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Abstract: Epilepsy is a common neurological condition. The effects of epilepsy are not restricted
to seizures alone. They comprise a wide spectrum of problems that might impair and reduce
quality of life. Even with medication, 30% of epilepsy patients still have recurring seizures. An
epileptic seizure is caused by significant neuronal electrical activity, which affects brain activity.
EEG shows these changes as high-amplitude spiky and sluggish waves. Recognizing seizures on
an electroencephalogram (EEG) manually by a professional neurologist is a time-consuming and
labor-intensive process, hence an efficient automated approach is necessary for the identification
of epileptic seizure. One technique to increase the speed and accuracy with which a diagnosis of
epileptic seizures could be made is by utilizing computer-aided diagnosis systems that are built on
deep neural networks, or DNN. This study introduces a fusion of recurrent neural networks (RNNs)
and bi-directional long short-term memories (BiLSTMs) for automatic epileptic seizure identification
via EEG signal processing in order to tackle the aforementioned informational challenges. An
electroencephalogram’s (EEG) raw data were first normalized after undergoing pre-processing. A
RNN model was fed the normalized EEG sequence data and trained to accurately extract features from
the data. Afterwards, the features were passed to the BiLSTM layers for processing so that further
temporal information could be retrieved. In addition, the proposed RNN-BiLSTM model was tested
in an experimental setting using the freely accessible UCI epileptic seizure dataset. Experimental
findings of the suggested model have achieved avg values of 98.90%, 98.50%, 98. 20%, and 98.60%,
respectively, for accuracy, sensitivity, precision, and specificity. To further verify the new model’s
efficacy, it is compared to other models, such as the RNN-LSTM and the RNN-GRU learning models,
and is shown to have improved the same metrics by 1.8%, 1.69%, 1.95%, and 2.2% on using 5-fold.
Additionally, the proposed method was compared to state-of-the-art approaches and proved to be a
more accurate categorization of such techniques.

Keywords: recurrent neural network; bi-directional long short-term memory; electroencephalographic;
epileptic seizure; deep learning; machine learning
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1. Introduction

One of the most frequent long-lasting neurological disorders is epilepsy. The impacts
of epilepsy are far-reaching; they are not limited to the physical manifestations of seizures
alone. Rather, they encompass a wide range of difficulties that can lead to impairment
and a drastically diminished quality of life [1]. Having epilepsy can have a negative
impact on your emotional, mental, and physical well-being. People with epilepsy, and
especially those with refractory epilepsy (i.e., seizures that are not well-controlled with
seizure medications), face a number of challenges, including a lack of social support and
family function, difficulties with cognition, medical, and psychiatric co-occurring disorders,
and stigma [2,3]. Epilepsy is a neurological disorder disease that affects over 50 million
individuals all over the world [4], and unfortunately, the therapies that are now available,
such as anticonvulsants and surgery, can have significant negative consequences on the
patients who undergo them. These sudden discharges momentarily interrupt both the
patient’s behavior and their ability to function normally. Epilepsy cannot be brought
under complete control with the therapies, drugs, or surgical procedures that are now
available [5–7].

Seizures can strike without warning, and epilepsy can have a significant impact on a
person’s social and psychological life; as a result, the condition is regarded as potentially
fatal [8]. Therefore, epileptic seizure prediction significantly contributes to an increase in
the quality of life of seizure patients through a number of different aspects. These aspects
include the generation of an alarm to offer the appropriate action prior to the occurrence of
a seizure, the introduction of new treatment approaches, and the developing of new strate-
gies for understanding the nature of the disease [9,10]. In general, conventional therapy for
epileptic seizures frequently results in a variety of unwanted side effects, which makes it
exceptionally challenging to maintain seizure control in patients [11,12]. According to esti-
mates provided by the World Health Organization (WHO), approximately fifty thousand
people have epilepsy in the world [13]. In addition, it is said that 70% of all occurrences of
epilepsy-related seizures occur in poor nations, which means that the drugs and treatment
facilities necessary for accurately diagnosing epilepsy are not always available.

