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Abstract: Age-related macular degeneration (AMD) is a heterogeneous disease affecting the macula
of individuals and is a cause of irreversible vision loss. Patients with neovascular AMD (nAMD)
are candidates for the anti-vascular endothelial growth factor (anti-VEGF) treatment, designed to
regress the growth of abnormal blood vessels in the eye. Some patients fail to maintain vision despite
treatment. This study aimed to develop a prediction model based on features weighted in order of
importance with respect to their impact on visual acuity (VA). Evaluations included an assessment of
clinical, lifestyle, and demographic factors from patients that were treated over a period of two years.
The methods included mixed-effects and relative importance modelling, and models were tested
against model selection criteria, diagnostic and assumption checks, and forecasting errors. The most
important predictors of an anti-VEGF response were the baseline VA of the treated eye, the time
(in weeks), treatment quantity, and the treated eye. The model also ranked the impact of other
variables, such as intra-retinal fluid, haemorrhage, pigment epithelium detachment, treatment drug,
baseline VA of the untreated eye, and various lifestyle and demographic factors. The results identified
variables that could be targeted for further investigation in support of personalised treatments based
on patient data.

Keywords: age-related macular degeneration; anti-VEGF treatment; explainability; statistical modelling

1. Introduction

Research in age-related macular degeneration (AMD) can be traced back as far as
1855, according to published accounts [1,2]. For example, Donders described one of the
earliest cases of AMD using microscopy and post-mortem data [2]. He noticed obliquely
orientated rods that were accommodating small drusen and discovered that the rods and
cones were missing above the drusen. These drusen were rarely absent in the eyes of aged
individuals, especially those who were from 70 to 80 years of age. Despite many years of
research into possible treatments, AMD continues to remain a progressive, chronic, and
degenerative eye disease that is most prevalent in the aging population (i.e., 50 years or
older) [3,4]. It is not only one of the leading causes of central and irreversible vision loss,
but affected patients are at risk of developing legal blindness [5–7]. AMD manifests as a
result of a sub-clinical inflammatory process [8] that is characterised by damage or loss
of photoreceptors (i.e., cells which respond to light) and the retinal pigment epithelium
(RPE; i.e., a support system for photoreceptor cells that deliver essential nutrients, such as
oxygen and clear cellular debris) within the macular region [9,10].

Due to the rapid growth of the aging population, the prevalence of AMD is increasing
at a significant rate [11] and is predicted to increase to 288 million by 2040 [6,12,13]. Visual
impairment poses a considerable global health and economic burden due to increasing life
expectancy and a growing cohort of older adults. Estimates of global vision costs for AMD
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were first released in 2010 which suggested a financial burden of nearly USD $3 trillion for
733 million people who were living with low vision and blindness in 2010 [14].

The disease can be broken into three sub-categories: early, intermediate, and late-stage
AMD. The late-stage of AMD affects 9.64 million individuals worldwide at the time of
publication, and the prevalence of late-stage AMD is predicted to increase to 18.57 million
cases by the year 2040 [6]. Late-stage AMD is composed of two types: non-exudative
(dry) AMD and exudative (wet) AMD; these are more commonly known as geographic
atrophy (GA) and neovascular AMD (nAMD), respectively [15]. The development of GA
is characterised by the death of the RPE and photoreceptor cells, as well as the closure of
the underlying choriocapillaris [16]. nAMD is typified by choroidal neovascularisation
(CNV), RPE or retinal detachment, retinal haemorrhage, and fibrous scarring [4,17,18].
Much of the severe vision loss occurs in the nAMD form. A Deloitte report revealed that a
much greater number of patients across Australia suffered from severe nAMD than severe
dry AMD [7,19]. Furthermore, the biology of nAMD is better understood as compared
to GA, and thus, appropriate treatments are readily available for nAMD in the form
of anti-vascular endothelial growth factor (anti-VEGF) injections designed to block and
regress the growth of abnormal blood vessels in the eye that causes vision loss. The nAMD
treatments include (anti-VEGF) treatments such as ranibizumab (Lucentis®), bevacizumab
(Avastin®), and aflibercept (Eylea®). Anti-VEGF agents are injected intravitreally to stop
neovascularisation [20]. While anti-VEGF treatments are available for nAMD, there have
been several trials underway for other conditions [15,21]. While the response to these
treatments is well-received, there remains a cohort of patients who do not respond to
the treatment as expected; these patients continue to lose vision and worsen over time,
potentially leading to blindness.

