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Abstract: Brain tumors are among the deadliest diseases in the modern world. This study proposes
an optimized machine-learning approach for the detection and identification of the type of brain
tumor (glioma, meningioma, or pituitary tumor) in brain images recorded using magnetic resonance
imaging (MRI). The Gaussian features of the image are extracted using speed-up robust features
(SURF), whereas its non-linear features are obtained using KAZE, owing to their high performance
against rotation, scaling, and noise problems. To retrieve local-level information, all brain MRI images
are segmented into an 8 × 8 pixel grid. To enhance the accuracy and reduce the computational
time, the variance-based k-means clustering and PSO-ReliefF algorithms are employed to eliminate
the redundant features of the brain MRI images. Finally, the performance of the proposed hybrid
optimized feature vector is evaluated using various machine learning classifiers. An accuracy of
96.30% is obtained with 169 features using a support vector machine (SVM). Furthermore, the
computational time is also reduced to 1 min compared to the non-optimized features used for training
of the SVM. The findings are also compared with previous research, demonstrating that the suggested
approach might assist physicians and doctors in the timely detection of brain tumors.

Keywords: ReliefF; optimization; tumor; KAZE; diagnosis; brain MRI

1. Introduction

The roles of artificial intelligence, machine learning, and image processing, especially
in medical diagnostics, are considered fundamental by many researchers worldwide [1].
Early and accurate diagnosis of diseases, such as brain tumors, is critical, especially consid-
ering their life-threatening nature. Machine learning and artificial intelligence algorithms
are known not only for their classification abilities, but also for their data regression ability;
such traits make them ideal candidates for use in brain tumor classification.

Brain tumors are considered the most life-threatening tumors by medical professionals,
as they lie inside the most delicate part of the body, that is, the human brain. Once the
tumor starts to manifest in the brain, it can cause fatalities for the patient. Therefore, the
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early detection of brain tumors is fundamental and critical. Recent studies have shown
that the size of brain tumors doubles after just three and a half weeks [2]. Researchers
and medical scientists believe that if computer-aided intelligent solutions are not explored,
brain tumors can be fatal and life-threatening. To address this issue, there is a need for
machines that can mimic human brain activity so that intelligent solutions can be provided
and tested on such machines.

Brain tumors have a built-in ability to not only affect the localized area of their
existence, but also start to affect the surrounding areas as well as the passage of time. Before
any surgical procedure is performed, the segmentation of healthier tissues from the affected
tissues is one of the trickiest, yet most important procedures. Failure to isolate affected
tissues from healthier tissues can cause severe consequences, potentially including death.

Thus far, many algorithms have been developed for brain segmentation, which can
be categorized as automatic, semi-automatic, and manual. To diagnose tumors effectively,
information regarding their size, shape, and location is required [3]. Brain tumors are
classified as benign or malignant based on their location, progression stage, type, and pace
of growth [4,5]. In benign brain tumors, the affected cells seldom assault healthy cells. They
also develop slowly and have distinct boundaries, similar to meningiomas and pituitary
tumors. In contrast, in malignant brain tumors, damaged cells affect the nearby healthy
cells. These tumors, like gliomas, can progress rapidly and have a wide range of restrictions.
As a result, early detection of cancer types (meningioma, pituitary, and glioma) is critical
for medical care to save patient lives.

The most common medical imaging techniques currently used are single-photon
emission computed tomography (SPECT), magnetic resonance imaging (MRI), magnetic
resonance spectroscopy (MRS), and computed tomography (CT) [6]. MRI, a non-invasive
technique, is considered the most effective technique for medical imaging [7]. MRI provides
a large number of diverse high-contrast 2D images that can be used for brain tumor
segmentation. The high soft-tissue contrast provided by MRI makes it an ideal technique
for the detection of abnormal brain tissues. Advanced studies have presented the use
of different MRI modalities, each providing images with varying tissue contrast, thus
providing more flexibility in image analysis. In addition to presenting highly contrasting
diverse images, MRI also demonstrates the ability to accurately determine the location of
the tumor, a trait that many of its counterparts do not possess. Lesions in fundamental
neuroanatomic structures can also be successfully identified using MRI. However, manual
MRI scan interpretation is time-consuming and rife with errors. An automatic computer-
aided diagnostic (CAD) approach is needed to detect brain damage.

