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Abstract: Cold stress is a major environmental factor affecting the growth, development, and produc-
tivity of various crop species. With the current trajectory of global climate change, low temperatures
are becoming more frequent and can significantly decrease crop yield. Wheat (Triticum aestivum L.)
is the first domesticated crop and is the most popular cereal crop in the world. Because of a lack
of systematic research on cold signaling pathways and gene regulatory networks, the underlying
molecular mechanisms of cold signal transduction in wheat are poorly understood. This study
reviews recent progress in wheat, including the ICE-CBF-COR signaling pathway under cold stress
and the effects of cold stress on hormonal pathways, reactive oxygen species (ROS), and epigenetic
processes and elements. This review also highlights possible strategies for improving cold tolerance
in wheat.
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1. Introduction

Higher plants are sessile organisms that suffer from various environmental stresses
throughout their life cycle, such as cold, heat, drought, and salinity. Cold stress is vital for
limiting plant geographical distribution and influencing plant growth and development,
and ultimately determines yield and quality [1,2]. After a long interaction with their
environment, plants have evolved complex and sophisticated mechanisms to adapt to cold
stress. Cold signals are transduced from the plasma membrane to the nucleus, leading
to a series of cold-induced cellular responses and the induction of cold-responsive genes.
The main cold-responsive genes in plants are C-REPEAT BINDING FACTORs (CBFs),
INDUCER of CBF EXPRESSION (ICE), and COLD-REGULATED (COR) genes [3,4]. It
has been established that the ICE-CBF-COR signaling pathway is a universal pathway
associated with cold tolerance in plants [2,5,6]. In this pathway, CBFs/DEHYDRATION-
RESPONSIVE ELEMENT BINDING FACTOR 1s (DREB1s) is rapidly induced by cold
conditions. Additionally, CBFs/DREB1s proteins can bind to the promoter regions of COR
genes to activate their transcription in Arabidopsis [7,8].

Low-temperature conditions seriously affect the growth and development of wheat
grown in temperate regions [9]. Exposure to low temperatures changes various biochem-
ical processes and induces membrane damage in wheat [9,10]. The effects of cold stress
on wheat growth, development, and yield are determined not only by the degree and
duration of low-temperature conditions but also by the growth stage in which the cold
stress events occur [11]. Cold stress can significantly reduce the viable leaf area and the
soluble carbohydrate accumulation, ultimately negatively affecting the final yield [12,13].
During the reproductive phase, wheat is susceptible to cold stress. The grain number
will be decreased by low temperatures if stress occurs before anthesis [14]. Moreover,
pollen tube elongation and gametophyte tissue development will be disrupted under cold
stress, particularly in pollen tapetal cells, which can lead to pollen sterility [15,16]. Cold
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stress can alter sink-source distribution by increasing the accumulation of soluble carbo-
hydrates to regulate grain filling in wheat [9]. In addition, low-temperature events could
also happen during vegetative stages in wheat and are detrimental to wheat growth and
development since they cause leaves to wilt [17]. The leaf mass ratio and relative growth
rate are significantly increased under low-temperature conditions. Furthermore, the flag
leaf size and wheat biomass both decrease under cold stress [18,19]. Biomass allocation
is essential for grain yield formation under cold stress, and the appropriate allocation is
responsible for reproductive growth proportion and yield formation [20]. Diploid and
tetraploid wheat have large leaf areas and produce no or low yield under cold stress. In
contrast, hexaploid wheats have relatively low leaf areas and higher rates of grain yield
among these species [13].

Cold stress has been categorized into two primary groups: chilling stress (0–15 ◦C)
and freezing stress (<0 ◦C), which depends on how the plants are affected [1,21]. The
cellular and molecular responses of plants to cold stress have been intensively studied. At
present, plants have acquired highly sophisticated systems to cope with cold stress. For
instance, plants activate a series of biochemical and physiological changes in their cells,
such as altering the transcription of cold-responsive genes, regulating hormone levels and
responses, producing ROS to stimulate the accumulation of compatible osmolytes and
antioxidants, and remodeling genome-wide epigenetic modifications [8,22]. Significant
progress has been made over the past few decades in understanding how signaling path-
ways control cold stress responses in plants. However, current knowledge of the cold
signal transduction pathway in wheat is limited. In this review, we summarize the most
recent studies assessing cold stress response in wheat and highlight possible strategies for
improving cold tolerance in wheat.