An exploration into the efficacy of anti-VEGF treatments can be undertaken through
the evaluation of potential risk factors that trigger a lack of response. These include assess-
ing previously implicated factors in AMD disease progression. Although age is considered
the primary contributor to the development of AMD, other modifiable lifestyle risk factors,
such as smoking and diet, have also been noted as important environmental insults in
the progression of AMD [12,22]. Genetic risk factors are also known to play a large role
in the aetiology of AMD [23]. Similarly, both modifiable and genetic factors have been
implicated in the patient response to anti-VEGF treatments. Previous studies have sug-
gested the following non-genetic factors as potential predictors in anti-VEGF response:
age, baseline visual acuity (VA), the delay between symptom onset and treatment initi-
ation, subfoveal choroidal thickness, CNV type, the location of fluid in the retina, and
the presence of subretinal hyperreflective material (SHRM) [24–26]. There appears to be a
need for continuing research relating to the hierarchy of importance of potential predictors
while simultaneously producing a well-fitted prediction model to understand anti-VEGF
effectiveness in AMD patients.

Biological and medical data are complex, and care needs to be taken to avoid spurious
or inflated associations. There are several possible causes of confounding, including popula-
tion structure (the existence of major subgroups in the population), cryptic relatedness (the
existence of small groups of related individuals), and environmental factors (environmental
differences between sub-populations or geographic locations) [27–30].

Several methods have been suggested to control these confounders, one of which
includes mixed-effects modelling—where a set of random effects is fitted for each indi-
vidual [30]. Mixed-effects models are well suited for the analysis of biological/medical
data [31] and are flexible and powerful statistical models for controlling stratification,
relatedness, and confounding factors [32–34].

A machine learning approach is investigated in the current study for the prediction of
VA outcomes from anti-VEGF treatment subject to clinical data, lifestyle, and demographic
factors. A variety of machine learning approaches have been the subject of past research,
such as predictive regression models, including artificial neural networks, random forests,
and mixed-effects models [35,36]. Many models have been applied to medical problems in
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ophthalmology but have limited explainability [37–39]. A challenge to machine learning is
to develop models that are not black box in nature but incorporate explainability in their
predictions. In this study, a machine learning approach was developed that incorporates
statistical features and metrics to produce a degree of explainability.

Potential predictor variables can be ranked by weights in the order of importance
using the relative importance of variables (RIV) method. Larger predictor weights are
considered the most important, while those with smaller weights are considered the
least important [40].

This paper has two objectives: (1) to apply machine learning to develop mathematical
models to predict vision outcomes for anti-VEGF-treated AMD patients; and (2) to rank
variables that are available to the ophthalmologist, in order of importance (i.e., largest to
smallest weights). The best models were selected based on model selection techniques,
along with diagnostic and forecasting evaluations. The aim was to develop a prediction
model to include the features most responsible for treatment response and to optimise
prediction accuracy.

2. Materials and Methods
2.1. Study Design

A retrospective analysis was conducted as a case study using anonymised data from pa-
tients who attended the retina clinics at the Royal Victorian Eye and Ear Hospital (RVEEH).
The study was approved by the Human Research Ethics Committee of RVEEH. The study
was conducted in accordance with the International Conference on Harmonisation Guide-
lines for Good Clinical Practice and tenets of the Declaration of Helsinki Ethics approval
was provided by the Human Research Ethics Committee (HREC: Project No. 95/283H/15)
by the RVEEH. Written informed consent was obtained from all participants.

2.2. Patient Data

The patient dataset consisted of 150 treatment-naïve eyes, with patients >50 years of
age who were diagnosed with subfoveal CNV secondary to AMD and who had attended
the RVEEH between 2006 and 2010. Clinical diagnoses were based on a retinal examination,
fundus photography, fundus fluorescein angiography, time-domain optical coherence
tomography (OCT) with Stratus OCT version 5.0.1 (Carl Zeiss Meditec, Dublin, CA, USA)
or Cirrus HD-OCT version 6.0.0.599 (Carl Zeiss Meditec). VA scores were obtained using the
early treatment diabetic retinopathy study (ETDRS) chart performed at 4 m. The presence
of intra-retinal fluid (IRF), sub-retinal fluid (SRF), macular thickness, macular scar, atrophy,
and haemorrhage were analysed using OCT. Results were collated for baseline at three, six,
twelve, and twenty-four months treatment intervals.

