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Abstract: Leafy vegetables cultivated in kitchen gardens and suburban areas often accumulate
excessive amounts of heavy metals and pose a threat to human health. For this reason, plenty of
studies have focused on low accumulation variety screening. However, identifying specific leafy
vegetable varieties according to the foliar uptake of air pollution remains to be explored (despite foliar
uptake being an important pathway for heavy-metal accumulation). Therefore, in this study, the lead
(Pb) and cadmium (Cd) contents, leaf morphology, and particle matter contents were analyzed in a
micro-area experiment using 20 common vegetables. The results show that the Pb content in leaves
ranged from 0.70 to 3.86 mg kg−1, and the Cd content ranged from 0.21 to 0.99 mg kg−1. Atmospheric
particles were clearly scattered on the leaf surface, and the particles were smaller than the stomata.
Considering the Pb and Cd contents in the leaves and roots, stomata width-to-length ratio, leaf area
size, enrichment factor, and translocation factor, Yidianhongxiancai, Qingxiancai, Baiyuanyexiancai,
Nanjingjiangengbai and Sijixiaobaicai were recommended for planting in kitchen gardens and
suburban areas as they have low accumulation characteristics. Identifying the influencing factors
in the accumulation of heavy metals in vegetables through foliar uptake is important to help plant
physiologists/environmentalists/policy makers to select suitable varieties for planting in air-polluted
areas and thus reduce their threat to human health.

Keywords: lead (Pb); cadmium (Cd); leafy vegetable; foliar uptake; varieties screening

1. Introduction

Heavy-metal pollution in farmlands has attracted a great deal of attention in China,
especially in relation to the potential impact on human health caused by the intake of
heavy-metal-contaminated crops. Among all crop varieties, heavy-metal overaccumulation
is particularly significant in vegetables and rice. The term “lead vegetables” is often used in
China to describe heavily lead-contaminated vegetables, as is the term “cadmium rice” [1].
Lead (Pb) and cadmium (Cd) are considered to be two of the most toxic elements to human
health. Long-term high dose exposure to Pb has adverse effects on blood enzymes and
the central nervous system [2]. Chronic exposure to Cd was reported to cause pulmonary
adenocarcinomas, lung cancer, kidney dysfunction, and bone fractures [3]. According
to the 2016 Dietary Guidelines for Chinese, at least one third of foods are vegetables,
which represents up to 500–850 g per meal [4]. Industrial processes such as smelting,
e-waste processing, coal combustion, waste incineration, vehicular traffic, pesticide use,
and fertilization contribute to increased Pb and Cd concentrations in the environment [5,6].
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Moreover, the majority of consumed vegetables originate from kitchen gardens located
in peri-urban areas [7,8], which are generally close to multiple pollution sources resulting
from human pressure, traffic emission, urban waste disposal, etc. [9]. Various studies
have been conducted in these areas to assess soil and vegetable contamination [10,11].
Daimari et al. (2020) assessed trace metal air pollutants in urban, peri-urban, and rural
areas on the Brahmaputra Valley plain and found that metals related to automobiles were
accumulated in greater volume in samples from peri-urban locations [12]. For example,
Chen et al. (2018b) and Li et al. (2015) discovered that Pb and Cd contents in vegetables
were 0.04–0.72 mg kg−1 and 0.02–0.63 mg kg−1, respectively, which exceeded the national
standards (GB2762-2017) [13,14]. Huang et al. (2018) analyzed the heavy-metal contents in
vegetables in a peri-urban area in Zhejiang province and showed the hazard index caused
by the intake of local heavy-metal-containing vegetables was significantly higher than 1,
indicating significant adverse health effects on local residents [11]. Therefore, exploring
the uptake and translocation of heavy metals in vegetables is crucial for maintaining food
safety and human health.

The existing studies mainly focus on heavy-metal uptake from soil by roots and
explore the mechanisms involved in root uptake, translocation, and detoxification [15]. On
this basis, a multitude of studies focus on screening for low accumulation varieties, which
can be promoted in order to maintain food safety. Wei et al. (2017) planted 20 pakchoi
genotypes in soils with both low and high levels of Cd and As co-contamination soils in
order to identify low health risk genotypes [16]. Liu et al. (2009) compared the translocation
factor (TF) and enrichment factor (EF) among 40 cabbage genotypes, and concluded that
only Lvxing 70 could be regarded as a Cd-excluder genotype [17]. Moreover, various
researchers suggest that the correlation between heavy-metal accumulation in vegetables
and the corresponding soil is weak, whereas there is a direct correlation with the amount
of heavy metals in atmospheric depositions [18,19]. Bi et al. (2018) conducted a Pb isotope
ratio analysis on 48 road dusts and 106 leafy vegetable samples collected in Shanghai
Industrial Park and found that the accumulation of Pb in leafy vegetables was directly
derived from atmospheric deposition [20]. Another study demonstrated that the main
source of Pb in cabbage leaves was local PM2.5 [21]. He et al. (2021) suggested that
atmospheric deposition in certain areas has a great impact on the concentration of heavy
metals in crop leaves, and the influencing factors include cuticle, lenticel, and stomata
structure, etc [22]. Overall, atmospheric deposition has been shown to be an important
source of heavy-metal accumulation in leafy vegetables. However, knowledge regarding
the mechanism of foliar uptake, translocation, and accumulation is limited [23]. In addition,
no species have been identified for cultivation in air-polluted areas based on studies of
foliar uptake.

