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Abstract: This study aimed to build automated detection models—one by brain regional volume
(V-model), and the other by radiomics features of the whole brain (R-model)—to differentiate mild
cognitive impairment (MCI) from cognitive normal (CN), and Alzheimer’s Disease (AD) from
mild cognitive impairment (MCI). The objectives are to compare the models and identify whether
radiomics or volumetry can provide a better prediction for differentiating different types of dementia.
Method: 582 MRI T1-weighted images were retrieved from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database, which is a multicenter operating open source database for AD. In total,
97 images of AD, 293 images of MCI patient and 192 images of cognitive normal were divided into a
training, a validation and a test group at a ratio of 70:15:15. For each T1-weighted image, volumetric
segmentation was performed with the image analysis software FreeSurfer, and radiomics features
were retrieved by imaging research software 3D slicers. Brain regional volume and radiomics features
were used to build the V-model and R-model, respectively, using the random forest algorithm by
R. The receiver operating characteristics (ROC) curve of both models were used to evaluate their
diagnostic accuracy and reliability to differentiate AD, MCI and CN. Results: To differentiate MCI
and CN, both V-model and R-model achieved excellent performance, with an AUC of 0.9992 ± 0.0022
and 0.9850 ± 0.0032, respectively. No significant difference was found between the two AUCs,
indicating both models attained similar good performance. In MCI and AD differentiation, the
V-model and R-model yielded AUC of 0.9986 ± 0.0013 and 0.9714 ± 0.0175, respectively. The best
performance was to differentiate AD from CN, where the V-model and R-model yielded AUC of
0.9994 ± 0.0019 and 0.9830 ± 0.009, respectively. The results suggested that both volumetry and
radiomics approaches could be used in differentiating AD, MCI and CN, based on T1 weighted
MR images using random forest algorithm successfully. Conclusion: This study showed that the
radiomics features from T1-weighted MR images achieved excellence performance in differentiating
AD, MCI and CN. Compared to the volumetry method, the accuracy, sensitivity and specificity are
slightly lower in using radiomics, but still attained very good and reliable classification of the three
stages of neurodegenerations. In view of the convenience and operator independence in feature
extraction, radiomics can be a quantitative biomarker to differentiate the disease groups.

Keywords: Alzheimer’s Disease; mild cognitive impairment; radiomics; volumetry; Artificial
Intelligence; machine learning; random forest

1. Introduction

In the past decades, structural MRI has been used to aid the diagnosis of AD, MCI
and other forms of dementia [1–3]. Many studies demonstrated that when compared to
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cognitive normal (CN), patients with AD have a significant reduction in the volume of
medial temporal lobe, including the hippocampus, entorhinal cortex, parahippocampal
gyrus, subiculum and amygdala [4,5]. Through quantitative measurement of volume of
regions-of-interest (ROI) in hippocampus, it is suggested that the hippocampal volume
reduction can be a diagnostic factor for AD, and the rate of reduction can be an indicator
to predict the disease progression [6,7]. However, for the prodromal stage of AD, the
volume of other brain regions that relevant to AD or MCI, require extensive knowledge
and experience from clinicians, to identify the regions of interest for staging AD or MCI.
In addition, brain regional volume change is minimal and cannot be detected easily at the
stage of disease. There is an urge to identify other biomarkers, which can be used to aid
early detection for neurodegenerative disease.

In structural MRI, brain regional volume could be quantified by voxel-based morphom-
etry (VBM) with DARTEL algorithm [8,9]. In recent years, the surface-based segmentation,
which suggested by FreeSurfer was widely used. It is a software package for the analysis
of structural neuroimaging data with whole brain segmentation capabilities [10]. It allows
reconstruction of cortical surface models, labelling of regions on both cortical surface and
subcortical structures. Additionally, it allows for hippocampal volume assessment [11,12],
connectivity-based segmentation [13] and sub-regional corpus callosum segmentation [14].
The surface-based method is sensitive for evaluating cortical atrophy and subcortical brain
regional volume change, which have been employed extensively to investigate in aid in
staging AD, MCI and CN.