Due to the fact that epilepsy is a disorder associated with the electrical activity of the
brain, the electroencephalogram, or EEG, signal is typically employed for its diagnosis.
The interpretation of EEG signals can be used to improve more advanced forms of human
interaction [11,13,14]. EEG recordings are now done digitally so that they may be seen on a
computer display device. This also makes it possible for the recordings to be automatically
evaluated. The use of standardized terminology for seizure categorization also makes it
simpler for clinicians who care for people who have epilepsy and who conduct research on
epilepsy to communicate with one another. Since the regular functioning of many brain
cells is disrupted during an epileptic seizure, the electroencephalogram can be used to
detect the onset of a seizure (EEG). Because effective seizure management is contingent on
making an accurate diagnosis, it is critical to determine whether or not a patient suffers
from epilepsy, as well as the specific type of disorder they have. The categorization of
seizures into their various subtypes is helpful for guiding subsequent testing, treatment,
and assessment of prognosis or outlook. During an EEG recording, the most difficult part
is trying to locate the ictal spikes and seizures. In order to detect epileptic activity, it is
necessary for a specialist to perform an in-depth analysis of the entire duration of the EEG
recordings [15], which can be a time-consuming process. Both the sheer volume of long-
term EEG recordings and their growing prevalence in clinical practice have contributed to
a reduction in the likelihood that a specialist will incorrectly interpret the data or fail to
arrive at the correct detection.

Different researchers have created a DL model to effectively detect epileptic from
EEG signals so as to address the problem described in the previous paragraph. Various
machine learning and deep learning (ML/DL) models have been used in previous pub-
lications [2,16] to help discover important and distinguishable features associated with
biomedical imaging and signal for use in the binary classification task [2,16–25]. Deep learn-



Life 2022, 12, 1946 3 of 18

ing has been responsible for a significant amount of the success that has been seen in the
automated feature extraction and categorization of EEG epileptic seizures [6,10,15,17–26].
Despite this, there is still space for development in this area. According to the existing
studies, the proper detection of epileptic seizures using EEG signal analysis utilizing hybrid
deep learning models is always appropriate, proving the efficacy and efficiency of the
technique [2,15,17,19]. This is the case irrespective of the condition of the literature. As a
consequence of this, the objective of the hybrid deep learning model that is proposed in
this paper is to improve the performance of previously developed EEG seizure classifiers.
The following is a list of the most important findings from the study:

• A hybrid of recurrent neural networks (RNNs) and bi-directional long short-term
memories (BiLSTM) is proposed for the purpose of automatically identifying epileptic
seizures through the processing of EEG signals.

• The efficacy of the newly developed model is validated by conducting a complete
comparison to the existing state-of-the-art learning models.

• The recommended method provides a number of advantages, including shorter pe-
riods of time needed for detection, a reduced proportion of false positive results,
increased sensitivity, and increased specificity.

The paper is being organized as follows: The state-of-the-art of seizure detection is
outlined in Section 2. In Section 3, we discuss the data and our hybrid RNN-BiLSTM model.
In Section 4, the findings of the experiments are presented, along with a discussion of the
study’s conclusions and directions for further research.

2. Literature Review

In the last decade, numerous methods for feature extraction and classification ap-
proaches have been developed in order to improve the overall performance of the con-
structed classifier and expand its capacity for seizure detection. Both the continuous
wavelet transform (CWT) and the discrete wavelet transform (DWT) are examples of tra-
ditional machine learning techniques used to extract features for the goal of building a
classifier for the identification of epileptic seizures [27–30]. The adequacy of the detection
of seizures has been strengthened by the help of DL-based techniques [6,10,15,17–26]. The
introduced algorithms aim at boosting diagnostic standards and automating identifying
essential features. To better categorize epileptic seizures, Choi et al. [21] presented a hybrid
model that combines one-dimensional convolutional networks (1D CNN), gated recurrent
unit networks (GRU). The introduced model has an overall accuracy of 82.86 percent, along
with a sensitivity of 80% and a precision of 85 percent. A gated recurrent network, also
known as GRN, was described by Affes et al. [31] as a method for predicting epileptic
seizures using features collected from EEG data. These features reflect the temporal aspect
and the frequency aspect of the signal, respectively. Using data that were collected in the
Children’s Hospital of Boston, GRN was able to predict epileptic seizures with an accuracy
of 75.6% and a mean sensitivity of 89%. A DL-based framework has been presented by
Raghu et al. [32] for the categorization of seven kinds of seizures alongside non-seizure
EEG. This was accomplished by the utilization of convolutional neural networks and trans-
fer learning. The model was trained and evaluated using the EEG signals collected from
Temple University Hospital. The approaches of transfer learning and feature extraction,
taken separately, led to the greatest possible classification accuracy of 88.30% when using
Inceptionv3 pretrained DNN. The Deep Clinical Sparse Autoencoder, also known as the
DCSAE, was applied by Hilal [6] and colleagues in order to classify epileptic seizures based
on EEG signals collected from the benchmarking UCI-Epileptic dataset. In order to extract
the important features, the coyote optimization technique has been implemented; after that,
the selected features are input into the DCSAE model. They have achieved a specificity of
99.2%, sensitivity of 99.19%, and accuracy of 98.67%. The dataset, UCI-Epileptic, has been
addressed by Mursalin et al. [33]. They presented an innovative method for identifying
the important elements from a benchmarking EEG data taken from the University of Bonn.
The collected features have been put through a number of different traditional classifiers,
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such as the SVM, Random Forest (RF), and the k-nearest neighbor (KNN). By utilizing an
RF classifier, they were able to attain a success rate of 98.7%. A multi-view convolutional
neural network, or CNN, framework was presented by Liu et al. [10] for the purpose of
predicting the occurrence of epilepsy seizures. The researchers’ objective was to acquire
significant features in the time/frequency domain. They were able to get an average area
under the curve of 0.82 and 0.89 on two participants of the CHB-MIT dataset. In order
to improve the effectiveness of traditional machine learning approaches (such as Support
Vector Machines and Neural Networks) in EEG classification, Nagabushanam et al. [23]
developed a method that combines the long short-term memory (LSTM) with the neural
network (NN). The level of accuracy that was reached was 71.38%. The independently
recurrent neural network, a new deep learning model, was recently developed by Yao
et al. [34] to build a convenient method for the seizure/non-seizure classification. The
suggested method may extract temporal and spatial information from the short-term to
long-term range of the complete record. Cross-subject experiments were used to eval-
uate the CHB-MIT data, which is notoriously noisy. They accomplished 87% accuracy,
87.3% sensitivity, and 86.7% specificity.