The development of machine learning techniques has improved the effectiveness of
CAD systems in assisting physicians in diagnosing brain cancers [8–11]. To identify brain
tumors, a variety of learning techniques have been proposed in the literature, which can be
further divided into deep and conventional learning techniques [12]. Convolutional neural
networks (CNNs) are typically used in deep learning techniques for the detection of brain
tumors using MRI [13]. Numerous researchers have employed developed and pre-trained
deep learning models to classify cerebral MRI images. One study [14] created a CNN
classifier model that classifies MRI images obtained from the brain into two categories
(i.e., tumor vs. no tumor). The detection of tumor subtypes was the biggest failure of
the model; its fundamental limitation was that it could not classify brain tumors into
subgroups. A CNN model was created to identify different classes of brain tumors (glioma,
meningioma, and pituitary) [15]. However, the model accuracy was only 84.19%. Recently,
Badza and Barjaktarovic [6] classified brain MRI images into three categories using a CNN
classifier model. To improve the categorization accuracy, the investigators also applied data
augmentation. A 10-fold cross-validation strategy resulted in a classification accuracy of
96.56%. However, the literature shows that although data augmentation helps enhance the
classification accuracy, its reliability for real-time applications has not yet been proven. In
another study [16], the authors created a 25-layer CNN model with a 92.66% accuracy rate
to categorize brain MRI images into five categories. To categorize brain MRI images, pre-
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trained available networks (i.e., GoogLeNet and ResNet-50) were also employed [17–19].
However, deep networks require a lengthy training period, a complicated design, large
memory demands, and powerful graphics processing units (GPU), among other drawbacks.

Conventional models, in contrast to deep learning models, require the most funda-
mental aspects of brain MRI scans to identify brain tumors. As a result, they require less
model training time; examples include support vector machines (SVMs), tree, and Naïve
Bayes. In a previous study [20], the author calculated the gray-level co-occurrence matrix
of brain MRI images and divided them into two groups. The accuracy of the model was
high; however, the investigator could only find a tumor in the brain MRI images and
could not identify tumor subclasses. Because brain MRI images are similar, the accuracy of
these global-level features for tumor subtype identification is not very high. Additionally,
global-level features such as texture that are extracted through a gray-level co-occurrence
matrix, histograms of oriented gradients, and local binary patterns, among others, are
quite sensitive to noise, scaling, rotation, and visibility, all of which have an impact on
performance, memory usage, and execution time, among other metrics. Scale-invariant
feature transformation, Fisher vectors, and the bag-of-words model [21] are examples of
local-level features which can aid in identifying brain MRI images [21–23]. In a previous
study [24], the authors used the histogram intensity, the bag-of-words model, and the
gray-level co-occurrence matrix to identify MRI brain images. For the three-class clas-
sification brain MRI dataset, a 91.28% classification accuracy was obtained. In a recent
study [25], the authors used pre-trained CNN models to compute the deep features of brain
MRI image datasets. The findings demonstrated that the hybrid features of the pretrained
model, when used with an SVM classifier, had the highest accuracy (93.72%). However,
because of the length of the feature vector, training took a long time. In a study by Almalki
et al. [26], speed-up robust features (SURF) and KAZE features were combined to create a
hybrid training feature vector that was used to categorize brain MRI images. The findings
demonstrated that the proposed model has a high computational cost and an accuracy
of 95.33%. Consequently, considering the drawbacks of deep learning and conventional
learning techniques in terms of architectural complexity, memory and data processing
requirements, lengthy computation time, scalability, rotation, noise, and visibility, further
research is needed to detect and differentiate brain tumors.