In recent years, radiomics analysis has been widely applied in medical imaging. It is a
novel technique to identify local image features, such as gray level invariant features (GLIF)
that related in the detection and quantification of dementia. Previous studies showed that
combination of cortical thickness and hippocampal texture aided the diagnosis of AD, MCI
and CN [15]. Another study showed that AD, MCI and CN showed different 3D texture
features in structural images [16]. Nowadays, other radiomics features including different
types of grey level matrixes are available to be extracted from T1 weighted MR image.
Deep radiomics analysis of image features may aid in characterize local texture and global
measurements in order to discriminate AD, MCI and CN in different perspectives.

In this study, we aimed at developing a computer assisted model to differentiate AD,
MCI and CN using radiomics features. Additionally, we compared its prediction perfor-
mance with another model which developed based on brain regional volume, to assess
whether using volumetric analysis or image features from structural image (radiomics) can
provide a more accurate differentiation of different types of dementia, including AD, MCI,
when compared to CN.

2. Material and Methods
2.1. Subjects

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public–private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s Disease (AD). For up-to-date information, see
www.adni-info.org, accessed on 22 January 2022. The use of the ADNI data was approved
by the institutional review board at each site, and all the participants provided their written
consent. In this study, a total of 582 T1 MPRAGE images were collected from ADNI1
cohorts from ADNI database. All eligible participants underwent brain MRI scanning and
clinical cognitive evaluations, and were clinically followed-up for more than 36 months.
There were 192 images of CN, 293 images of MCI and 97 image of AD. All images were
randomly divided into a training group, validation group and test group in ratio 70:15:15.

www.adni-info.org
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2.2. Image Acquisition

Regarding to the ADNI data, The MR T1-weighted structural images were acquired
using Siemens scanner, using a 3D MPRAGE (magnetization prepared rapid gradient-echo
imaging) sequence. The scanning parameters were listed in the Supplementary file and is
available on the ADNI website [2].

2.3. Preprocessing of Images

After the T1-weighted MPRAGE MR images in Digital Imaging and Communica-
tions In Medicine (DICOM) format were downloaded from the ADNI, all images were
standardized to minimize the textural features discrepancy between images. Firstly, each
T1-weighted MPRAGE MR image was converted to Neuroimaging Informatics Technology
Initiative (NIFTI) format. Secondly, intensity normalization and bias field inhomogeneity
correction were performed by Statistical Parametric Mapping version 12 (SPM12) [17,18];
Then, the image was smoothed and normalized to the Montreal Neurological Institute
(MNI) standard T1 whole brain template (standard space 91 × 109 × 91 with a resolu-
tion of 1 mm × 1 mm × 1 mm) using DARTEL normalization. After that, the image
was re-oriented and spatially normalized to the template with reference to the identical
anatomical position.

2.4. Radiomics Features Extraction

The 3D slicer v4.11.20210226 installed with PyRadiomics extension [19] was used to
extract the radiomics features from the T1-weighted MPRAGE MR image. Each image in
NIFTI format was loaded into the software, and the whole brain mask (91 × 109 × 91)
from the Anatomical Automatic Labelling (AAL) template was loaded as the volume for
feature extraction. A total of 120 radiomics features were selected to be extracted from the
T1-weight MR image within the whole brain volume. The features included 19 first order
statistics (FOS), 16 three-dimensional (3D) shape features (3DS), 10 two-dimensional (2D)
shape features (2DS), 14 gray level dependence matrix (GLDM), 24 gray level co-occurrence
matrix (GLCM), 16 gray level run length matrix (GLRLM), 16 gray level size zone matrix
(GLSZM) and 5 neighboring gray tone difference matrix (NGTDM) features. The definition
of features are in compliance with the description in Imaging Biomarker Standardization
Initiative [20]. Details of features were listed in Table S1 of supplementary file and can be
referred to the following website: https://pyradiomics.readthedocs.io/en/latest/features.
html (accessed on 22 January 2022).

2.5. Brain Regional Volume Calculation

The volumetric segmentation and cortical thickness analysis was performed with
the FreeSurfer v7.1.0 image analysis suite, which is documented and freely available for
download online (http://surfer.nmr.mgh.harvard.edu/)(accessed on 22 January 2022).
Brain regional volume of 45 regions were obtained and listed in Table S2 of supplementary
file. The technical details of these procedures are described in prior publications [10,21–30]
and in the Supplementary file.