A hybrid RNN and LSTM was proposed by Najafi et al. for the purpose of diagnosing
epilepsy in [2]. After the RNN was deployed for the feature selection process, the long
short-term memory was put to use for the epilepsy classification stage. At the outset, both
normal and epileptic LB channels were broken down into three levels, and 15 distinct
characteristics were gleaned from each level. The LSTM was then given the selected
features to use in its classification process after they had been retrieved from each signal
segment individually. The investigation’s findings showed that the proposed algorithm
was successful in differentiating normal participants from epileptic subjects with a rate of
96.1% accuracy, 96.8% sensitivity, and 97.4% specificity. Because of the excellence of the
RNN-LSTM technique in extracting significant spatial and temporal features from EEG
signals, as well as its superior accuracy and sensitivity in epilepsy classification, we were
motivated to investigate other similar fusion models based on recurrent neural networks
and the bidirectional LSTM. This was made possible by the fact that the RNN-LSTM
technique is effective in extracting significant spatial and temporal features from EEG
signals. Bidirectional long short-term memory, or BiLSTM for short, is a type of recurrent
neural network that is most commonly utilized in natural language processing. In contrast
to a conventional LSTM, the input travels in both directions, and the system is able to make
use of information from both sides. In addition to this, it is an effective method for modeling
the sequential dependencies that exist between words and phrases in both the forward
and backward directions of the sequence. As a consequence of this, an RNN-BiLSTM
model was presented in this paper for the automated extraction of attributes from EEG
data. The purpose of this model is to improve the classification’ accuracies, and sensitivities
of these signals. In addition, the combination of bidirectional LSTM and RNNs model
has demonstrated superior performance in the classification/forecasting tasks of other
non-medical applications [35,36]. Because of this, it has been implemented and evaluated
with the intention of improving the existing performance of the state-of-the-art regarding
the classification of elliptic seizures.

3. Materials and Methods

Important procedures for applying the suggested model (RNN-BiLSTM) to detect
epileptic episodes are outlined below. The process of seizure detection normally consists of
two phases. It begins with gathering and cleaning data, then moves on to the suggested
model’s automatic feature extraction and selection. This study’s primary structure is shown
in Figure 1. The proposed framework’s primary components are the following steps: EEG
signal preprocessing; model training; model testing; and model evaluation.
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3.1. Data Collection and Preprocessing