This led is to hypothesize that the accumulation of heavy metals in vegetables may be
due to both root uptake from soil and foliar uptake from the atmosphere, especially for leafy
vegetables. Therefore, in this study, the Pb and Cd contents in 20 common vegetables (water
spinach (Ipomoea aquatica Forssk), amaranth (Amaranthus tricolor), cabbage (Brassica pekinen-
sis)), and the particulate matter content and leaf morphology were analyzed in a micro-area
experiment with the aim of: (1) identifying the degree of Cd and Pb accumulation in
atmospheric-plant systems and their risks to the population; (2) exploring the differences in
foliar uptake and influencing factors among these varieties; and (3) recommending suitable
varieties based on foliar uptake characteristics to maintain food safety.

2. Material and Methods
2.1. Site Description and Soil Characterization

The study was conducted in the experimental base of Hunan Agricultural University
Changsha City, southern China (28◦11′12” N, 113◦5′29” E, altitude 43 m). This area is
in a suburban area and beside a city road. The airborne Pb and Cd originated from
natural atmospheric deposition, which was mainly emitted from traffic. The leading
wind direction in the area is primarily southeasterly in summer and northeasterly in
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winter. The annual average temperature is 16–18 ◦C, with an annual average humidity
of 70%–80%. The average annual precipitation ranges from 1400 to 1700 mm. Three
species of 20 common edible vegetables (Table 1)—water spinach (Ipomoea aquatica Forssk,
3 varieties), amaranth (Amaranthus tricolor, 5 varieties), and cabbage (Brassica pekinensis,
12 varieties)—were selected and the treatment was repeated three times. Each vegetable
was randomly planted in a 2 m × 2 m field. Vegetable seeds were sown on 2 June 2019
and harvested on 2 September 2019. The basic physical and chemical properties of the soil
that we analyzed were organic matter (11.6 ± 0.78 g kg−1), pH (8.08 ± 0.06), total nitrogen
(0.82 ± 0.20 g kg−1), phosphorus (484 ± 0.18 mg kg−1), potassium (17.4 ± 0.11 g kg−1),
total Pb (24.31 ± 0.19 mg kg−1), and total Cd (0.14 ± 0.04 mg kg−1).

Table 1. Three species of twenty common edible vegetables.

Specie Abbreviation Genotypes

Water spinach
(Ipomoea aquatica Forssk)

A1 Baigengliuyekongxincai
A2 Taiguokongxincai
A3 Dayekongxincai

Amaranth
(Amaranthus tricolor)

B1 Yidianhongxiancai
B2 Qingxiancai
B3 Hongliuyexiancai
B4 Qingliuyexiancai
B5 Baiyuanyexiancai

Cabbage
(Brassica pekinensis)

C1 Shenyangkuaicai38
C2 Xinzajiaokuaicai50
C3 Meiweitiankuaicai
C4 Nanjingjiangengbai
C5 Xiangruikuaicai536
C6 Jimaocai
C7 Suzhouqing
C8 Jindiansijiqing
C9 Baixuegongzhu
C10 Zaoshutiancaixin
C11 Choutaiqinggengcai
C12 Sijixiaobaicai

2.2. Sample Collection and Analysis
2.2.1. Particulate Matter Samples

The particulate matter samples (PM10 and TSP) were collected by two automatic
precipitation and dust fall samplers each day from June 2019 to August 2019. The airflow
rate was 28 L min−1 with 50% cutoff sizes of <10.0 µm (PM10) and total suspended particles
(TSP). The particulate matter samples were digested using an HNO3-HCl (3:1) mixture
at 105 ± 5 ◦C for 2 h, cooled to room temperature, and diluted with deionized water to
30 mL. The aqueous samples were first acidified with sub-boiling quartz distilled 6 M HCl,
and then digested using 2 mL HNO3 (1:1) and 1 mL HCl (1:1) at 85 ◦C until the sample
evaporated to 20 mL. Sample replicates and reagent blanks were included in each batch of
analysis to ensure the quality of the analysis.