2.6. Model Building and Validation

The obtained brain regional volumes and the radiomics features of AD, MCI and CN
were used to build the model to differentiate the diseases. The brain regional volumes
for the AD, MCI and CN groups were used to build the V-MCI/CN, V-MCI/AD and
V-CN/AD models. The radiomics features obtained from the AD, MCI and CN groups
were used to build the R-MCI/CN model, R-MCI/AD and R-CN/AD models. The random
forest algorithm in the software R was employed for each model as classifier with a
maximum of 500 trees. As the sampling variability came from the grouping of training
dataset, validation dataset and test dataset, 70%, 15% and 15% of all data were randomly
selected as training dataset, validation dataset by and testing dataset, respectively. The
expected performance of the resulting model was evaluated by the 10-fold cross validation.

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
http://surfer.nmr.mgh.harvard.edu/
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In addition, to avoid 50 samples of each group was selected randomly for model over-
fitting test. Figure 1 showed the construction process of the V-model and R-model using
random forest algorithm.
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Figure 1. Construction process of V-model and R-model using random forest algorithm.

2.7. Statistical Analysis

The model performance analysis was evaluated by the area under the receiver oper-
ating characteristics (ROC) curve (AUC). An average of AUC, accuracy, sensitivity and
specificity was reported with standard deviation. SPSS version 26.0 was used to generate
the ROC curves for each model.

The ROCkit (1995) version 1.1B2 was used to conduct the chi square test for the ROC
curve comparison between the two models for the same group. The significance level of
p-value of less than 0.05 was the probability that the two ROC curves are significantly
different from each other.

3. Result
3.1. Overfitting Test

By selecting the same amount of sample size (n = 50) from each of the groups, each
model was tested to avoid overfitting. All models showed AUC less than 1 and achieved
similar AUC as the actual model. Details can be found in Table 1.

Table 1. Overfitting test results.

Overfitting
Test

MCI vs. CN
Sample Size:

CN = 50, MCI = 50

AD vs. MCI
Sample Size:

AD = 50, MCI = 50

AD vs. CN
Sample Size:

CN = 50, AD = 50

Volumetry Radiomics Volumetry Radiomics Volumetry Radiomics
AUC 0.9988 0.9698 0.9948 0.9362 0.9788 0.98

Accuracy 0.96 0.91 0.95 0.91 0.91 0.98
Sensitivity 0.92 0.88 0.92 0.84 0.94 0.99
Specificity 0.99 0.94 0.98 0.98 0.88 0.96



Life 2022, 12, 514 5 of 13

3.2. Differentiate MCI from CN

The performances of V-model and R-model in classifying MCI categories were listed
in Table 2. Both models achieved excellent performance, with accuracy of 0.9905 ± 0.0061
and 0.9345 ± 0.0076, respectively. Performance analysis showed that there is no signifi-
cant difference between the ROC of both models (p = 0.056). Figure 2 showed the ROC
comparison between the models.

Table 2. Models for differentiating MCI from CN.

V-Model and R-Model for MCI and CN Differentiation
Sample Size MCI = 293:CN = 192

Volumetry (V-Model) Radiomics (R-Model)
AUC 0.9992 ± 0.0022 0.9850 ± 0.0032

Accuracy 0.9905 ± 0.0061 0.9345 ± 0.0076
Sensitivity 0.9990 ± 0.0016 0.9671 ± 0.0143
Specificity 0.9786 ± 0.016 0.8848 ± 0.0353
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Figure 2. It showed the ROC comparison between the models.

The important variables in each models were also obtained. In the V-model, the
volume of right and left inferior lateral ventricles, right and left hippocampus, right and
left lateral ventricles, central, and mid-anterior corpus callosum were important variables
which had high impact in prediction accuracy. In R-model, the features related to Gray
Level size zone matrix (GLSZM) and Gray level Dependence Matrix (GLDM) were major
categories with features that contribute to the high prediction accuracy. Details were listed
in Table 3.
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Table 3. Important variables in V-Model and R-model to differentiate MCI from CN.