In this study, the SVM model is trained using features extracted from brain MRI images
within the Gaussian scale space using speed-up robust features (SURF) and non-linear scale-
space using KAZE. A grid size of 8 × 8 pixels is used to retrieve local-level information
from brain MRI images. To improve the classification performance and decrease the
computational time and memory requirements, redundant Gaussian (SURF) and non-linear
(KAZE) features are removed using the k-clustering and PSO-ReliefF algorithms. Finally,
the proposed technique is validated using an internet-accessible dataset. To validate the
proposed technique, conventional classifiers are trained using an online dataset that is
readily available. Finally, a comparison between the findings of this study and other
established models is performed.

The remainder of this paper is structured as follows. Section 2 includes details about
the dataset used in this study. The feature extraction and framework of the proposed
technique are explained in Section 3. Finally, Sections 4–6 present, discuss, and summarize
the findings.

2. Brain Experimental MRI Dataset

This study uses an online database of brain MRI images to validate the proposed
framework. The dataset for this study was collected from the Kaggle website [27]. It has
one no-tumor class and three tumor subclasses: glioma, pituitary, and meningioma. It
contains 2870 brain MRI images. Table 1 contains further information about the dataset.
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Table 1. Details about brain MRI dataset available on Kaggle website [27].

Category Brain MRI
Images No. of Brain MRI Images

No-tumor
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3. Materials and Methods
3.1. Extraction of Features

A prominent topic in computer-aided image processing is feature extraction and de-
scription. In the case of various image variations, it is vital to calculate the repeatable and
distinctive properties of the image for high-accuracy image classification applications. Brain
tumor classification is likewise mostly based on the extraction of relevant and associated
information from brain MRI images. As a result, various features from the local [22,23] and
the global levels [20] are utilized to categorize brain MRI images. By contrast, in a multi-
class framework, global-level features have accuracy difficulties, as mentioned in Section 1.
Therefore, several local-level features, including KAZE [28], scale-invariant feature trans-
form (SIFT) [29,30], and speeded-up robust feature (SURF) [31], calculate distinguishing
features at diverse and relevant discrete points. These distinguishing characteristics are
mostly related to the local mean/minima/maxima of the calculated features. The intensity
of these points of interest can be described using a descriptor vector. The SIFT descriptor
feature vector was first introduced by Lowe in 1999 [29,30]. Because of its invariance to
rotation characteristics, translation invariance, resilience to noise, and scale invariance,
it has attracted considerable attention. SIFT feature extraction is not recommended for
real-time applications because of its high computational cost [32].
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3.1.1. KAZE

Nonlinear diffusion and the additive operator splitting method are both used in the
ground-breaking 2D feature extraction and description technique known as KAZE [28].
Consequently, image blurring may be precisely adjusted to feature locations, which reduces
noise without changing the borders of the image region. The Hessian Matrix Determi-
nant is used to compute the KAZE at various scale levels using a normalized scale. The
mean/minima/maxima of the signal intensity are identified as feature points using a
moving window. By identifying the dominant orientation in a circular area around each
identified feature, the rotational invariance trait can be integrated into the feature descrip-
tion. With a negligible increase in processing cost, it possesses the characteristics of rotation
and scale invariance, low invariance to affine, and greater distinctness at various scales.

The nonlinear diffusion equation can be written as.

∂L
∂t

= div(c(m, n, t).∇L) (1)

where
c = conductivity function
div = divergence
∇ = gradient operator
L = image luminance

3.1.2. Speeded Up Robust Feature (SURF)

The SURF technique was developed by Bay et al. [31] in order to address the robustness
problems of the SIFT approach. Identical to the SIFT technique, the SURF technique
relies on Gaussian scale-space image processing; unlike the SIFT detector, however, the
SURF technique relies on the Hessian Matrix determinant. Integrated images are used to
accelerate local feature extraction. Every identified feature is described by SURF’s 64-bin
descriptor, utilizing the dispersal of Haar wavelet responses in a particular region. The
SURF features exhibit minimal affine invariance in contrast to SIFT; however, the descriptor
can be extended to 128-bin values to handle more significant perspective alterations. At
point “m = (m, n)” at scale “σ”, the Hessian Matrix can be created as,

H(m, σ) =

[
Lmm(m, σ) Lmn(m, σ)
Lmn(m, σ) Lnn(m, σ)

]
(2)

where Lmm(m, σ) = Gaussian second order derivate convolution ∂2

∂x2 g(σ) with the image I
at a point m.