2.2.2. Vegetable and Soil Samples

Vegetable samples were collected at the maturity stage using a crossover method
and the samples were rinsed thoroughly with deionized water to remove any attached
soil/substrate particles before being separated into shoots and roots. At the same time,
surface soil (0–20 cm) samples were collected from each plot. The soil samples were dried
at room temperature and homogenized using a mortar and pestle. One portion of the
sample was passed through 2 mm sieves to measure the pH content, and another was
passed through 0.145 mm sieves to determine the Pb and Cd contents. Subsamples of
shoots and roots were firstly dried in oven at 105 ◦C for 30 min and then stored in oven at
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80 ◦C until reaching a constant weight. They were then crushed with prototype powder.
Soil samples were digested with a mixture of HNO3-H2O2-HF (6:3:3), and plant materials
were digested with HNO3-H2O2 (2:1). The digested solutions were diluted to 25 mL with
1% HNO3 solution. All of the samples were stored in the dark at 4 ◦C and were determined
within one month. To ensure the reliability and quality of the data, standard reference soil
(GBW07387) and bush twigs and leaves (GBW07602) from the Center of National Reference
Materials of China were measured together with soil and plant samples.

The Pb and Cd concentrations in solutions were determined using an inductively
coupled plasma mass spectrometer (ICP-MS, Model NEXION 350 X, PerkinElmer, America).
The recovery of spiked standard for each element ranged between 80% and 120% and the
detection limits were 0.01 µg mL−1 and 0.01 µg mL−1 for Pb and Cd, respectively.

2.3. Scanning Electron Microscopy (SEM) Analysis

Vegetable leaves were observed using a scanning electron microscope (SEM), as de-
scribed previously [24]. Small strips of leaf (about 0.5 cm2) were trimmed from the area
between the margin and mid-rib. The small strips were first stored in 2.5% glutaraldehyde
solution overnight for fixation (prefixation), and then in osmium tetroxide for post-fixation
for 1 h. After being washed twice with buffer solution for 15 min, these samples were
passed through a series of acetone solutions (30%, 50%, 70%, 95% and 100%) for dehy-
dration. Then, they were dried in a critical point drier (CPD) with CO2 as the carrier gas.
The SEM was carried out using a 30 keV, JEOL JSM-6490 LV scanning microscope (JEOL,
China) with standard automated features such as auto focus/stigmator, auto gun, and
auto-contrast with multiple live image display. The samples were coated with carbon using
a high vacuum system to wet specimens, the upper surfaces of the leaf segments were
studied, and micrographs were taken at various magnifications.

2.4. Foliar Parameters Analysis
2.4.1. Stomata Size

Bu et al. (2014) used width-to-length ratio to represent the degree of stomatal opening
and closing [25]. The stomata sizes were expressed by measuring the long and short axis of
the stomata map taken using a scanning electron microscope.

2.4.2. Leaf Surface Area

According to the principle of the mass density formula, a piece of uniform quality
paper (normal printing paper is fine) was selected, the rectangle was divided, the length
and width was recorded, its area (length × width) was calculated, and then it was weighed.
Thereafter, the outline of the leaf was drawn on the paper, it was cut out, and then it was
weighed. The leaf area was calculated by dividing the weight of the leaf contour paper
by the weight of the entire paper and multiplying this by the area of the entire paper [26].
When measuring quality, five repetitions were used to reduce errors.

2.5. Health Risk Assessment

The health risk from heavy metals are mainly derived from three pathways: the
ingestion of the contaminated crops, inhalation, and dermal contact with the polluted
particulate matter. The health risk can be estimated using the ratio of the estimated daily
dose (EDD, (mg kg−1 day−1)) to the reference dose (RfD, (mg kg−1 day−1)). If the EDD is
lower than the RfD, there are considered to be no health risk. Reference doses were based
on 0.004 and 1 × 10−3 mg kg−1 day−1 for Pb and Cd, respectively [27,28]. The estimated
daily dose of Pb and Cd by consuming leaves of leafy vegetables were calculated using the
following equation [29]:

EDD =
CTMetal × IRveg × Cf × EF × ED

LE × BW
(1)
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where IRveg, Cf, EF, ED, LE, and BW represent the ingestion rate of leafy vegetable
(100.4 g day−1 for adults, 66.9 g day−1 for children), conversion factor (0.085 mg kg−1),
exposure frequency (365 days year−1), exposure duration (70 years), life expectancy
(25,550 days), and average body weight (70 kg for adults, 24.5 kg for children), respec-
tively [30].