Brain Regions Radiomics Features

Right Inferior lateral Ventricle GLSZM Large Area High Gray Level Emphasis

Left Hippocampus GLDM Small Dependence Low Gray Level Emphasis

4th ventricle GLDM Large Dependence High Gray Level Emphasis

Left cerebellum cortex GLRLM Short Run Low Gray Level Emphasis

Right Lateral Ventricle GLDM Dependence Entropy

Right Hippocampus GLSZM Small Area Emphasis

Corpus Callosum-Central GLSZM Large Area Emphasis

Corpus Callosum-Mid Anterior FOS Median

Left lateral ventricle GLSZM Gray Level Non-Uniformity

Left Inferior lateral Ventricle GLSZM Low Gray Level Zone Emphasis

3.3. Differentiate AD from MCI

The performances of V-model and R-model in classifying MCI categories were listed
in Table 4. Both models achieved excellent performance, with accuracy of 0.977 ± 0.0116 in
V-model, and accuracy of 0.9401 ± 0.0079 in the R-model. Performance analysis showed
that there the V-model was significantly more accurate in differentiate AD from MCI, when
compared to R-model with a difference of 3.69% (p = 0.001). Figure 3 showed the ROC
comparison between the models.

Table 4. Model comparison for differentiating AD from MCI.

V-Model and R-Model for MCI and AD Differentiation
Sample Size MCI = 293:AD = 97

Volumetry (V-Model) Radiomics (R-Model)
AUC 0.9986 ± 0.0013 0.9714 ± 0.0175

Accuracy 0.9770 ± 0.0116 0.9401 ± 0.0079
Sensitivity 0.9165 ± 0.0472 0.8010 ± 0.0327
Specificity 0.9973 ± 0.0031 0.9873 ± 0.0100
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The important variables in each model were also obtained. In the V-model, other than
the volume of right and left hippocampus, the right and left cerebellum cortex, left and
right amygdala, mid-posterior corpus callosum were important variables which had high
impact in prediction accuracy. In R-model, other than the features related to GLSZM and
GLDM, the features under Gray level Dependence Matrix (GLCM) had high importance in
accurate prediction. Details were listed in Table 5.

Table 5. Important variables in V-Model and R-model to differentiate AD from MCI.

Brain Regions Radiomics Features

Right Amygdala GLSZM Gray Level Non-Uniformity

Left Cerebellum Cortex GLRLM Low Gray Level Run Emphasis

Right Cerebellum Cortex GLDM Large Dependence Low Gray Level Emphasis

Left Amygdala GLSZM Low Gray Level Emphasis

Left Hippocampus GLCM Maximum Probability

Right Accumben Areas GLCM Joint Energy

Right Hippocampus GLSZM Zone Variance

Corpus Callosum Mid Posterior FOS Kurtosis

Right Pallidum GLDM Dependence Entropy

Right Caudate GLSZM High Gray Level Zone Emphasis

Left vessels GLDM Large Dependence High Gray Level Emphasis

3.4. Differentiate AD from CN

The performances of V-model and R-model in classifying AD from CN were listed in Table 6.
Both models achieved excellent performance, with accuracy of 0.9877 ± 0.0086 in V-model, and
accuracy of 0.9292 ± 0.00169 in the R-model. Performance analysis showed that the V-model is
significantly more accurate in differentiate AD from MCI, when compared to R-model with a
difference of 5.85% (p = 0.0362). Figure 4 showed the ROC comparison between the models.

Table 6. Model comparison for differentiating AD from CN.

V-Model and R-Model for AD and CN Differentiation
Sample Size AD = 97:CN = 192

Volumetry (V-Model) Radiomics (R-Model)
AUC 0.9994 ± 0.0011 0.9830 ± 0.0095

Accuracy 0.9877 ± 0.0086 0.9292 ± 0.0169
Sensitivity 0.9763 ± 0.0182 0.8967 ± 0.0416
Specificity 0.9990 ± 0.0022 0.9712 ± 0.0162
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The important variables in each model were also obtained. In the V-model, other
than the volume of right and left hippocampus, the right and left inferior lateral ventricles,
left and right amygdala, mid-posterior corpus callosum were important variables which
had high impact in prediction accuracy. In the R-model, other than the features related to
GLSZM, GLDM and GLCM, the 3DS features had high importance in accurate prediction.
Details were listed in Table 7.