2. ICE-CBF-COR Signaling Pathway in Cold Stress

Plants in temperate regions, such as winter wheat, have evolved adaptive responses
known as cold acclimation, where plants acquire freezing tolerance after prior exposure
to low non-freezing temperatures [8]. It is well known that the ICE-CBF-COR signaling
pathway is essential for cold acclimation [3]. In addition to Arabidopsis, the ICE-CBF-COR
cascade has been identified in rice [23] and wheat [6,24].

ICE genes encode a class of MYC-like bHLH transcriptional factors upstream of the
cold signaling pathway [25]. The C-terminal regions of ICE have highly conserved regions
for specific interactions with downstream cold regulatory genes [5,24–27]. The homologs
of ICE have been identified as TaICE41 and TaICE87 in wheat (Figure 1). Overexpression of
TaICE41 or TaICE87 in Arabidopsis enhanced cold tolerance, suggesting the significance of
ICE homologs in cold stress response [24]. HOS1 (HIGH EXPRESSION OF OSMOTICALLY
RESPONSIVE GENE 1), an E3 ubiquitin ligase, reduces the stability of ICE1 protein by
ubiquitination under cold stress [28]. In addition, the stability of ICE1 protein is enhanced
by SUMO E3 ligase SIZ1 (SAP and Miz) through sumoylation in response to cold stress [29].
ICE1 is phosphorylated by the cold-activated protein kinase OPEN STOMATA 1 (OST1),
resulting in weakened interaction between ICE1 and HOS1 to increase the stability of ICE1
under cold stress [30]. Furthermore, the stability of OsICE1 is up-regulated by OsMPK3
(MAP KINASE 3) through phosphorylation in rice in response to cold stress [31]. These
results indicate that the posttranslational modification of ICE1 is crucial for its role in
response to cold stress. However, whether TaICEs have similar regulatory mechanisms in
wheat responses to cold stress needs further study.

CBFs (CBF1, CBF2, and CBF3), which belong to the AP2/ERF multi-gene family, can be
activated by ICE in the cold signaling pathway of plants [3,25]. CBFs are key components
for increasing the cold tolerance of plants [32–34]. The overexpression of CBFs in rice,
maize, barley, wheat, and other plant species significantly enhances the cold tolerance of
transgenic plants [35–39]. However, the cbfs triple mutant in Arabidopsis show reduced cold
tolerance and larger biomass than wild type [40]. These results indicate CBFs may act to
balance cold tolerance and plant growth. However, whether CBFs are important regulators
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of growth and cold tolerance to enhance the biomass of wheat requires further study.
Several CBF genes have been characterized in Triticeae species, including 37 genes from
hexaploid wheat [41], 20 genes from barley [36], 13 genes from Triticum monococcum [42], 11
genes from rye [43], ten genes from durum wheat [44], ten genes from Aegilops biuncialis [5],
four genes from Brachypodium distachyon [45,46], and one gene from Aegilops tauschii [41].
TaCBF14 and TaCBF15, two wheat CBF transcription factors, play significant roles in cold
stress response (Figure 1) [38]. Overexpression of TaCBF14 or TaCBF15 in barley enhances
the expression of HvCOR14b, a cold-regulated gene in barley, increasing cold tolerance [38].
Additionally, T. aestivum ABIOTIC STRESS-INDUCED DNA BINDING FACTOR a (TaAIDFa)
is markedly activated by cold stress [47]. Overexpression of TaAIDFa in Arabidopsis increases
the transcription of the cold-regulated genes like RD29A and COR15A to enhance the cold
tolerance of transgenic lines [47].
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Figure 1. ICE-CBF-COR signaling pathway plays a vital role in wheat. Cold stress alters the fluidity
of plasma membrane and activates protein kinases. Furthermore, kinases positively regulate cold
tolerance in wheat by phosphorylating TaICE proteins, including TaICE41, TaICE87. TaICE directly
binds to the promoters of TaCBFs to regulate its expression. Additionally, TaCBFs bind to the
CRT/DRE sequence in the promoters of TaCOR genes, such as Wrab15, Wrab17, Wrab18, Wrab19,
WCS19, WCS120, Wcor14, and Wcor15, for their transcription activation in response to cold stress.