2.6. Enrichment Factor

The enrichment factor (EF) was used to differentiate between natural and anthro-
pogenic sources. It was calculated using the following equation [31]:

EF =
(CTMetal/Cref)sample

(CTMetal/Cref)background
(2)

where Cref represents the reference element concentration (mg kg−1 for soil, ug m−3 for air).
Fe was selected as a reference element for geochemical normalization due to its uniform
natural concentration and natural abundance in the Earth’s crust [32].

2.7. Statistical Analysis

All data analyses were performed using SPSS 16.0 and Origin Pro 8.0. Variance
analysis was subjected to a factorial analysis of variance (ANOVA) using a least significant
difference (LSD) test at a significance level of p < 0.05 and p < 0.01. The cluster heat map
showed the row and column hierarchy of clusters in the data matrix. The heat map of
distribution profiles and physiological and chemical indicators among the 20 vegetables
were generated in RStudio with the ggplot2 package [33].

3. Results
3.1. The Concentration of Pb and Cd in Atmospheric Particulate Matter

It can be seen that the concentrations varied greatly at different times. During the test days,
the average concentration of Pb in TSP and PM10 was 0.1602 (0.0224–0.4936) µg m−3 day−1 and
0.2050 (0.0568–0.4815) µg m−3 day−1, respectively (Figure 1). The concentration of Cd in
TSP and PM10 was 0.0022 (0.001–0.0244) µg m−3 day−1 and 0.0017 (0.001–0.0046) µg m−3

day−1, respectively. As compared with the first level of the ambient air quality standard
(GB3095-2012, 0.5 µg m−3 day−1), the concentrations of TSP-Pb and PM10-Pb were both
lower than the standard, and first exhibited an increasing trend and then a decreasing
trend from July to August. The concentrations of TSP-Cd and PM10-Cd tended to be
more stable and evenly distributed throughout the growth period and did not exceed the
secondary ambient air quality standard (GB3095-2012, 0.005 µg m−3 day−1). In addition,
the concentrations of Pb and Cd in PM10 were significantly higher than those in TSP,
indicating that Pb and Cd were mainly concentrated in fine particles.

3.2. The Concentration of Pb in Roots and Leaves

The concentrations of Pb in dry-weight roots and leaves are shown in Figure 2. The
contents in roots ranged from 0.22 to 57.84 mg kg−1, of which C5 had the lowest concentra-
tion (0.22 mg kg−1), while C3 had the highest (57.84 mg kg−1). Overall, the concentration
exhibited the following trend: cabbage (14.07 mg kg−1) > water spinach (2.34 mg kg−1) >
amaranth (1.09 mg kg−1), and the contents of Pb in roots exhibited the biggest variation
among cabbages. The contents in C3 and C2 were significantly higher than C1, and they
were significantly higher in these three than in the others cabbage species. Furthermore,
there was no significant difference between or among amaranth and water spinach. The
contents in leaves ranged from 0.70 to 3.86 mg kg−1, of which C7 had the lowest concentra-
tion (0.70 mg kg−1), while B4 had the highest (3.86 mg kg−1). Overall, the concentration
exhibited the following trend: amaranth (1.77 mg kg−1) > cabbage (1.38 mg kg−1) > water
spinach (1.20 mg kg−1), which was not consistent with Pb in roots. Moreover, the contents
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of Pb in leaves did not exhibit significant variation among varieties. The accumulation of
Pb was biggest in B4, while it was lowest in C12, C8, and C7.
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Figure 2. The concentration of Pb in dry-weight roots and leaves in three species of leafy vegetables:
A, water spinach (Ipomoea aquatica Forssk); B, amaranth (Amaranthus tricolor); C, cabbage (Brassica
pekinensis); the line represents the maximum permissible concentration (MPC) for Pb. The bars
represent means ± SD (n = 3). Different lowercase letters indicate significant differences at the
p < 0.05 level of LSD test using spinach, amaranth, cabbage (black lowercase), and nine kinds of
cabbage (red lowercase).

According to limits of contaminants in food (National Standard Agency of China,
GB2762-2017), the maximum permissible concentration (MPC) for Pb in leafy vegetables is
0.3 mg kg−1 fresh weight. The monitored vegetables contained about 90% water. Therefore,
in these 20 varieties, only B4 samples (3.86 mg kg−1) exceeded the MPC and posed potential
health risks. Moreover, the C3, C2, and C1 cabbage species were close to the MPC.