Patients with CNV secondary to non-AMD conditions, such as angioid streaks, severe
myopia, central serous retinopathy, or hereditary retinal disorders, and those who received
any previous treatment for nAMD, such as an anti-VEGF, photodynamic therapy, or laser
photocoagulation were excluded.

2.3. Data Format

The time-series data followed the treatment schedule and clinical manifestations
of all 150 eyes over the course of a two-year treatment. The dataset included general
demographic information, such as age, gender, and ethnicity, along with several clinical
variables (Table S1, Supplementary Materials). We identified whether each variable was
binary, categorical, or continuous as part of our exploratory analysis.

The data were initially presented in the “wide” format, which contained approxi-
mately 156 variables across all 150 eyes. The data were converted into a “long” format,
amalgamating variables across multiple time points into a single variable. For example,
rather than having five variables for the VA at baseline at three, six, twelve, and twenty-four
months, a single VA variable with a time variable as a reference was used.
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2.4. Treatment Protocol

Patients were treated with either ranibizumab or bevacizumab, with most receiving
ranibizumab, where bevacizumab was used occasionally for the first injection whilst
awaiting approval for the subsidised use of ranibizumab (aflibercept was not available
at the time). A total of 140 patients were treated for either the left eye (LE) or the right
eye (RE), and five patients had both eyes treated. All patients received 3 initial monthly
injections followed by a flexible (as required) period. The decision to re-treat in the flexible
period was at the discretion of the treating retinal specialist at each follow-up visit on the
basis of re-treatment criteria, including the VA loss of 5 letters, increased central retinal
thickness of 100 µm, or the presence of retinal fluid on OCT (intraretinal or subretinal)
or ophthalmic examination findings of new or persistent haemorrhage. The extension of
2 weeks was considered for the subsequent clinic visit if the clinical situation was stable
and OCT was free of intra-retinal or sub-retinal fluid. This evolved into a treat-and-extend
protocol in the latter half of the time period, where if the patient showed no signs of activity,
the time between the injections was extended by two weeks. Individuals with persistent
signs of activity continued to receive monthly injections.

2.5. Statistical Analysis

All statistical analyses were run using the statistical software R version 3.2.2. [41]. The
null hypothesis for the RIV analysis was that the parameter estimates for all variables were
identical and had the same level of importance in their contribution to vision outcomes in
anti-VEGF-treated AMD patients.

2.5.1. Modelling Mixed-Effects

Mixed-effects models are used to describe relationships between response and pre-
dictor variables in data that are grouped based on one or more classifications [42]. Mixed-
effects models explicitly specify the mean and covariance structure, incorporating two
types of parameters: fixed and random effects [43,44]. Fixed effects refer to predictors that
affect a response variable. Random effects, however, refer to effects on a response variable
generated by variation within and among the levels of a predictor variable [43]. Population
structure is the fixed effect in a mixed-effects model, while relatedness among individuals
is incorporated as a variance-covariance structure of the random effect [45]. Mixed effects
models have gained considerable popularity and are considered useful in the analysis
of longitudinal data, the modelling of complex clustered data, penalised log-likelihood,
etc. [31,46]. There are advantages to using mixed models in medical applications.

A medical study may be carried out at multiple locations, clinics, or hospitals, and
therefore, medical data may often be clustered. The design of a medical study may be
described as hierarchical and wider inferences can be made by fitting the clustering effect as
a random effect. Repeated measurements are also common in medical studies, and it is not
uncommon for several observations to be missing. The advantage of using a mixed-effects
model is that it makes allowance for missing data and hierarchical clustering [47].

The RVEEH dataset is from a longitudinal study and consists of repeated observations
by individual subjects over a time series. The research interest lies in the effects that are
common and different among all individuals in the study [48]. The mixed-effects model
allows the capture of among-subject variations. The use of mixed-effects modelling is that
it assists in explaining variability in the patient response to anti-VEGF treatment and helps
to identify other factors that may contribute to treatment response.