CORs generally refer to the protective substances encoded by cold-regulated genes.
The protective substances such as osmolytes and cryoprotective proteins accumulate to
facilitate cold acclimation and freezing tolerance [1,6]. CBFs are known to bind to the
C-REPEAT/DEHYDRATION RESPONSIVE ELEMENT (CRT/DRE) sequence (TACCG-
CAT) in the promoters of COR genes for their transcription activation in response to cold
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stress [48,49]. The expression of ABA-dependent COR genes (Wrab15/17/18/19) and ABA-
independent COR genes (WCS19, WCS120, Wcor14, and Wcor15) are significantly increased
by cold stress in wheat (Figure 1) [50]. The expression of DRE-BINDING PROTEIN 1
(TaDREB1), a wheat homolog of Arabidopsis DREB2, is elevated under cold stress [51].
The transcription of the WHEAT COLD SPECIFIC 120 (WCS120) gene is activated by
TaDREB1 and increases cold tolerance in winter wheat [52]. The expression of wheat
DREB2 (WDREB2), also a wheat homolog of Arabidopsis DREB2, is activated by cold [53].
The WDREB2 transcription factor directly affects the expression of wheat COR genes such
as Wrab19 in response to cold stress [53].

3. Cold Stress Influences Hormonal Responses

Plant hormones (Phytohormones), which function as small molecules to regulate
various cellular processes and work as chemical messengers to communicate cellular
activities, are produced in very low concentrations in higher plants [54]. Phytohormones
are needed for plants to deal with abiotic stresses, including salinity, drought, and low
temperature, by mediating a wide range of adaptive responses [55]. These phytohormones
include auxin, abscisic acid (ABA), ethylene, cytokinins (CKs), gibberellins (GAs), jasmonic
acid (JA), brassinosteroids (BRs), salicylic acid (SA), and strigolactones (SLs). In recent years,
the phytohormone signaling pathway has been investigated by genetic and biochemical
approaches, and a growing body of evidence indicates that the elements in hormonal
signaling pathways contribute to regulating plant cold tolerance [33].

Auxin, a tryptophan derivative most commonly present in the form of indole-3-acetic
acid (IAA), plays an essential role in plant development and cold stress response. The
YUCCA genes encode the key rate-limiting enzymes in the auxin biosynthetic pathway
and are involved in the regulation of plant growth and development. The transcript levels
of OsYUCCAs are strongly induced by low temperatures; however, the expression of IAA
catabolism-related genes, Oryza sativa GRETCHEN HAGENs (OsGHs), is down-regulated,
resulting in significantly increased IAA content in rice under cold stress (Table 1) [56].
In colder/ambient temperatures, CLAVATA (CLV) peptide signaling promotes flower
development by stimulating auxin-dependent growth. In contrast, at higher temperatures,
YUCCA genes are activated to maintain flower development bypass CLV signaling [57–59].
There are 15 genes among 63 TaYUCCAs that are induced by drought and heat stress in
wheat, though it is unclear whether the expression of these genes is regulated by cold stress.
Arabidopsis AUXIN RESPONSE FACTOR (ARF) genes, which regulate the expression of
auxin-responsive genes by binding to the auxin response element in their promoters, are
up-regulated during cold acclimation (Table 1) [60]. In wheat, 46 genes from 69 TaARFs are
also up-regulated in response to cold stress (Table 1) [61].

Abscisic acid (ABA) is the most important phytohormone due to its role in plant adap-
tation to biotic and abiotic stresses [62]. ABA-deficient mutants in Arabidopsis show defects
in freezing tolerance, with the induced expression of COR genes, suggesting that ABA is
involved in cold signaling [63,64]. Additionally, ABA contents are moderately decreased
after cold treatment [30]. SUCROSR NON-FERMENTING 1-RELATED PROTEIN KINASE
2s (SnRK2s) are important protein kinases in ABA signaling, and their role in abiotic and bi-
otic stress signaling has been extensively characterized in Arabidopsis. The SnRK2 homologs
in wheat appear to play a critical role in cold signaling. PKABA1, the first SnRK2 protein
identified in wheat, is rapidly induced in seedlings when ABA levels increase in response
to cold stress [65]. Furthermore, the expression of TaSnRK2.3, TaSnRK2.4, and TaSnRK2.8
can be induced by cold stress, suggesting that they are essential in cold signal transduction
(Table 1) [66–68]. Overexpression of TaSnRK2.3 or TaSnRK2.8 in Arabidopsis increases cold
tolerance, which is due to the increased expression of cold-responsive genes, and the en-
hanced accumulation of stress-associated metabolites such as proline [67]. Recent studies
have identified 10 SnRK2 homologs in wheat, and the expression of these genes is induced
by cold stress [69]. Although ABA and cold signaling are closely related, it is unclear what
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the exact role of ABA in regulating plant cold stress responses is. Further work is needed
to elucidate the molecular mechanisms of ABA when regulating cold signaling pathways.