This study was conducted using EEG data collected at the University of Bonn as a
benchmarking dataset [37] and is split into five different directories and a hundred files
per folder, each of which represents a particular sample or person. Each file stores the
mental activity of the subject for 23 min, and 6 s. 4097 discrete data points representing the
appropriate time series have been gathered. Each data point illustrates a different sampling
rate of the electroencephalogram (EEG). Therefore, there are 500 individuals, and for each
individual there are 4097 data points spanning 23.5 s. Data from each of the 4097 samples
were broken up into 23 sets, each of which is 1 s long and contains 178 individual data
points. Therefore, we have 11,500 rows of data (rows), each of which has 178 points of
data of 1, and the last column is labeled y. Since each data point reflects the value of
an EEG recording at a particular point in time, the chunks were randomly shuffled after
division (1,2,3,4,5). In column 179, the variable representing the outcome is indicated by
the letter y, while the variables representing the predictors are shown by the letters X1, X2,
etc. . . . X178. The value that is recorded in the variable y represents the subcategory of the
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178-dimensional input signal. More specifically, y values that are within the range [1, 2, 3, 4,
5]. In column 179, the outcome variable is represented by the letter y, and the predictors are
indicated by the letters X1, X2, . . . X178, as shown in Figure 2. The y variable stores the
178th dimension of the input signal’s granularity. In this case, y is within the interval [1, 2,
3, 4, 5]. Having the patient’s eyes open during the EEG recording time indicates a value of
y = 5. This means the patient was awake. The patient’s eyes were closed during the EEG
recording if y = 4, indicating the patient was feeling sleepy. In addition, if y = 3, it means
that the tumor has invaded the EEG-normal region of the brain. Moreover, if y = 2, then the
EEG was taken from the area where the tumor was located. Moreover, if y equals 1, then
seizure-related activity will be recorded. In this research, we used a binary classification
approach to the identification of epileptic seizures, where a label of 0 indicates the of an
epileptic seizure and labels of 1, while 2, 3, 4, and 5 indicate the absence of an epileptic
one. In this experiment we used binary classification epileptic seizure versus non-epileptic
seizure detection, so the class label from 2 to 5 was assigned 0, which represents the normal
condition of EEG epileptic seizure detection, while 1 represents the patients have epileptic
seizures, as shown in Table 1.
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Table 1. Explanation of the UCI-epileptic seizure dataset.

Class Description No. of Samples Class Labels Binary Classification Samples

seizure 2300 1 2300

First normal (Before seizure the signal of the patient)- 2300 0 9200

Second normal (Healthy brain EEG recorded data)- 2300 - -

Third normal—Eyes closed have no seizure 2300 - -

Fourth normal—Eyes opened have no-seizure 2300 - -

3.2. The Proposed RNN-BiLSTM Learning Model

Recurrent neural networks (RNNs) are a type of artificial neural network in which
the effects of some nodes’ output on other nodes’ subsequent input can be cycled through.
Because of this, it is able to display temporal dynamics in its behavior. Recurrent neu-
ral networks (RNNs), which are a descendant of feedforward NNs, have the ability to
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memories internal states to process sequences of inputs of varying lengths [38–41]. In an
RNN, all of the input vector components share nearly identical weights, as opposed to the
feedforward NNs where each component has its own weight. In most cases, recurrent net-
works outperform traditional methods because they combine the weights of multiple input
vector positions into a single vector. Sequences of varying lengths can be processed by the
same model by simply reusing the weights. This reduces the number of network-learning
parameters (weights), which is an additional benefit. Furthermore, the outputs passed
on to the next phase were both calculated using the input vector and several data from
the preceding step (usually another vector). Units are shorthand for the formulas used to
derive the intermediate results (blocks). Therefore, for the most basic form of a recurrent
network, the relation that follows, Equations (1) and (2), can be used to define a block:

o〈t〉 = f1(Wooo〈t−1〉 + Woxx〈t〉 + bo) (1)

ŷ〈t〉 = f2(Wyoo〈t〉 + by) (2)

where x〈t〉 is an input sequence vector, and t denotes the iteration at which recurrent
relations are computed. The f1, f2 represent the activation functions. The weight matrices
and biases are denoted by the symbols Woo, Wox, Wyo, bo, and by, respectively.

In the realm of artificial intelligence, LSTM [24,41–44] is a subset of recurrent neural
networks. The disappearing of gradients problem is addressed by the introduction of this
architecture. Further, this network type is superior at keeping long-range connections alive
by understanding how values at the beginning and end of a sequence are related. In the
LSTM model, these expressions take the form of gates. There are three distinct varieties of
gates: The forget gate regulates how much data are sent from one memory cell to another.
The memory cell’s update-gate (or update input) is the gate responsible for determining
if the cell will be updated. Additionally, it regulates the amount of data that a possible
new memory cell can send to the current memory cell. The next hidden state’s value is
determined by the output gate.

In this study, we introduce the fusion of the RNN and BiLSTM for binary class epilepsy
identification. The network consisted of five layers: a sequence input layer, an RNN layer
with 100 hidden units, a bidirectional LSTM layer with 200 hidden units, an FC layer, a
SoftMax layer, and a classification output layer. The user-specified values for the deep
learning layers are shown in Table 2, along with brief descriptions of their function.

