expression pattern
in the testis (Figure 3A–F). In the ovary, Cldnd RNA was as weak as Clvasa in oogonia, but it
was uniformly distributed in the cytoplasm of oocyte I, while Clvasa aggregated into some
particles (Figure 4A–C).
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Figure 4. Co-localization of Cldnd and Clvasa mRNA in ovary. Dual color FISH with Cldnd and Clvasa
antisense RNA probes on ovary and the signals were visualized by fluorescence staining. Nuclei were
stained with DAPI (blue). (A) The signals were stained for the dnd RNA (green) by FISH. (B) The
vasa signals were stained red. (C) The merges of vasa with dnd and DAPI. og, oogonia; I–II, stages of
oocytes. Scale bar, 200 µm.

3.3. Cldnd 3′ UTR Enables GFP to Express in the PGCs of Medaka Stably

There is a potential mechanism that enables foreign proteins to be stably and specif-
ically expressed in germ cells under the protection of the 3′ UTR that is isolated from
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some germplasm-specific genes, of which the 3′ UTR of nanos1 from zebrafish is the first
candidate in fish, and has been widely verified and used for PGCs visualization in diverse
species [43]. In order to confirm whether Cldnd 3′ UTR was responsible for the localization
of mRNA and labeled PGCs, gfp-Cldnd 3′ UTR mRNA was injected into fertilized medaka
embryos with rfp-Drnos1 3′ UTR mRNA which could effectively visualize PGCs [43]. At the
early stage of embryogenesis, the GFP signals were distributed all over the cells (data not
shown). Until the mid-gastrula stage, it turned into some intense particles and accumulated
on the peripheral margin on both sides of the embryonic shield (body) (Figure 5B). At the
somitogenesis stage, cells with positive GFP signal migrated dorsally aligned bilaterally
along the trunk at the two sides of the embryonic body (Figure 5F,J). Finally, these cells
migrated along the embryo body to the genital ridge, the position where gonads formed
under the interaction of germ cells and mesoderm (Figure 5N). Meanwhile, the RFP signal
(Figure 5C,G,K,O) displayed a similar expression pattern as GFP, suggesting that gfp-Cldnd
3′ UTR mRNA could label the PGCs of medaka (Figure 5D,H,L,P). When observed at high
magnification, most of the PGCs with GFP signal was positive for RFP expression as well
(Figure 5M′–P′).
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Figure 5. Visualization of PGCs by Cldnd 3′ UTR. (A–P) Medaka PGCs were visualized by co-injection
of gfp-Cldnd 3′ UTR mRNA and rfp-Drnos 3′ UTR mRNA during embryogenesis. The merged images
are shown on the right (D,H,L,P). (M’–P’) An isolated gonad was squashed and visualized at high
magnification. Concentrations of injected mRNA are all 100 ng/µL. Scale bar, 200 µm.
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4. Discussion

In this study, we obtain full-length of Cldnd cDNA and analyze its RNA expression
in adult gonads. In addition, SISH and dual-color FISH demonstrate that Cldnd RNA is
exclusively expressed in the germ cells of both sexes and shows a similar expression pattern
with Clvasa. Surprisingly, medaka PGCs can be visualized by the injection of gfp-Cldnd 3′

UTR mRNA and dnd is identified as the second germline marker gene in C. lucidus.
Dnd protein multiple alignment analysis manifests that ClDnd protein shows high

identity to others, especially large yellow croaker. Moreover, ClDnd protein possesses the
conserved motifs and domains (NR, RRM and CR1-4) similar to many examined fishes.
RRM has been reported to be able to determine the subcellular localization of Dnd [44]. In
zebrafish, the active site of Dnd protein exists in the C terminal domain which is required
for the survival of PGCs [45]. Based on phylogenetic tree analysis of the Dnd protein, two
main clades are found in vertebrates, and C. lucidus Dnd homologue is the closest to that of
large yellow croaker in the fish sub-clade.

In most vertebrates, dnd homologues are expressed only in both ovary and testis,
except frog dnd, which is specific to the ovary [6]. Notably, in some teleost fish, the
expression levels of dnd are higher in the ovary than testis [46–48]. However, in adults,
the results of RT-PCR demonstrate that Cldnd RNA is exclusive and displays a similar
expression level in both sexual gonads, which is consistent with the expression pattern in
medaka [8] and zebrafish [4].

Dnd RNA as a marker for germ cells of both sexes has been identified in many
teleost fish. Based on our previous reports in C. lucidus, we have identified germ cells
marker gene vasa which is significant for germ cell development during gamogenesis.
In the present study, SISH was performed to reveal the subcellular localization of Cldnd
RNA, whose phenomenon is in keeping with zebrafish [4], medaka [8], turbot [13] and
carp [21,22], suggesting that the Cldnd RNA expression is germ cell-specific. Moreover, dual
color FISH is used to compare precisely the RNA expression patterns between Cldnd and
Clvasa. The results of co-localization show that there is almost no difference between Cldnd
and Clvasa in the testis, which is in line with the expression pattern in summer flounder
(Paralichthys dentatus) [49]. In the ovary, Cldnd RNA is always uniformly distributed in the
cytoplasm of germ cells, which differs from the specific expression of Clvasa in oocytes of
stage I. These results indicate that Cldnd plays an important role in germ cell development.

Numerous studies have reported that the fusion of the gfp/rfp reporter gene and 3′

UTR of several germline-specific genes is very stable in PGCs but gradually degradative in
somatic cells [50]. What more convincing explanation made for this biological characteristic
is that the Dnd protein interacts with microRNA (miR-430) to protect gonadal-specific genes
from degradation [1,13,51]. For example, hub 3′ UTR contains four noncanonical binding
sites of miR-430 which is also a target of global miRNA-mediate repression. Interestingly,
the function of germ-plasm specific genes is conserved widely across fish species. For
instance, 3′ UTR of zebrafish nanos1 can not only visualize its own PGCs but most of the
examined fish, such as medaka, Chinese sturgeon, and salmon [1,9,39,52]. In this study, gfp-
Cldnd 3′ UTR mRNA and rfp-Drnos1 3′ UTR mRNA are co-injected into medaka embryos
and show a similar expression pattern in the PGCs during embryogenesis, which means
that gfp-Cldnd 3′ UTR mRNA successfully marks medaka PGCs. Cldnd 3′ UTR is found in
existence of several noncanonical miR-430 binding sites (-UCGUGAAA-) which may be
responsible for the characteristic that eliminates the gfp-Cldnd 3′ UTR mRNA from somatic
cells. Thus, Cldnd 3′ UTR is conserved for PGCs specific visualization.

In summary, these results manifest that dnd is an evolutionarily conserved germ
cells marker and plays a vital role in the reproductive development of C. lucidus. The
sequence structure, expression pattern, and function of 3′ UTR of Cldnd are highly similar
to that in the examined species. These findings not only provide another germ cell maker
but also benefit the functional and practical research on Cldnd and conservation of the
C. lucidus population.
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