Linear mixed-effects models are an extension of regular linear models. Traditional
linear models use only a single random term, the residual error. A linear mixed-effects
model allows the specification of more than one random term [49], a useful feature, as it is
more accurate to think of an effect coming from a specific normal distribution rather than
that of a fixed value [50].
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With N independent sampling units (i.e., the patients), the linear mixed-effects model
for the ith person may be written as follows:

Yi = Xiβi + Ziui + εi (1)

where Yi represents the response variable for the ith person, Xi is a ni × p design matrix
for the p-vector of the fixed effects β, and Zi is a ni × q design matrix associated with the
q-vector of random effects ui that represent subject-specific regression coefficients. The error
term, εi, is assumed to be normally distributed with a mean zero and to be independent of
the random effects [51].

The use of linear mixed-effects models counters the multiple drawbacks that are
normally associated with traditional random effects modelling, such as [52]:

(a) Deficiencies in statistical power with the use of repeated observations;
(b) Lack of adaptability around dealing with missing data;
(c) Disparate methods for treating continuous and categorical responses;
(d) Unproven methods for modelling heteroscedasticity and non-spherical error variance.

There are multiple measurements for each subject thus, we need to incorporate random
effects into the model to account for the variation in outcomes. To account for within-subject
dependencies, a subject-specific latent variable (i.e., random effects) must be included in the
model. Typically, an additional random effect is included for each regression coefficient that
is expected to vary among the subjects. For example, in dose–response settings, one may
account for baseline heterogeneity through a random intercept and for heterogeneity in
susceptibility through a random slope, with these two factors potentially correlated [53]. To
account for this heterogeneity, the random effect used across all our tested models included
time (in weeks) and subject. This is represented in the analysis as (time|subject). The use
of the random effect subject accounts for the random intercept. The random effect time
accounts for the random slope. Software for data analytics was developed for this project
and also sourced for linear mixed-effects models from the work of Bates and Maechler, as
maintained by Ben Bolker [54].

2.5.2. Measure of Outcome

For our response variable, we preferred the use of follow-up VA measurements for
both the LE and RE as the outcome/dependent variable (i.e., Yi). All remaining variables,
including the baseline VAs, were considered potential predictors. The responses were
additionally divided into LE and RE.

Sometimes, change scores (i.e., post-treatment outcomes minus pre-treatment measure-
ments) were used in place of follow-up scores as a way of accounting for chance imbalances
at the baseline between treatment groups. Baseline imbalances can include factors such
as age or disease severity; they can occur either due to (i) a true biological variability
within the individual, or (ii) due to a measurement error, or even a combination of the
two [55,56]; these imbalances are referred to as a regression to the mean [57]. While it may
seem intuitive to use change scores to control for any chance imbalances at the baseline, as
outcomes may occur due to regression to the mean, we opted to use follow-up scores in
place of change scores instead.

2.5.3. Model Selection

The information criteria, such as the Akaike Information Criterion (AIC) and Schwartz or
Bayesian Information Criterion (BIC), were used in the model selection process. Although a
plethora of information criteria are available for model comparison, they are modifications
or generalisations of the AIC or BIC [58]. The AIC and BIC criteria are defined as [59]:

AIC = 2
[
`
(
θ̂2
)
− `
(
θ̂1
)]
− 2(p2 − p1) (2)

BIC = 2
[
`
(
θ̂2
)
− `
(
θ̂1
)]
− logn(p2 − p1) (3)
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where 2
[
`
(
θ̂2
)
− `
(
θ̂1
)]

is the likelihood ratio test statistic that is asymptotically distributed
as χ2 with p2 − p1 degrees-of-freedom. AIC and BIC theories have the same objective: to
find the best model via comparison. However, each theory has a different motivation. While
AIC compares models using a measure of similarity in the expected predictive performance,
BIC compares the probabilities that each of the models tested is the true model [58].

The main idea behind the selection criteria is to compare models based on their
maximised log-likelihood value, while penalising for the number of parameters. The model
with the smallest AIC or BIC values is deemed the best [60]. Additionally, in finding the
smallest AIC and BIC values, the model chosen needs to provide a good fit to the data,
using R2, also known as the coefficient of determination, which relates to the impact of the
predictor variable X [61]. Values for R2 range from 0 ≤ R2 ≤ 1. Values closer to 1 indicate
a better fit.