Table 2. Layers in the proposed hybrid RNN-BiLSTM model.

Layers Other Parameters Value

RNN layer

Batch size = 100
Epochs = 100

Learning rate = 0.01
ADAM

Hidden 100 Units

BiLSTM Hidden 200 Units

FC layer 2 FC layers-

SoftMax Cross entropy

Classification Layer

The RNN module is based on the schematic depicted in Figure 3. A specific type of
RNN structure, the binary long short-term memory (LSTM) network, has been shown to be
reliable and effective for simulating a sequence that may be used for various purposes and
has lengthy dependencies in research that include time [45].
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Figure 3. RNN schematic.

After the RNN module, a BiLSTM layer was used. Since the collected EEG signals
are arranged in a time-sequence based fashion, the present state is strongly influenced by
the past environments. To address this problem, the BiLSTM model is the most efficient
tool at one’s disposal. Several self-parameterized regulating gates in the BiLSTM module’s
memory cell allow for the reading, writing, and clearing of state information, as shown in
Figure 4. If that door were to be opened, the cell’s entire informational capability would
become available. To recap, the previous cell’s process failed because the forget gate was
not turned on. Assuming nothing takes place, the preceding data may be “forgotten.” As
can be seen in Figure 4, the output gate can decide for itself if it needs to relay the most
recent cell output and the ultimate state.
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Figure 4. BiLSTM schematic.

In order to address the problem of overfitting, we made use of two dropout layers
that were positioned below the ReLU activation function, in addition to the BiLSTM layer.
Using these dropout layers allows us to avoid the problem of overfitting. In the meantime,
the dropout contributes to the objective of minimizing the error of generalization, which is
being pursued in conjunction with the growth in the number of layers contained within
neural networks. After the BiLSTM layer comes the FC layer, then the SoftMax layer, and
finally the classification layer.
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3.3. Model Training and Testing

The use of cross-validation is a reliable strategy for avoiding overfitting. The entire
dataset has been divided up into sections. In order to perform a typical K-fold cross-
validation, the data need to be divided up into k folds. Then, we used the remaining
holdout fold as the test set while iteratively training the algorithm on k-1 folds.

In this research we used k cross-validation on to 5-fold. We used the four given folders
to train the models, then tested the models on the last folder. This process repeated five
times to produce a reliable and practical detection system of epilepsies from EEG signals.
Determining the learning parameters for training the DNN that would yield the optimum
performance is a complex optimization issue due to the large complexity and non-convexity
of the objective function. In this case, the standard practice is to employ stochastic optimizer.
This research makes use of the ADAM optimizer with the following settings: learning
rate = 0.0001, batch size of 32, and a number of epochs of 400. These parameters were
chosen by analyzing experimental validation findings and were applied uniformly across
all networks for fair evaluation of their performance and resource requirements.

4. Results and Discussion

In order to carry out experiments, we made use of both a graphics processing unit
(GPU) and a central processing unit (CPU) manufactured by Intel and bearing the model
number Core i5-7700. In addition, the suggested procedures were trained with the assis-
tance of Keras and Python version 3.6. Accuracy (Acc), Precision (Prec), Sensitivity (Sen),
and Specificity (Speci) are the four-performance metrics that we used to evaluate the pro-
posed model. While accuracy is the proportion of a sample over the entire population that
has been correctly classified, sensitivity is the percentage of true positives that have been
accurately detected or correctly identifies patients as having epileptic seizures. Sensitivity
is more accurately referred to as the true positive rate (TPR), or Recall. Accuracy is pre-
sented as a sample over the entire population that has been correctly classified. Specificity
demonstrates that the patents in question do not involve any epileptic seizures. Specificity
can be referred to as the true negative rate (TNR). The mathematical equations for all of
the important performance metrics are listed below, in Equations (2)–(6). The TPost, TNeg,
FPost, and FNeg are the true positive, true negative, false positive, and false negative, re-
spectively. The TNeg output indicates the number of correctly classified negative examples.
A similar notation, TPost for true positive, denotes the percentage of correctly identified
positive examples. A false positive value FPost indicates the number of falsely positive
examples that were incorrectly labeled as negative (FNeg), which indicates the opposite
number of falsely negative examples that were incorrectly labeled as positive.