3.2. Feature Vector Dimension Reduction Using ReliefF

The quality and quantity of the features are the factors that matter the most in all
machine-learning-based categorization techniques. A few irrelevant features offer only
scant information, resulting in low accuracy. Under these circumstances, it is difficult for
learning techniques to be correctly executed. Therefore, to improve the performance of the
classification model, a small selection of important features must be extracted and used to
characterize the targeted classes.

To address this issue, Kira and Rendell [33] developed a method that employs instance-
based learning to choose the most pertinent feature of the entity for binary classification
tasks. Kononenko [34] introduced ReliefF, an extension of the Relief method for multiclass
tasks. The algorithm performs satisfactorily in a disturbed environment. Algorithm 1
shows the working framework of the ReliefF method.
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Algorithm 1 Working framework of ReliefF [35,36].

Input: for each training instance a vector of attribute values and the class value.
Output: the vector W of estimations of the qualities of attributes.
1. set all weights W [A] := 0.0;
2. for i := 1 to n do begin
3. randomly select an instance Ri;
4. find k nearest hits Hj;
5. for each class C 6= class (Ri) do
6. from class C find k nearest misses Mj(C);
7. for A := 1 to a do

8. W[A] := W[A]−
l

∑
j=1

di f f (A, Ri, Hj)/(n · k) +
l

∑
C 6=class(Ri)

[ P(C)
1−P(class(Ri))

]
l

∑
j=1

di f f (A, Ri, Mj(C))/(n · k)

9. end;

First, initialize instance (Ri) randomly. Next, for each class (nearest hits (Hj)) and all
other remaining classes (known as nearest misses Mj(C)), it will look for k to its nearest
neighbor. Finally, it revises the equations shown in points 7, 8, and 9 in Algorithm 1;
additional information on the ReliefF method can be found in [35,36]. Weight adjustment
is substantially influenced by the value of k. Similarly, the feature quantity (the number
of features for the training vector) also has a significant influence on model accuracy.
Therefore, particle swarm optimization (PSO) is used in this study to determine the ideal
value of k and the feature vector size.

3.3. Particle Swarm Optimization

Particle swarm optimization is a population-based optimization technique that draws
inspiration from the teamwork of fish schools and bird flocks [37,38]. The PSO calculates the
ideal solution by increasing or decreasing the problem. In this method, information is dis-
seminated among groups while they look for nearby goal. Despite not knowing the precise
location of the meal, they all arrived at the same spot because of information sharing.

According to the boundaries of the feature vector, the population (the feature vector
size and the value of k) is randomly initialized in the PSO for the ReliefF-based tech-
nique. The population and its associated velocities are initialized in this study by selecting
10 combinations. The cost function is then calculated for the individual particles using
Equation (3) to obtain the fitness value for the cost function.

min (F) =
Total no. of actual images − Total no. of true classfied images

Total no. of actual images
(3)

Calculate each particle’s best location (Pbest) based on the fitness value of each particle,
and then update it repeatedly. Then, compare all the values of (Pbest) for each particle,
which are likewise updated repeatedly, to determine the global best position (Gbest). Based
on Pbest and Gbest, the velocity of each particle can be calculated as follows:

vt
ij = ωvt−1

ij + c1rt−1
1j

[
Pbest − xt−1

ij

]
+ c2rt−1

2j

[
Gbest − xt−1

ij

]
(4)

where
vij = velocity of each partilce
xij = poisition of each partilce
c1 = cognitive parameter
c2 = social parameter
ω = initial weight
r1 = random variable
r2 = random variable
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The following equation can be used to update each particle’s location after determining
their separate velocities.

xt
ij = xt−1

ij + vt
ij (5)