Ethylene, a gaseous plant hormone, is important in various cellular and developmental
processes, as well as during abiotic and biotic stress responses [70–75]. It is reported that
cold stress can alter endogenous ethylene levels in many plant species. Cold stress inhibits
ethylene production in Arabidopsis [76]; however, the ethylene levels are increased in winter
rye under cold stress [77]. T. aestivum ethylene-responsive factor 1 (TaERF1), the first member
of the ERF gene family identified in wheat, is induced by cold stress (Table 1). Additionally,
TaERF1 overexpression can activate COR genes and improve freezing tolerance in transgenic
Arabidopsis [78]. Pathogen-induced ethylene response factor 1 (TaPIE1) in wheat positively
regulates freezing stresses by activating cold-regulated genes downstream of the ethylene
signaling pathway and by modulating related physiological traits (Table 1) [79].

Gibberellins (GAs) play vital roles in abiotic stress response and adaptation. DELLA
proteins are master regulators of GA-responsive growth and development [80]. Cold stress
activates the expression of GA 2-oxidase genes to reduce the content of GA, resulting in
the enhanced accumulation of DELLA proteins [81]. It is reported that overexpression
of CBFs reduces the bioactive GA levels to suppress plant growth and flowering. CBF1-
overexpression plants exhibit dwarfism and late-flowering phenotypes due to limited
accumulation of bioactive GA [81]. Additionally, the cbfs mutants display impaired cold
tolerance and larger architecture than the wild type after cold acclimation [40,82]. These
results indicate that both the content and signal components of GA are related to cold
signaling and CBFs may be associated with GA signaling to balance low-temperature
adaption and growth. DELLAs act early in the cold signaling pathway as regulators of
GROWTH REGULATORY FACTORs (GRFs). Cold-induced CBF genes are decreased in
GRF5-overexpression lines, indicating that GRFs can repress CBF expression under cold
stress (Table 1) [83]. Overexpression of SLENDER RICE 1 (SLR1), a gene that encodes the
rice DELLA protein, enhances chilling tolerance. When rice seedlings are subjected to
chilling stress, the cold-induced SLR1 (Table 1) releases the repressive effect of OsGRF6
on OsGA2ox1. The increased OsGA2ox1 expression then decreases the active GA levels to
enhance rice chilling tolerance [84]. Rht-B1b and Rht-D1b, the most important and common
semi-dwarfing genes, encode GA-insensitive forms of DELLA proteins that likely have a
reduced affinity for the GA receptor in wheat [85]. It has been reported that the Rht-B1b and
Rht-D1b mutant alleles are not responsive to GA at warmer temperatures but are responsive
at colder temperatures (Table 1) [86]. This suggests that Rht-B1b and Rht-D1b play vital
roles in response to cold stress.