Acc(%) =
TPost + TNeg

TPost + TNeg + FPost + FNeg
(3)

Prec(%) =
TPos

TPos + FPos
(4)

TPR = Sen(%) =
TPos

TPos + FNeg
(5)

TNR = Speci(%) =
TNeg

TNeg + FPos
(6)

In addition to these metrics, a number of other metrics, such as the Confusion matrix,
Matthew’s correlation coefficient, the Roc Curve, false omission rate (FOR), false discovery
rate (FDR), and Negative Predictive Value, were used to perform an analysis on the results.
The confusion matrix is a specialized form of the contingency table. Contingency tables
summarize binary decision-making. It has two dimensions, which are labeled actual and
predicted, and both dimensions contain identical sets of classes [46]. Dealing with an
imbalanced target variable is a common challenge that arises when applying machine



Life 2022, 12, 1946 10 of 18

learning techniques to medical applications. When machine learning techniques are used
on data that are not evenly distributed, using confusion matrices as error measures is
insufficient. Therefore, in this work, we make use of the Matthews correlation coefficient,
also known as MCC, which is recognized as an important error measure for data that are
not balanced [47,48]. The Matthews correlation coefficient, also known as r, is a statistical
measure that compares the true classes, also known as TC, to the predicted labels, also
known as PL [49]. Its definition can be found in Equation (7), as shown.

MCC =
cov(TC, PL)
σTC × σPL

=
(TPos× TNeg)− (FPos× FNeg)√

(TPos + FPos)(TPos + FNeg)(TNeg + FNeg)(TNeg + FNeg)
(7)

where σTC, and σPL are the variances of the true classes TC and the predicted labels
PL, and cov(TC, PL) is the covariance between them. The MCC can range anywhere from
−1 to +1. When the value is −1, it indicates that the prediction is completely inaccurate,
whereas when the value is +1, it indicates that the prediction is spot on. When MCC is
equal to zero, it indicates that we are thinking about a random classification in which the
model predictions do not have any discernible correlation to the actual results.

The area under receiver operator characteristic, ROC curve, is a different type of error
metric that we are presenting. The TPR, or sensitivity, is displayed on the ROC curve in
relation to the FPR, or specificity [50]. The false discovery rate and the false omission rate are
two additional error metrics we have employed [51]. Biology and medicine are common
application domains for the FDR and the FOR [52,53]. FDR calculates the percentage
of erroneous findings among a group of significant hypothesis tests. The complement
of the negative predictive value, false omission rate, is a statistical technique used in
multiple hypothesis testing scenarios to account for numerous comparisons. It calculates
the percentage of false negatives that are wrongfully rejected. Equations (8) and (9) show
the definitions of FDR and FOR. Both measures have a range of 0 to 1. For an errorfree
classification, we have FNeg = FPos = 0, implying FDR = FOR = 0. In contrast, when
TPos = TNeg = 0, we get FDR = FOR = 1.

FDR =
FPos

FPos + TPos
(8)

FOR =
FNeg

FNeg + TNeg
(9)

The negative predictive value is another error metric for evaluating classification
accuracy in the medical domain (NPV) [54]. Given a negative test result, NPV is the
likelihood that a person does not have a disease or condition. The percentage of people
with negative test results who are correctly identified or diagnosed is what NPV stands for.
In other words, when a person receives a negative, normal, test result, NPV represents the
likelihood that the person is healthy (e.g., intellectually normal). The definition of NPV is
given in Equation (10).

FOR =
TNeg

TNeg + FNeg
(10)