The above procedure will continue until either the algorithm meets the maximum
iteration requirement, or all the particles converge to a single value. Figure 1 shows the
PSO’s complete flowchart. For more information about PSO, see [39,40].
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3.4. Support Vector Machine (SVM)

The SVM model was first presented by Cortes and Vapnik [41] in 1995, and it is
now a highly popular and efficient classifier utilized in many domains [42–44]. The non-
linear input data space (i.e., low dimensional) is converted into a linear high-dimensional
data space using the SVM method using kernel functions K(x, xa). Equation (6) provides
the function of the hyperplane that was used to split the transmitted data into a high-
dimensional linear data space.

y(x) =
n

∑
a=1

βaK(x, xa) + b1 (6)

The data can be classified using a variety of kernel functions, including the linear,
sigmoid, and RBF kernels. For more information about SVM, refer to [41,43].

3.5. Proposed Framework

The architecture of the proposed methodology is discussed in detail in this section.
As illustrated in Figure 2, the proposed method comprises five key parts: collection
of brain MRI images, preprocessing, feature extraction, optimal feature selection, and
model training.
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Figure 2. A proposed framework to categorize brain MRI images.

Brain MRI equipment is used to acquire brain images in the first stage. The collected
brain MRI images are then converted from RGB to grayscale using a pre-processing software.
The feature extraction selection spot of the MRI images of the brain is then established as
an 8 × 8 pixel grid. The computational complexity and input vector size vary with pixel
size. Additionally, the KAZE and SURF features are extracted using the four-dimensional
vectors (16, 32, 48, 64) and (17, 34, 51, 68), respectively, according to the literature [26];
KAZE and SURF extraction are discussed in Section 3.1. The feature vector size is then
decreased by 20% by removing unnecessary features. The k-means clustering technique is
used for feature segmentation owing to its simplicity and resilience. Additionally, it can
maintain observations within each cluster as far apart as possible from objects in other
clusters. As a result, the k-means clustering method is employed to obtain 400-feature
histograms for both KAZE and SURF individually. For more information on the k-means
clustering method, refer to [45,46]. Subsequently, the best features and vector size are
computed using the PSO-ReliefF method, as explained in Sections 3.2 and 3.3, to improve
classification performance.

The models are then trained using several machine learning classifiers, such as SVM,
tree [47], Naïve Bayes [48], k-nearest neighbors (K-NN) [49], ensemble, and neural network
(NN). The findings of the proposed method are presented in the next section.

4. Results

MATLAB 2021 is used in this study to train the classifier models on a computer
running the 64-bit Windows 11 operating system having technical specifications of an Intel
Core i7 11th generation processor, 32 GB RAM, NVIDIA GeForce GTX 1060 GPU, and 1 TB
SSD storage. Only 80% of the images from each category are used for model training; the
remaining 20% of the images are used to check the performance of the trained models.
The classification accuracy is employed as a statistic for comparing the various trained
models. Figure 3 depicts the outcomes of the KAZE- and SURF-trained models without
PSO-ReliefF.
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Figure 3 demonstrates that the SURF and KAZE feature-trained SVM have the highest
accuracy among all models, with 93.4 and 93.7% accuracy, respectively. Further details
regarding these results are provided in [26]. For the SURF- and KAZE-based SVM classifiers,
the PSO-ReliefF algorithm is used to improve the model performance while reducing the
feature vector size. Figure 4 illustrates the PSO-ReliefF convergence curves for both SVM
models (SURF and KAZE).
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After closely examining the convergence curves, it is clear that the fitness function
has a high value at the beginning of the PSO algorithm. As the number of iterations of
the algorithm increases, the value of the cost function began to decrease. As described
in Section 3.3, as the algorithm begins to tune its parameters, all the particles begin to
converge towards the global optimum value. Finally, for the SURF-based SVM model, the
approach converges to a fitness value of 0.053, for k of 9 and a feature vector size of 107.
Similarly, with k = 13 and a feature vector size of 62, the KAZE-based SVM model converges
to a fitness value of 0.0498. The models are further evaluated using true positive rate (TPR),
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false negative rate (FNR), positive predictive value (PPV), and false discovery rate (FDR).
The equations for computing the TPR, FNR, PPV, and FDR are provided in Equation (7).