3.3. The Concentration of Cd in Roots and Leaves

The concentration of Cd in dry-weight roots and leaves are shown in Figure 3. The
contents ranged from 0.10 to 13.58 mg kg−1 in the roots of the 20 varieties, of which C1 had
the lowest concentration (0.10 mg kg−1), while C3 had the highest (13.58 mg kg−1). Overall,
the concentration exhibited the following trend: cabbage (0.67 mg kg−1) > amaranth
(0.42 mg kg−1) > water spinach (0.26 mg kg−1), and the contents of Cd in roots exhibited
the biggest variation among cabbages. C1 was significantly higher than C3 and C2, while
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these three were significantly higher than the other cabbage species; moreover, C8 was
significantly higher than C5 and C4. In addition, there was no significant difference between
or among water spinach. B5 was significantly higher than B4, B2, and B1 in amaranth. The
contents ranged from 0.21 to 0.99 mg kg−1 in leaves of the 20 varieties, of which A2 had
the lowest concentration (0.21 mg kg−1), while C2 had the highest (0.99 mg kg−1). Overall,
the concentration exhibited the following trend: cabbage (0.67 mg kg−1) > amaranth
(0.42 mg kg−1) > water spinach (0.26 mg kg−1). This was consistent with that for Cd
in roots.
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According to limits of contaminants in food (National Standard Agency of China,
GB2762-2017), the maximum permissible concentration (MPC) of Cd in leafy vegetables is
0.2 mg kg−1 fresh weight. The monitored vegetables contained about 90% water. Therefore,
the contents of Cd in all 20 varieties did not exceed the standard.

3.4. Health Risk Assessment

The estimated daily dose (EDD) describes the contents of a certain element in the
body’s daily vegetable intake, expressed as the amount of accumulated contaminants in
the human body during daily vegetable intake. It can be seen from Table 2 that the average
daily intake of Pb from vegetables by adults and children was higher than Cd. In addition,
for both Pb and Cd, children’s daily vegetables Pb/Cd intakes were all higher than those of
adults. When considering vegetable varieties, it was found that the trend of Pb/Cd contents
varied among different varieties. For Pb, the average daily intake of the three major types
of vegetables (water spinach, amaranth, cabbage) were 1.46 × 10−5, 2.16 × 10−5, and
1.68 × 10−5 mg kg−1 day−1 for adults and 2.78 × 10−5, 4.11 × 10−5, and 3.20 × 10−5 mg
kg−1 day−1 for children, respectively, with the following trend: amaranth> cabbage> water
spinach. However, for Cd, the average daily intakes of the three major types of vegetables
were 3.17 × 10−6, 5.10 × 10−6, and 8.14 × 10−6 mg kg−1 day−1 for adults and 6.04 × 10−6,
9.71 × 10−6, and 1.55 × 10−5 mg kg−1 day−1 for children, respectively, with the following
trend: cabbage> amaranth> water spinach. In general, the reference doses for Pb and Cd
are 0.004 and 1 × 10−3 mg kg−1 day−1, respectively [27,28]. All samples were below the
reference doses, indicating that the intake of vegetables grown at the test site did not pose a
significant health risk to humans.
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Table 2. The EDD values (mg kg−1 day−1) of Pb and Cd for adults and children through ingestion of
leafy vegetables.

Specie Vegetable Types EDD (Pb) EDD (Cd)

Adults Children Adults Children

Water spinach
(Ipomoea aquatica

Forssk)

A1 1.50 × 10−5 2.86 × 10−5 3.30 × 10−6 6.28 × 10−6

A2 1.28 × 10−5 2.44 × 10−5 2.51 × 10−6 4.79 × 10−6

A3 1.60 × 10−5 3.05 × 10−5 3.70 × 10−6 7.04 × 10−6

Amaranth
(Amaranthus

tricolor)

B1 1.35 × 10−5 2.58 × 10−5 2.58 × 10−6 4.90 × 10−6

B2 1.35 × 10−5 2.58 × 10−5 2.91 × 10−6 5.54 × 10−6

B3 2.00 × 10−5 3.80 × 10−5 7.92 × 10−6 1.51 × 10−5

B4 4.71 × 10−5 8.97 × 10−5 8.28 × 10−6 1.58 × 10−5

B5 1.37 × 10−5 2.61 × 10−5 3.81 × 10−6 7.25 × 10−6

Cabbage
(Brassica pekinensis)