We have evaluated the performance of the hybrid model that has been proposed,
known as RNN-BiLSTM, as well as other models (RNN-LSTM and RNN-GRU) that are
comparable to it, that are currently available in the state-of-the-art for the identification of
epileptic seizures. Figure 5 presents the confusion matrices that were calculated for the three
different models. The combination of RNN and BiLSTM is shown to correctly recognize
the classes after being subjected to an in-depth experiment involving the confusion matrix.
The proposed model for the classification of epileptic seizures achieves the TPost, TNeg
percentages of 0.98 and 0.98, respectively. On the other hand, the values that were achieved
for the same measures by using the RNN-LSTM and the RNN-GRU were respectively
0.96 and 0.95 and 0.97 and 0.97. In conclusion, the method RNN-BiLSTM was superior to
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the other two methods, RNN-LSTM and RNN-GRU, in terms of its accuracy in detecting
the classes as well as its performance.
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In the experimental study, the performance measures on different folds from 1 to
5 are shown in Figure 6. The average accuracy, sensitivity, precision, and specificity
have each been improved using the RNN-BiLSTM that we have proposed, which has
achieved average values of 98.4%, 98.50%, and 97.40%, and 97.30%, respectively. The
results demonstrate that the new model achieves improvements in the same metrics that
are average performance measure 2.1%, 2.69%, 1.95%, and 2.2%, respectively, compared to
RNN-LSTM and RNN-GRU models.
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The ROC is regarded as an essential metric in all EEG epileptic seizure detection.
The ROC plots the results of the comparison between the true negative and true positive
rates. Figure 7 depicts the ROC of the suggested approaches, which clearly depict the
link between true positives and true negatives. The suggested model outperforms the
RNN-LSTM and RNN-GRU in terms of average ROC values.
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The sensitivity and specificity attained by the proposed models has been compared
to its attained false discoveries (FDR, FOR, and NPV), as shown in Figure 8. The figure
also depicts the achieved results for the same metrics for the state-of-the-art models (RNN-
LSTM, RNN-GRU model.). As can be seen in the figure, the suggested model achieves
high sensitivity and specificity while simultaneously producing low false discoveries (FDR
and FOR).
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As a measure of the correlation between the correct and incorrect labels, the Matthews
correlation coefficient was computed for the proposed models and RNN-LSTM, RNN-GRU
models. The value for the MCC that measures the correlation between the true classes, TC,
and the predicted labels using the proposed model has been recorded as 0.99. On the other
hand, the attained values for the MCC are 0.90 and 0.89 for the RNN-LSTM, RNN-GRU
models. MCC measures the correlation between the correct and incorrect labels. When the
classifier is perfect (FPos = FNeg ∼= 0) the value of MCC is almost 1, indicating perfect
positive correlation. In this, the proposed model indicated 0.99, which is close to 1, meaning
that both classes are predicted well compared to other models.

Figure 9 depicts the processing time for the suggested model. We have estimated the
testing time for the suggested model to be equal to the detection time. Since much of the
work during the training phase is done away from the main system, it is ignored. However,
it is generally agreed that testing is crucial because it proves the model works as intended.
With a processing time of only 17.1 (MS), our proposed method is clearly computationally
efficient. RNN-LSTM also needs less time for testing than RNN-GRU does.
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5. Comparing the Proposed Model to Traditional ML Models

The proposed model’s performance has been analyzed further by comparing it to those
of the most conventional ML models like KNN, SVM, and RF [55]. Transfer learning has
been used to extract significant features for use in traditional classification techniques. To
begin, the high-level deep features were extracted using a pretrained convolutional neural
network (CNN) named AlexNet in order to bypass the overfitting problem through the
transfer learning technique [56–58]. Once the deep features are acquired, they are given to
the standard classifier mentioned above. As a part of the feature extraction process, we used
AlexNet that had already been trained. Data of the image kind were fed into the AlexNet
at the input layer. Therefore, in this study, we saved each EEG as a separate image. The
input images have been resized into 227 × 227, the standard size for the AlexNet network.

Model parameters are used to define or express a model in ML/DL. The training phase,
on the other hand, necessitates picking the right hyperparameters for the learning algorithm
to utilize in order to discover the right mapping between the features and the targets in
order to reach intelligence [59]. Parameters known as hyperparameters are used to regulate
and set the values of model parameters that a learning algorithm ultimately learns. The
learning parameters of AlexNet were tested during its training. Here, we employed a
stochastic gradient descent with momentum (SGDM) optimizer. With this optimizer, we
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used a learning rate of 0.001, mini batches of 32, and 400 training epochs. The validation
findings from the ongoing experiments were used to choose these hyperparameters.

Different hyperparameter values were tested throughout this study; the values that
yielded the best results during training for the conventional SVM, KNN, and RF classifica-
tion models are detailed in Table 3. The random forest classification technique makes use of
many trees, and we have the ability to determine the minimum and maximum values for
the number of trees required by the algorithm. This is accomplished with the use of a hy-
perparameter called “n estimators”. In this research, the optimal classification performance
could be obtained by setting this hyperparameter to a value of 10 trees. It is well-known
that KNN is an effective supervised classification algorithm. The similarity between the
input features and the target is used by KNN to estimate the relationship between them.
KNN is a classification method that uses the opinion of the input instance’s most similar
neighbors (a number denoted by “k”) to determine the correct class. To determine the best
value of k, we tested the KNN algorithm on the training dataset with several values of k
and found that k = 5 yielded the best results. SVM seeks a hyperplane in the input feature
space to clearly categorize the input data points in a classification task. Selecting the plane
that maximizes the gap between the distributions of two classes of data is the optimization
issue posed by finding the hyperplane. In this research, we have tried out a variety of
kernel functions for use in SVM training. For EEG data classification, the sigmoid kernel
function has proven to be the most effective.

Table 3. Hyper-parameters for the training of the conventional classifiers, including KNN, SVM,
and RF.