TPR =
True positive

No. of real positive

FNR =
False negative

No. of real positive

PPV =
True positive

True positive + False positive

FDR =
False positive

True positive + False positive


(7)

Tables 2 and 3 show the detailed results of the PSO-ReliefF-trained SVM model for
SURF and KAZE features.

Table 2. Performance of PSO-ReliefF SURF-trained SVM model.

Class

Classified as
TPR
(%)

FNR
(%)

PPV
(%)

FDR
(%)

Accuracy
(%)

Glioma
Tumor

Meningioma
Tumor

No-
Tumor

Pituitary
Tumor

Glioma Tumor 779 47 0 0 94.31 5.69 97.13 2.87

94.70
Meningioma Tumor 22 744 35 21 90.51 9.49 91.63 8.37

No-tumor 1 18 374 2 94.68 5.32 90.78 9.22

Pituitary Tumor 0 3 3 821 99.27 0.73 97.27 2.73

Table 3. Performance of PSO-ReliefF KAZE-trained SVM model.

Class

Classified as
TPR
(%)

FNR
(%)

PPV
(%)

FDR
(%)

Accuracy
(%)

Glioma
Tumor

Meningioma
Tumor

No-
Tumor

Pituitary
Tumor

Glioma Tumor 788 34 0 4 95.40 4.60 96.81 3.19

95.02
Meningioma Tumor 18 766 25 13 93.19 6.81 91.96 8.04

No-tumor 8 24 357 6 90.38 9.62 92.97 7.03

Pituitary Tumor 0 9 2 816 98.67 1.33 97.26 2.74

After the PSO-ReliefF SURF and KAZE-trained SVM models achieve 94.70% and
95.02% accuracy, respectively, it may be considered advantageous to merge both features to
construct a hybrid model to classify brain MRI images. Table 4 presents the results for the
hybrid model.

Table 4. Performance of PSO-ReliefF SURF+KAZE trained SVM model.

Class

Classified as
TPR
(%)

FNR
(%)

PPV
(%)

FDR
(%)

Accuracy
(%)

Glioma
Tumor

Meningioma
Tumor

No-
Tumor

Pituitary
Tumor

Glioma Tumor 792 33 0 1 95.88 4.12 98.02 1.98

96.30
Meningioma Tumor 14 775 20 13 94.28 5.72 93.94 6.06

No-tumor 2 15 375 3 94.94 5.06 94.22 5.78

Pituitary Tumor 0 2 3 822 99.40 0.60 97.97 2.03

The accuracy of the SVM trained using concatenation features is 96.30%, which is
almost 3% and 1.28% better than that of the SVM trained with only SURF and only PSO-
ReliefF SURF features, respectively (see Figure 3 and Tables 2 and 4). As a result, the
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presented PSO-ReliefF SURF + KAZE developed SVM model has a TPR of 95.88% for
glioma and 99.40% for pituitary tumors (see Table 4). Furthermore, compared to the
PSO-ReliefF KAZE developed model, the proposed approach properly identifies 18 more
no-tumor class MRI brain images (see Tables 3 and 4). Compared to the PSO-ReliefF SURF
developed model, 31 more brain MRI images are properly categorized as belonging to the
meningioma tumor class. The computational complexity, feature vector size, and accuracy
comparison of the SURF, KAZE, PSO-ReliefF SURF, PSO-ReliefF KAZE, and PSO-ReliefF
SURF + KAZE (proposed approach) feature-trained SVM models are shown in Figure 5.
The SVM-trained SURF and KAZE models use 400 features each. The SURF-trained SVM
model requires almost 1 min 30 s to achieve an accuracy of only 93.40%, whereas KAZE
requires 1 min and 8 s to yield an accuracy of 93.7%. In comparison, the computational
time is reduced to almost 22 s and 14 s for the PSO-based ReliefF SURF and PSO-based
ReliefF KAZE models, respectively. The hybrid (proposed) model requires approximately
47 s with 169 features and shows the highest classification accuracy of 96.3%.
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The findings of the presented scheme are also in contrast to those obtained using the
cutting-edge techniques described in the literature. Table 5 compares the proposed tumor
diagnostic model with the previously used methods based on their accuracy.