Table 7. Important variables in V-Model and R-model to differentiate AD from CN.

Brain Regions Radiomics Features

Left Hippocampus GLSZM Large Area High Gray Level Emphasis

Right Hippocampus GLSZM Small Area Emphasis

Left Inferior Lateral Ventricle GLSZM Size Zone Non-Uniformity Normalized

4th Ventricle 3DS Voxel Volume

Left Amygdala 3DS Mesh Volume

Right Pallidum GLRLM Short Run Low Gray Level Emphasis

Right Lateral Ventricle 3DS Surface Area

Right Inferior Lateral Ventricle GLDM Large Dependence High Gray Level Emphasis

Right Amygdala GLCM Inverse Variance

Left Thalamus GLCM Sum Entropy

Mid posterior Corpus Callosum GLDM Small Dependence Low Gray Level Emphasis

4. Discussion

In this study, our proposed model based on radiomics features achieved excellent
performance in differentiation of AD, MCI and CN, with comparable results obtained by
traditional volumetry analysis. Further, we identified the volume of relevant brain regions,
as well as radiomics features that had the potential to serve as biomarkers to differentiate
MCI from CN and AD from MCI.

4.1. Volumetric Analysis in AD, MCI and CN

Brain regional atrophy or ventricle enlargement has long been used to differentiate
AD from CN, in particular, hippocampal atrophy and enlargement of lateral ventricles. In
this study, whole brain automatic segmentation was carried out by FreeSurfer, and all brain
regions were included to build the V-model for disease differentiation. Through machine
learning, our model selected the brain regions which are the same as those volumetric
analysis studies for AD diagnosis, including left and right hippocampus, left and right
amygdala and left and right inferior lateral ventricles. These brain regions were well
established relevant to AD diagnosis.

However, structural change is not easily detectable in MCI when compared to CN,
especially for early onset subtype, even though with the voxel-based method. This makes
the application of volumetric analysis in differentiating MCI from CN very challenging.
Previous studies suggested to add other biomarkers, including apolipoprotein E4 status [31],
grey matter loss [32] or functional connectivity [33] in volumetric analysis to improve the
efficacy in differentiating MCI from CN. These required clinical, genetic information or
multiple imaging modalities which complicate computer assisted algorithm. Other studies
obtained significant difference in cortical thickness between MCI and CN when using
surface-based volumetric segmentation method [34]; or to divide the corpus callosum into
five equally spaced regions using surface-based method and included them as volumetric
variables [35,36]. In this study, 45 brain regional volumes were segmented by surface-
based method, all were used to develop the V-model. The volume of hippocampi, lateral
ventricles, inferior lateral ventricles, fourth ventricle, the middle anterior and central part
of corpus callosum were suggested as important variables in differentiating MCI from CN,
and the model achieved an accuracy over 99%, with high sensitivity and specificity. The
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volume of these brain regions were previously validated by other studies [11,14,15,37,38],
indicated that the variable selection by the random forest algorithm were supported by
clinical observations.

4.2. Radiomics Features in AD, MCI and CN

While these brain regions reflect the local volume change, but not the pathological
mechanism related to the CN and MCI. In this study, two models were developed based on
107 whole brain radiomics features to identify MCI from CN and AD from MCI, respectively.
The model identified several GLSZM, GLDM and GLRLM features as important variables
for MCI from CN. For GLSZM, they were small and large area emphasis, gray level non-
uniformity normalized, low and high gray zone emphasis, and large area high gray level
emphasis. GLSZM measures the number of gray level zones and their sizes, it has proven to
be useful in studying neuropathological heterogeneity [39], which is a determinant of AD
and early MCI [40]. For GLDM, they were dependence entropy, small dependence low gray
level emphasis, and large dependence high graph level emphasis. GLDM describes the
gray level dependence in an image. It corresponds to the irregular spatial distribution and
heterogeneous distribution between voxels, reference to the complex structural relationship
between the voxels. It also reflects the degree of association between different voxels in the
whole brain [41]. Previous study suggested that early onset of AD showed more complex
pattern in T1W images [42]. GLRLM relates to the coarseness and complexity, which reflect
the degree of association between different pixels in the whole brain [41]. Our results were
coherent with Jain et al., 2021 study, which suggested GLSZM, GLDM and GLRLM were
promising features utilized in the whole brain for dementia classification [43].