The phytohormone jasmonic acid (JA) and its methyl ester, methyl jasmonate (MJ),
act as signaling molecules in response to environmental stimuli. Cold stress rapidly
increases endogenous JA levels by up-regulating the expression of JA biosynthesis genes,
such as LIPOXYGENASE 1 (LOX1), ALLENE OXIDE SYNTHASE 1 (AOS1), ALLENE
OXIDE CYCLASE 1 (AOC1), JASMONATE RESISTANT 1 (JAR1) in Arabidopsis and OsLOX2,
OsAOS, OsAOC, Oryza sativa 12-OXOPHYTODIENOATE REDUCTASE 1 (OsOPR1) in rice
(Table 1) [56,87]. The accumulation of JA induced by cold stress is due to the repression
of ICE1 by JASMONATE ZIM-DOMAIN 1/4 (JAZ1/4), repressors of jasmonate signaling,
resulting in the induction of CBFs expression in Arabidopsis [87]. Wheat TaJAZ genes are
up-regulated in response to low temperatures (Table 1) [88]. Additionally, endogenous
JA levels increase under cold stress in wheat [89]. Exogenous MJ treatment tends to up-
regulate of the transcription of COR genes, such as WCS19 and WCS120, and increase
the activity of superoxide dismutase (SOD) and peroxidase (PO) to promote wheat cold
tolerance [90,91]. Rice HAN1 (“han” means “chilling” in Chinese), which functions as an
oxidase to reduce the accumulation of the active to inactive, decreases the expression of
CBF/DREB1s in rice under cold stress [92]. Arabidopsis OPR3 is one of the major players in
the JA biosynthesis pathway. Transgenic wheat plants with AtOPR3-overexpression have
increased the accumulation of JA and improved cold tolerance [93].
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Brassinosteroids (BRs) play a vital role in plant development and stress tolerance.
COR gene expression and cold tolerance in Arabidopsis are increased by exogenous BR
treatment [94]. Exogenous BR treatment promotes growth recovery of maize seedlings
following chilling treatment [95] and increases cold tolerance in winter rye and winter
wheat [96,97]. BRASSINOSTEROID INSENSITIVE 2 (BIN2) negatively regulates the freez-
ing tolerance in Arabidopsis [98]. Knockout mutants of Oryza sativa GLYCOGEN SYNTHASE
KINASE 3-LIKE GENE 1 (OsGSK1), an ortholog of Arabidopsis BIN2, show enhanced cold
tolerance (Table 1) [99]. The expression of T. aestivum SHAGGY KINASE 5 (TaSK5), an abiotic
stress-inducible GSK3/SHAGGY-like kinase in wheat, is induced at the early stages of
cold acclimation (Table 1) [100]. The BRASSINOSTEROID-INSENSITIVE 1 (BRI1) encodes
a transmembrane receptor kinase as a BR receptor. Its mutation results in defective BR
signaling and increases cold stress tolerance in Arabidopsis (Table 1) [101]. The enhanced
expression of its wheat homologous TaBRI1 in Arabidopsis leads to better cold tolerance
than the wild-type plants by maintaining membrane integrity [102]. Furthermore, overex-
pression of TaBRI1 in Arabidopsis and the ortholog of BRI1 in rice or barley increases the
silique size and seed yield [103,104]. Therefore, TaBRI1 is involved in cold tolerance and is a
suitable gene for improving crop yields under conditions of extreme environmental stress.

Table 1. List of phytohormones in response to cold stress.

Item Gene Function of Gene Regulated by Cold Stress Reference

Auxin

OsYUCCA2/3/6/7 Important gene in Auxin/IPA
(indole-3-pyruvic acid) biosynthesis Up-regulated [56]

OsGH3-1/2/5/6/11 Auxin/IAA (indole-3-acetic acid)
catabolism-related genes Down-regulated [56]

ARFs Regulate the expression of
auxin-responsive genes Up-regulated [60]

TaARFs Regulate the expression of
auxin-responsive genes Up-regulated [61]

ABA TaSnRK2.3/2.4/2.8 Important serine/threonine protein
kinase in ABA signaling network Up-regulated [66–68]

Ethylene
TaERF1

A member of the ethylene response factor
subfamily of ERF/AP2 transcription

factor family
Up-regulated [78]

TaPIE1 Pathogen-induced ethylene response
factor to active stress-related genes Up-regulated [79]

Gibberellin

GRF5 Growth regulating factor encoding
transcription activator. Up-regulated [83]

SLR1 A gene that encodes the rice DELLA
protein to active OsGA2ox1 expression Up-regulated [84]

Rht-B1b,
Rht-D1b

The most important and widely used
semi-dwarfing genes Up-regulated [86]

Jasmonic acid

LOX1, AOS1,
AOC1, JAR1 JA biosynthesis genes in Arabidopsis Up-regulated [56]

OsLOX2, OsAOS,
OsAOC, OsOPR1 JA biosynthesis genes in rice Up-regulated [87]

TaJAZs The repressors of jasmonate signaling Up-regulated [88]

Brassinosteroids

OsGSK1 BR negative regulator Up-regulated [99]

TaSK5 An abiotic stress-inducible GSK3 in wheat Up-regulated [100]

TaBRI1 BR receptor Up-regulated [101]
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4. ROS and Cold Stress

Abiotic stresses typically increase ROS levels, including hydrogen peroxide (H2O2),
superoxide radical (O2