C1 1.36 × 10−5 2.60 × 10−5 1.02 × 10−5 1.94 × 10−5

C2 3.12 × 10−5 5.94 × 10−5 1.21 × 10−5 2.31 × 10−5

C3 2.80 × 10−5 5.34 × 10−5 1.12 × 10−5 2.13 × 10−5

C4 1.19 × 10−5 2.27 × 10−5 5.28 × 10−6 1.01 × 10−5

C5 3.22 × 10−5 6.12 × 10−5 7.93 × 10−6 1.51 × 10−5

C6 1.59 × 10−5 3.03 × 10−5 8.45 × 10−6 1.61 × 10−5

C7 8.59 × 10−6 1.63 × 10−5 5.64 × 10−6 1.07 × 10−5

C8 8.66 × 10−6 1.65 × 10−5 8.94 × 10−6 1.70 × 10−5

C9 1.86 × 10−5 3.54 × 10−5 8.40 × 10−6 1.60 × 10−5

C10 1.28 × 10−5 2.44 × 10−5 7.30 × 10−6 1.39 × 10−5

C11 1.04 × 10−5 1.99 × 10−5 6.35 × 10−6 1.21 × 10−5

C12 9.84 × 10−6 1.87 × 10−5 5.92 × 10−6 1.13 × 10−5

3.5. The Enrichment and Translocation Factor of Pb and Cd

The enrichment factor (EF) was calculated as the heavy-metal concentrations in shoots
as compared to the concentrations in soil/atmosphere. The EFs of Pb and Cd in shoots as
compared to atmospheric deposition and soil are shown in Figure 4a,b. The atmospheric
enrichment factors of Pb were basically in the range of 1–2, and the soil enrichment factor
was all less than 1 (Figure 4a). Similarly, it can be seen from Figure 4b that the atmospheric
enrichment factors of Cd in the 20 leafy vegetables were all higher than 10, and the soil
enrichment factors were all less than 10. Overall, the EFs of Pb were lower than those of
Cd in the 20 leafy vegetables, and the EFs of shoots compared to the atmosphere were
significantly higher than those of the soil. Translocation factor (TF) was calculated as the
ratio of the heavy-metal concentration in leaves to that in roots. The TFs of Pb and Cd
from roots to shoots in leafy are shown in Figure 4c. It can be seen that the TF of Pb and
Cd in the 20 leafy vegetables ranged from 0.03 to 11.86 and from 0.06 to 5.11, respectively.
The average TFs of Pb in water spinach, amaranth, and cabbage were 0.51, 1.71, and 1.55,
respectively, and similarly, the TFs of Cd were 1.79, 1.39, and 1.58, respectively, exhibiting
the following trend: amaranth > cabbage > water spinach. Similarly, with EF, the TF of
Pb was also lower than that of Cd. Moreover, only four leafy vegetables, especially the
cabbage vegetables, exhibited lower TF of Cd, which was lower than 1.0, while 13 leafy
vegetables, including several cabbage vegetables and all water spinach, had lower TF of Pb.
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Figure 4. The enrichment and translocation factor of Pb and Cd: A, water spinach (Ipomoea aquatica
Forssk); B, amaranth (Amaranthus tricolor); C, cabbage (Brassica pekinensis). (a,b) the enrichment factor
of Pb and Cd in shoots to atmospheric deposition and soil. The unshaded bars represent the air
enrichment factors in shoots, and the shaded bars represent the soil enrichment factors in shoots.
(c) The translocation factor of Pb and Cd from roots to shoots in leafy vegetables. The unshaded
bars represent the translocation factors of Cd, and the shaded bars represent the translocation factors
of Pb.

4. Discussion
4.1. Accumulation and Translocation Characteristics of Pb and Cd among Various Varieties

Enrichment factor (EF), which refers to the content of elements in plants as compared
to that in the environment, can be used to evaluate the ability of heavy-metal accumula-
tion [31]. It is widely used in the screening of low heavy-metal accumulation crops and
identifying emission sources [34]. Generally, the value is equal to 1.0, indicating that the
accumulation of pollutants originates entirely from Earth’s crust or natural weathering
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processes. However, an EF value greater than 1.5 indicates a considerable volume of trace
metal (likely from anthropogenic factors [35]. The EFs of Pb and Cd both exceeded 1.0
(Figure 4a,b), indicating that the accumulation of Pb and Cd generally originated from
anthropogenic activities at the experiment site. Moreover, leafy vegetables grown by retail
households and cultivated near industrial areas, villages, roads, most of which are exposed
to various anthropogenic emissions, likely pose a threat to human health [36]. Luo et al.
(2011) found that the EF value measured for Cd in Allium ascalonicum L. (leafy vegetables)
was 1.258, exhibiting higher a value than Raphanus sativus L. and Daucus carota L. (non-leafy
vegetables) [37]. Therefore, it is necessary to screen leafy vegetables according to heavy-
metal accumulation through foliar uptake. According to the EF values, in this study, B1, B2,
and C7 had a lower tendency to accumulate Pb and Cd.