For the model to differentiate AD from MCI, other than the GLSZM, GLDM and
GLRLM which described previously, the joint energy and maximum probability of GLCM
and kurtosis of first order statistics were included as major variables. GLCM features
reflects the spatial correlation between pixel gray level values in the image [44]. It is a
texture based feature which related to the construction of signatures, and indicates the
brain microstructural damage [45]. White matter degeneration is an important feature
of AD, where diffusion tensor imaging revealed that microstructural damage mainly in
occipital and frontal region in MCI, but widespread throughout the whole brain in AD
patient [46]. GLCM relates to the white matter degeneration, its extensiveness can be a
major factor to differentiate AD from MCI, and AD from CN.

4.3. Models Performance Analysis

In this study, we reported that the well-established volume features and radiomics
textural features had comparable and relevant characteristics in classifying the dementia
groups. In the MCI and CN differentiation, both V-model and R-model demonstrated simi-
lar excellent performance with no significant difference. The results suggested that using
either brain regional volumes or radiomics features can differentiate MCI and CN effec-
tively. On the other hand, although the V-model had better accuracy to distinguish AD and
MCI or AD and CN when compared to the R-model, both V-model and R-model achieved
good accuracy, sensitivity and specificity. The radiomics model can be an alternative to
volumetry as a biomarker to differentiate AD and MCI from CN.

To avoid model overfitting, equal number of samples in disease groups were selected
randomly to test the model. The test results demonstrated similar AUC, accuracy, sen-
sitivity and specificity with the actual model, suggested that the risk of overfitting was
mitigated. To provide realistic model performance estimation, the ten-fold cross validation
was adopted for model training and validation. Further studies are suggested to include
an external dataset for validation.

4.4. Efficiency in Feature Extraction and Model Building

For surface-based volumetry segmentation using FreeSurfer, the run times were ap-
proximately 38 h for an AMD opertron 64 bit 2.5 GHz processor for both brain hemi-



Life 2022, 12, 514 10 of 13

spheres for one patient [47]. While for radiomics features, it took less than ten minutes
for 120 features retrieved by Pyradiomics. Both models were built using random forest
algorithm which required less than two minutes.

Other than the software run time, the selection of regions of interest in the volumetry anal-
ysis required clinician’s expertise and experience. Using automatic segmentation in volumetry
analysis and consider all brain regions for model building enables the process to become
operator independent. It is exceptional useful when the model is designed to aid diagnosis,
which required a clinician to confirm. Based on the clinical application, the radiomics features
can be extracted efficiently, and can be loaded to the model for diagnosis prediction.

4.5. Limitation of Study

Compared to previous studies, our sample size was not very small. However, includ-
ing other cohorts of study with independent samples may help to improve the reliability
of the diagnostic models. Additionally, we used T1W MR image alone to build the di-
agnostic models, further investigations can be carried out by including other imaging
modalities, for example 18F-flutametamol PET images or functional MRI images for model
development. Besides the radiomics features extracted from the whole brain, radiomics
from individual brain structures can be extracted for further investigations. In this study,
the images were collected from overseas, further validation using image data from local
patients is suggested.

5. Conclusions

This study showed that the radiomics features from T1-weighted MR images achieved
excellence performance in differentiating AD, MCI and CN. Compared to the volumetry
method, the accuracy, sensitivity and specificity were slightly lower in using radiomics, but
still attained very good and reliable classification of the three stages of neurodegenerations.
In view of the convenience and operator independence in feature extraction, radiomics can
be a quantitative biomarker to differentiate the disease groups.
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