•−), hydroxyl radical (OH•), and singlet oxygen (1O2), all of which
are toxic to plant cells [105–107]. Several pieces of evidence suggest that plant responses
to cold stress are directly linked to ROS signaling [108–111]. It has been proven that low-
temperature conditions depress the activities of ROS-scavenging enzymes, such as ascor-
bate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), dehydroascorbate
reductase (DHAR), monodehydroascorbate reductase (MDHAR), glutathione S-transferase
(GST), glutathione reductase (GR), and peroxiredoxin (PRX). These cold-regulated an-
tioxidant enzymes play a key role in enhancing cold tolerance [107,112,113]. The H2O2
contents of ‘dongnongdongmai1′ (‘dn1′), a winter wheat variety, are significantly increased
under cold stress. Additionally, ABA treatment enhances cold tolerance in wheat by in-
creasing the activities of TaSOD, TaAPX, TaCAT, TaGR, TaDHAR, and TaMDHAR [107].
The ABA-stress-ripening (ASR), which functions as a transcription factor, can be induced
by low temperatures [114]. The levels of ROS and the activities of antioxidant enzymes
under abiotic stress are regulated by ASRs, suggesting that ASR plays an important role in
regulating ROS homeostasis [87,115]. Ectopic expression of the cold-induced OsASR1 gene
exhibits enhanced cold tolerance in transgenic rice plants [116]. It has been reported that
TaASR genes respond strongly to low temperatures [117]. In addition, overexpression of
TaASR1-D confers enhanced antioxidant capacity and stress tolerance in transgenic wheat
plants [118]. T. aestivum GTP-BINDING PROTEIN β SUBUNIT LIKE GENE (TaGPBL), the
first G-protein gene in wheat, contributes to cold stress response. TaGBPL overexpression
reduces the activity of cold-responsive genes and reduces the activities of ROS scavengers
and producers under cold stress [119].

5. Cold-Induced Epigenetic Processes and Elements

Epigenetic mechanisms play an important role in response to cold stress. The plant
epigenome is highly dynamic, and cold stress can quickly reshape genome-wide epigenetic
modifications [120]. Changes in DNA methylation and histone modification and the
regulation of epigenetic elements, such as small RNA (sRNA) and long noncoding RNA
(lncRNA), are the key modulators of plant stress responses [121,122].

The proteins containing methyl-CpG-binding domain (MBD) can recognize DNA
methylation. TaMBD6, including a typical MBD domain at the N-terminal, is induced by
prolonged chilling in wheat, indicating that the protein is potentially involved in recogniz-
ing DNA methylation during vernalization [123]. Wheat requires various vernalization
genes in response to cold stress to adjust floral initiation, such as T. aestivum VERNAL-
IZATION 1 (TaVRN1), TaVRN2, TaVRN3/FLOWERING LOCUS T1 (TaFT1), TaVRN-D4,
and VERNALIZATION-RELATED 2 (VER2) [124,125]. In wheat and barley (Hordeum vul-
gare), the TaVRN1, HvVRN1, TaVRN2, and TaVRN3/TaFT1 gene are regulated by epigenetic
modification (Figure 2). Two histone modification markers include histone 3 lysine 4
trimethylation (H3K4me3), which is a modification associated with active gene transcrip-
tion, and H3K27me3, which is a modification associated with gene repression. Vernalization
enriches H3K4me3 levels at the TaVRN1 and TaVRN3/TaFT1 promoters (Figure 2), while no
significant changes are observed in H3K27me3 levels at the same regions of the TaVRN1 and
TaVRN3/TaFT1 promoters in winter wheat. Furthermore, TaVRN1 and TaVRN3/TaFT1 are
up-regulated by vernalization to accelerate floral transition in winter wheat [126]. TaVRN2,
a dominant repressor of flowering, is down-regulated by vernalization [127]. Increased
levels of H3K27me3 at the TaVRN1 promoter explain the repression of TaVRN2 gene ex-
pression in winter wheat (Figure 2) [126]. Before cold (vernalization), the increased levels
of H3K27me3 at the HvVRN1 chromatin reduce the transcription of HvVRN1 in barley.
Vernalization increases levels of H3K4me3, the active histone modification marks, and
decreases levels of H3K27me3 at HvVRN1 (Figure 2) [128]. The novel transcript TaVRN1
ALTERNATIVE SPLICING (VAS), induced by vernalization, functions as a lncRNA deriva-
tive from the sense strand of the TaVRN1 gene to regulate TaVRN1 transcription during
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the flowering of winter wheat [129]. Additionally, TaVRN1 is the earliest target of TaVRN-
D4 among the TaVRN1, TaVRN2, and TaVRN3 genes [130]. VER2 encodes a jacalin-like
lectin and promotes TaVRN1 upregulation by physically interacting with the RNA-binding
protein GLYCINE-RICH RNA-BINDING PROTEIN 2 (TaGRP2) after prolonged cold expo-
sure [131]. However, whether the expression of TaVRN-D4 and VER2 is associated with
DNA methylation requires further study.
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Figure 2. DNA methylation is essential for vernalization pathway in wheat and barley. The expression
of TaVRN2 is down-regulated by vernalization. TaVRN2 represses the expression of TaVRN1 by
increasing the level of H3K27me3 at TaVRN1 promoter. Furthermore, vernalization causes an
enrichment in the level of H3K4me3 at the TaVRN1 and TaVRN3/TaFT1 promoters to up-regulate
their expression. In addition, the level of H3K4me3 is up-regulated and the level of H3K27me3 at the
HvVRN1 promoter is down-regulated by vernalization to increase its transcription.