Translocation factor (TF), which refers to the content of elements in leaves compared
to in roots, can be used to evaluate the ability of heavy-metal translocation. A TF >1.0
indicates preferential partitioning of metals from roots to shoots [38]. Therefore, this study
calculated TF to evaluate the capacity of a plant to translocate heavy metals from roots
to leaves (Figure 4c) [39]. The TF of Pb and Cd in the 20 leafy vegetables demonstrated
obvious variation (Figure 4c). Liu et al. (2009) indicated that an increasing Cd concentration
in roots causes evidently decreasing TF values under contaminated soils [17]. Therefore,
it can be seen that the TFs of C1, C3, and C2 were significantly lower than those of the
other species due to the higher concentrations of Pb and Cd in roots (Figures 2 and 3).
Conversely, the lower TFs of A2, B5, and C4 may have resulted from the limited transfer
from roots to leaves or foliar uptake. Shahid et al. (2017) demonstrated that differences
in physiology, morphology, and the anatomy of each plant, such as leaf inclination angle,
branch density, structure of plant canopy, leaf area, and stomata size and density, were
major morphological characteristics that affect foliar uptake [40]. Furthermore, the uptake
and translocation of trace elements in plants may depend on mobility and competition
with other elements [41,42]. Shahid et al. (2020) reported that approximately 90% of Pb
was accumulated in the shoot tissues of spinach and that there was limited transfer to roots
under foliar treatment of PbO-NPs in leaves [43]. Furthermore, various studies revealed
that Pb mobility inside plants was very low, and tended to accumulate near the site of
entrance to plants [43,44]. Therefore, the relatively high concentration of Pb in leaves was
more likely from foliar uptake.

4.2. Effect of Foliar Uptake on Heavy-Metal Accumulation in Leafy Vegetables

The scanning electron micrographs of the 20 varieties leafy vegetables are shown in
Figure 5a,b. Shao et al. (2019) observed particulate matter on the leaf surface through
SEM under 500× magnification [45]. This study also used SEM to observe the leaf sur-
face morphology in 20 leafy vegetables. Many atmospheric particles can be obviously
seen scattered on the surface of leaves under 500× magnification (Figure 5a). When the
magnification was set to 1000×, the particles were observed near the stomata and leaf
folds and the particles were smaller than the size of stomata (Figure 5a). Therefore, it can
be concluded that leafy vegetables can absorb heavy metals through the foliar uptake of
atmospheric particles. Correspondingly, Zhou et al. (2016) and Jolly et al. (2013) reported
that leafy vegetables appear to have the highest propensity to accumulate trace elements
through investigating TF values of trace elements in 22 vegetable species of six types (leafy,
legume, root, stalk, solanaceous, and melon vegetables) [46,47]. In addition, Pb and Cd
were likely to concentrate in fine particles (Figure 1), indicating that the heavy metals that
were enriched in particles deposited on the leaf surface were more capable of entering the
plant through the stomata. Furthermore, Gao et al. (2022) suggested that small particles
might diffuse through both stomatal and cuticular pathways to enter plant leaves, being
transferring into the vegetables [48]. Many studies confirmed that heavy metals attached to
PMs contribute to heavy-metal accumulation, especially Pb accumulation, in leaf vegetables
in urban or suburban areas [49]. Therefore, the stomata size should be considered as a
crucial index for evaluating the strength of foliar uptake [21].
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Figure 5. Scanning electron micrographs (SEM) of leaves of 20 leafy vegetables: A, water spinach
(Ipomoea aquatica Forssk); B, amaranth (Amaranthus tricolor); C, cabbage (Brassica pekinensis). (a) SEM
observation of atmospheric particulate matter on leaves under 500× and 1000× magnification.
(b) Scanning electron microscope of stomata of 20 leafy vegetables under 5000×magnification.

Bu et al. (2014) used the width-to-length ratio to represent the degree of stomatal open-
ing and closing [25]. This study also showed the degree of stomatal opening and closing by
measuring the long and short axis of the stomata (Table S1). The size of stomata of the three
species of leafy vegetables exhibited the following trend: water spinach (0.60) > cabbage
(0.45) > amaranth (0.29) (Table S1). Moreover, it can be seen that heavy-metal contents were
higher in leaves and lower in roots for water spinach species, and the higher accumulation
in leaves was consistent with a larger stomatal width-to-length ratio in different varieties,
indicating that the significant difference in heavy-metal concentration in leaves might be
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caused by foliar uptake through the stomata. Similarly, the results were generally consistent
in both amaranth and cabbage, except for C1, C2, and C3, of which Pb and Cd were likely
transferred from the roots to leaves due to the high concentration in the roots. However,
this trend was not reflected in all of the 20 varieties. The contents of Pb and Cd in the
three species of leafy vegetables exhibited the following trend: amaranth (1.77 mg kg−1) >
cabbage (1.38 mg kg−1) > water spinach (1.20 mg kg−1) for Pb, and cabbage (0.67 mg kg−1)
> amaranth (0.42 mg kg−1) > water spinach (0.26 mg kg−1) for Cd (Figures 2 and 3), which
is inconsistent with the size of stomata in the leaves. This inconsistency may be due to
other foliar morphological characteristics such as leaf inclination, branch density, plant
canopy structure, leaf area, etc. [40]. Furthermore, Bi et al. (2018) reported that heavy-metal
concentrations in leafy vegetables varied among species [20]. Pan et al. (2016) reported
that heavy-metal accumulation in vegetables varied significantly among varieties, and the
accumulation of Cd and Cr was highest in Chicorium endiva L. and Spinacia oleracea L. [50].
Therefore, this experiment also measured leaf areas (Table S2) in an attempt to explain the
influencing factors of heavy-metal accumulation in leafy vegetables.