Table 5. Performance comparison of the proposed model with literature.

Study Methodology Accuracy (%)

Afshar et al. [50] CNN 90.89

Cheng et al. [24] Intensity histogram, gray level
co-occurrence Matrix, and bag-of-words 91.28

Irmak. [16] Deep learning model 92.66
Kang et al. [25] Deep features 93.72

Almalki et al. [26] SURF and KAZE 95.33
Alanazi et al. [19] Pre-trained deep learning model 95.75
Rehman et al. [51] Pre-trained deep learning model 95.86
Proposed Model PSO-ReliefF SURF + KAZE 96.30

5. Discussion

A computer-based method known as CAD helps doctors make snap decisions in the
area of medical imaging. Various researchers have reported training techniques to classify
brain MRI images [6,16,22,25,51].

In this study, a brain tumor classification SVM model developed with PSO-ReliefF
SURF + KAZE features were proposed using brain MRI images. The SURF and KAZE
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features were first extracted from the collected brain MRI data using an 8 × 8 pixel uniform
grid, as explained in Sections 3.1.1 and 3.1.2. The whole-brain MRI dataset of various classes
was therefore retrieved, yielding 16,577,120 features. In addition, the feature vector size of
the complete dataset was decreased to 7300,864 by computing 80% of the strongest features
using the computer vision toolbox of MATLAB. Then, for each image, k-means clustering
was used to separately generate a 400-feature vector for SURF and KAZE. Subsequently,
the PSO-ReliefF algorithm was implemented to disregard the redundant SURF and KAZE
features. As depicted in Figure 4, PSO-ReliefF converges to a fitness value of 0.053, with
k = 9 and the size of the feature vector = 107 for the SURF feature; similarly, the KAZE
feature has a vector size of 62, with k = 13 for a fitness value of 0.0498. Finally, the SVM
model was trained using the optimal features of both descriptors (SURF + KAZE), which
demonstrates that the proposed model has the highest accuracy of 96.30% while having
an acceptable calculation time of only 0.7856 s and a vector size of only 169 values (see
Figure 5). As depicted in Figure 5, the authors also perform a comparative analysis of
SURF-, KAZE-, PSO-ReliefF SURF-, PSO-ReliefF KAZE-, and PSO-ReliefF SURF + KAZE
(proposed approach)-trained SVM models. The proposed approach improves accuracy by
1%, reduces computation time by 1 min 1 s, and reduces feature vector size by 631, when
compared to the standard SURF + KAZE-trained SVM model [26]. The developed model
also shows better results than previously published works [16,19,24–26,50,51] (see Table 5).

The improvement in complexity and computation time enables the proposed scheme
to be easily implemented on a low-cost portable embedded platform. Once the images
are obtained from imaging, modality can be directly fed to the embedded platform for
real-time classification of brain tumors. As a result, the presented method could be helpful
in aiding clinicians and doctors in the early diagnosis of brain tumors.

6. Conclusions

This study used brain MRI images to provide an automated brain tumor diagnosis
method. The SURF and KAZE features were first computed at an 8 × 8 pixel grid in brain
MRI images. Subsequently, segmentation using k-means clustering was performed to
collect 80% of the strongest features. Then, PSO-ReliefF was used to minimize the feature
vector size and improve the model performance. An increase of almost 1.3% was noted in
the performance of the SURF and KAZE models using PSO-ReliefF with an almost 2.5 times
smaller training vector size. Furthermore, the features of both descriptors (SURF + KAZE)
were merged to form a new training vector, yielding a brain MRI image classification
accuracy of 96.30%. The proposed technique outperformed the findings reported in extant
literature owing to its high accuracy and shorter calculation time. As a result, the proposed
method can be utilized to automatically detect brain tumors.
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