Classifier Learning Parameters

SVM Kernel function = Sigmoid Kernel Function

KNN K = 5

RF n-estimators = 10

The findings were obtained by the application of a cross-validation procedure that
was carried out five times. The cross-validation test is illustrated by a bar chart in Figure 10,
which compares the retrieved accuracy of the proposed model to that of the classical
classifier in each fold. As depicted in Figure 10, the proposed model has outperformed the
classical classification methods in the classification of epileptic/non-epileptic seizures.
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6. Comparing the Performance of the Proposed Model to State-of-the-Art

In this part of the article, we have additionally compared the model against a number
of benchmark methods that currently exist. The findings of the evaluation in relation to
the most recent benchmarks are presented in Table 3. In terms of the evaluation metrics
known as Acc, Pres, Sens, and Spec, the proposed techniques, known as RNN-BiLSTM,
offer superior results. Table 4 shows that the created hybrid model outperforms previous
efforts by Yao et al. [34] and Raghu et al. [32]. The performance boost achieved by hybrid
RNN-LSTM [2] has been further enhanced by the suggested hybrid RNN-BiLSTM. It
has also produced high performance, comparable to that of work done with the Deep
Clinical Sparse Autoencoder. The suggested hybrid RNN-BiLSTM framework system has
achieved comparable performance to that of Hilal et al. [6] and Mursalin et al. [33] on the
benchmarking UCI-Epileptic dataset. Hilal et al. [6] employed the Deep Clinical Sparse
Autoencoder for the classification of epilepsy UCI-Epileptic dataset, and Mursalin et al. [33]
have analyzed the UCI-Epileptic dataset using hybrid metaheuristic feature selection and
traditional ML-based classifiers. Table 4 shows that the suggested system can achieve
comparable performance to the other systems compared.

Table 4. Comparing the performance of the introduced model, RNN-BiLSTM, to state-of-the-art
epileptic seizures detection systems.

Publication Method EEG Class Dataset Acc (%) Sens (%) Spec (%)

Yao et al. [34] Independent RNN binary CHB-MIT 87% 87.3% 86.7%

Raghu et al. [32] Transfer learning
and CNN 8 classes Temple University

Hospital EEG signals 88.3% - -

Choi et al. [21] hybrid model (1D
CNN and GRU) binary Asan Medical Center

Children’s Hospital 82.86 % 80% -

Najafi et al. [2]. hybrid RNN and LSTM binary HCTM hospital’s
EEG data 96.1% 96.8% 97.4%

Hilal et al. [6] Deep Clinical Sparse
Autoencoder binary UCI-Epileptic 98.67%. 99.19% 99.2%

Mursalin et al. [33]

Hybrid metaheuristic
Feature selection, and
traditional ML-based

classifiers

binary UCI-Epileptic 98.7% - -

Proposed model Hybrid RNN-BiLSTM
model binary UCI-Epileptic 98.4% 98.30% 98.10%

7. Conclusions

Through an analysis of the patient’s EEG signal data, the RNN-BiLSTM model is
presented as a method for identifying epileptic seizures that is found in this study. The
RNN is extremely effective at extracting features from EEG signals, whereas the BiLSTM
network is able to classify the collected data. This research incorporated publicly accessible
EEG data from UCI Machine Learning repository for epileptic seizure classification, and
the results serve as evidence that the proposed method is accurate in predicting clinical
outcomes. The epileptic seizure recognition process consists of a total of one exam, which
also includes binary recognition tasks. The accuracy, precision, sensitivity, and specificity
of the proposed system have been thoroughly evaluated using a robust collection of error
measures, such as the confusion matrix, the Matthews correlation coefficient, the Roc
Curve, the false omission rate, the false discovery rate, and the negative predictive value.
Our proposed RNN-BiLSTM has increased accuracy, sensitivity, precision, and specificity
to 99.4%, 98.99%, 99.05%, and 98.8%, respectively. The data show that the new model
improves the same measures by 1.8%, 1.69%, 1.95%, and 2.2%. The proposed approach
reaches high levels of sensitivity and specificity while also generating a minimal number of
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false discoveries (FDR and FOR). In addition, the proposed method was judged against
approaches that are now considered to be state-of-the-art, and it was found to be a more
accurate classification of such methods.

Although the proposed method has made significant headway in the field of epileptic
seizure detection, there are still some issues that need to be handled in a more comprehen-
sive manner in the near future. When applied to multi-class issues, the strategy that has
been provided does not have a recognition accuracy that is particularly extraordinary or
even good. Second, in order to carry out supervised training with the suggested approach,
a sizeable amount of EEG signal data that have been labeled will be required.
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