4.3. Influencing Factors of Pb and Cd Accumulation in Leafy Vegetables

In order to explore the influencing factors of heavy-metal accumulation in leafy veg-
etables, stomata width-to-length ratio, leaf area size, EF, and TF were measured. Combined
with various indicators, a clustering heat map was generated to illustrate the phenomenon
(Figure 6). It can be seen in Figure 6a that B4 and C5 were separated into a single category
with high contents of Pb in leaves and low contents in roots. From a further analysis, it
was found that they had higher leaf/air values and leaf surface areas, indicating that they
might have accumulated heavy metal via relatively strong foliar uptake. Therefore, these
two varieties were deemed unsuitable for planting in kitchen gardens and suburban areas
where the air might be polluted. In addition, A1, A2, and A3 were separated into a single
category characterized as having large stomata and leaf surface area, which induce foliar
uptake. Correspondingly, their leavef/air values were relatively high, so they were also
deemed unsuitable for planting in these areas. On the other hand, the strength of foliar
uptake may also be affected by other factors, such as the morphology and surface area
of leaves, chemical and physical characteristics of the cuticle, physico-chemical forms of
adsorbed metals, plant habitus, exposure duration, environmental conditions, and gas
exchange [40]. It can also be seen in Figure 6b, that C8, C6, and C9 had high contents of
Cd in their leaves and low contents in their roots. They were thus separated into a single
category and deemed unsuitable for planting in suburban areas.

In addition to foliar uptake, heavy-metal uptake from roots was another major pathway
of heavy-metal accumulation in leaves. It can be seen that C2 and C3 in Figure 6a, and C1,
C2, and C3 in Figure 6b were classified into one category, which had significantly higher
contents in the roots. Gao et al. (2010) reported that the high Cd concentration in pakchoi was
due to the high transpiration rate, which helped to translocate Cd from roots to leaves [51].
Therefore, as a result of the strong root uptake, C1, C2, and C3 were deemed unsuitable for
planting in areas with contaminated soils. Finally, B1, B2, and B5 were classified into one
category (Figure 6a,b). They had lower heavy-metal contents in the roots and leaves and
smaller stomata, which demonstrated weak ability of heavy-metal accumulation. For this
reason, B1, B2, and B5 can be planted in kitchen gardens and suburban areas to maintain
food safety. Moreover, C4 and C12 also demonstrated low accumulation of both Pb and Cd
and can also be recommended.
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5. Conclusions

In order to explore the influencing factors of Pb and Cd accumulation in leafy vegeta-
bles and screen suitable varieties based on foliar uptake, 20 varieties of leafy vegetables
were grown in a micro-area experiment. This study creatively investigated the contribution
of foliar uptake to heavy-metal accumulation in leafy vegetables and explored the effect of
leaf area and stomata size on heavy-metal accumulation in leafy vegetables. It can be seen
that foliar uptake was an important source of Pb and Cd accumulation in leafy vegetables.
The study indicated that water spinach accumulated enormous amounts of Pb through
foliar uptake, and the amount mainly depended on the size of stomata. B1, B2, B5, C4,
and C12 demonstrated a weaker ability to absorb heavy metals through foliar uptake and
are recommended to be planted in areas prone to air pollution. Furthermore, as a result
of the strong root uptake, C1, C2, and C3 were deemed unsuitable for planting in areas
with contaminated soil. The results provide technical support for the safe production of
leafy vegetables. However, the various factors that affect foliar uptake are complicated and
include leaf inclination, branch density, plant canopy structure, leaf area, and stomata size,
etc. Therefore, further studies, including microscopic or quantitative methods, are required
to explore the mechanism of foliar uptake and quantify its contribution to heavy-metal
accumulation in leaves.
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