Histone acetylation is up-regulated in cold-responsive genes like ZmDREB1 in maize
under cold stress [132]. Additionally, cold stress induces higher levels of histone acetylation
in the OsDREB1b promoter [133]. The level of acetylation is decreased by the up-regulated
expression of HISTONE DEACETYLASEs (HDACs) in maize during cold acclimation [132].
MicroRNA (miRNA) is a class of sRNA that plays a critical role in plant growth and
development. miRNA398 (miR398) participates in regulating plant responses to low tem-
peratures in winter turnip rape (Brassica rapa L.) [134]. Additionally, the expression of
wheat miR398 (tae-miR398) decreases in response to low temperature [135]. It is reported
that tae-miR398 regulates cold tolerance by downregulating its target, COPPER-ZINC
SUPEROXIDE DISMUTASE 1 (CSD1). Furthermore, the expression of CSD1 is indirectly
regulated by lncRNAs (lncR9A, lncR117, and lncR616). The regulation of miR398 induces
a regulatory loop that is critical for cold tolerance in wheat [135]. Genome-wide associa-
tion studies and annotations should be performed to outline the intricately epigenomic
landscape, particularly in cereal crops subject to cold stress.

6. Conclusions and Perspectives: Improving Cold Tolerance in Wheat

Global food security is a problem of worldwide importance. The rapid increased pop-
ulation and unpredictable climatic events highlight the need to increase crop productivity.
Understanding the perception and signaling cascades activated by cold stress response can
help develop new technologies that can alleviate yield losses triggered by cold stress. Ad-
vances in molecular technologies and a rapidly expanding knowledge of the mechanisms
regulating wheat response to cold stress will contribute to improvements in the efficiency
of cereal crops.

Phytohormones are dominating regulatory factors of plant growth, development,
and signaling networks involved in various abiotic stress responses. This indicates that
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phytohormones are associated with the cross-talk between environmental stress signals
and plant growth. In addition, a growing body of evidence suggests the vital role of the
ROS signaling pathway in plant development and stress response in wheat. However,
the regulatory mechanisms of plant hormones and ROS in response to cold stress at the
biochemical level are still poorly understood. Building comprehensive regulation networks
in phytohormones, ROS signaling, and cold tolerance in wheat requires a combination
of transcriptomes, proteomics, and metabolomics methods while analyzing mutants and
protein–protein interactions.

Systematic research into epigenetic mechanisms in response to abiotic stress, including
cold stress, heat stress, drought stress, and salt stress, must be performed under field
conditions where multiple stress factors frequently coexist. Inheritable epigenetic processes
and elements such as sRNA and lncRNA regulatory mechanisms, histone modification, and
DNA methylation could provide within-generation and trans-generational stress memory.
More powerful and versatile tools are needed to study epigenetic mechanisms in cereals
like wheat in a trans-generational memory context since these epigenetic variations could
improve stress tolerance in the offspring.

To successfully develop varieties equipped for cold stress, it is necessary to identify the
extent of genetic variation for these traits in wheat. Therefore, future work must identify
core components involved in the wheat cold signaling pathway that improve cold tolerance
in wheat and increase its production in cold temperatures.
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