For mixed-effects models, R2 can be categorised into two types: marginal R2 and
conditional R2. Marginal R2 accounts for the variance explained by fixed factors:

RM
2 =

σ2
f

σ2
f + ∑u

l=1 σ2
l + σ2

e + σ2
d

(4)

and conditional R2 is concerned with the variance explained by both fixed and random
factors [27]:

R2
C =

σ2
f + ∑u

l=1 σ2
l

σ2
f + ∑u

l=1 σ2
l + σ2

e + σ2
d

(5)

where σ2
f = the variance calculated from the fixed effects component; u = the number of random

factors in the model; σ2
l = the variance component of the lth random factor;

(
σ2

e + σ2
d
)

= the sum
of an additive dispersion component and the distribution-specific!variance.

2.5.4. Model Diagnostics

Once a suitable model has been identified and fitted, the key assumptions of the model
can be tested. These assumptions include (i) linearity, (ii) homoscedasticity or constancy of
the error variance, and (iii) normality of the errors. Discrepancies between the assumed
model and data can be identified by studying the residuals (also known as the error
component). The residuals represent the differences between observed and predicted
values for the assumed model. Visual aids, such as residual plots, help identify whether
the assumptions of the model have been satisfied. Typically, a good residual plot would
be one with an even horizontal distribution of residuals or symmetry; whereas those that
contain distinguishable patterns, such as being clustered to one side of the plot, usually
indicate a violation of the model assumption and warrant a further review of the model
(e.g., appropriate transformation of dependent or independent variables) [62]. Normal
probability plots additionally allowed us to determine the fit of our model.

Using both residual plots and normal probability plots, we could identify any unusual
or outlying observations based on large deviations in the observed Y values from that of
the fitted line. Inferences drawn from the model can be potentially influenced by only a few
cases in the data. The fitted model may reflect the unusual characteristics of those cases
rather than the overall relationship between the dependent and independent variables [63].

Influence analysis consists of investigating whether observations (or a group of ob-
servations) are given disproportionate importance in the model estimation. The simple
inclusion or exclusion of an influential case may lead to substantially different regression
estimates [64]. DFBETAS is a standardised measure that indicates the level of influence
observations have on single parameter estimates [65]. For mixed-effects models, this relates
to the influence of a higher-level unit on the parameter estimates. DFBETAS is calculated as
the difference in parameter estimate between the model included and the model excluding
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the higher-level case. This absolute difference is divided by the standard error of the
parameter estimate excluding the higher-level case [66]:

DFBETASij =
γ̂i − γ̂i(−j)

se
(

γ̂i(−j)

) (6)

in which i refers to the parameter estimate and j the higher-level group, so γ̂i represents
the original parameter estimate i, and γ̂i(−j) represents the estimate of the parameter i
after the higher-level group j has been excluded from the data. We used the influence.ME
package in R to run these analyses [66]. As a rule of thumb, the cut-off value for DFBETAS
is given as [67]:

CoV = 2/
√

n (7)

in which n is the number of observations under evaluation. Values exceeding this cut-off
are regarded as potentially influencing the regression outcomes for that specific estimate.

As DFBETAS provides a value for each parameter and for each higher-level unit that is
evaluated, this can result in a large number of values to review. An alternative method for
identifying influence is Cook’s distance. Cook’s distance provides a summary of measures
for the influence that a higher-level unit exerts on all parameter estimates simultaneously.
A formula for Cook’s distance is [66]:

COF
j =

1
r + 1

(
γ̂− γ̂(−j)

)
′ ˆ∑
(

γ̂− γ̂(−j)

)
(8)

where γ̂ represents the vector of the original parameter estimates γ̂(−j) the parameter
estimates of the model excluding the higher-level unit j, and ∑̂ represents the covariance
matrix. As a rule of thumb, cases are regarded as potentially influential if the associated
value for Cook’s distance exceeds the cut-off value of [68]:

CoV = 4/n (9)

where n refers to the number of groups in the grouping factor under evaluation.
To test for changes in statistical significance, we employed the sigtest() function. This

is used to test for changing levels of significance after the deletion of each of the potentially
influential data points identified using DFBETAS. For the Cook’s distance, we carried
out similar functions using the exclude.influence() function. While there could be many
potentially influential points, those that created statistically significant changes upon
deletion were considered overly influential.

2.5.5. Prediction Accuracy

Past data allows the identification of a pattern that can be extrapolated or extended
into the future in order to prepare a prediction or forecast. Forecasting techniques rely on
the assumption that the patterns which have been identified in the past will continue in the
future. Good predictions cannot be expected unless this assumption is valid. Forecasting
is subject to uncertainty analysis. There may be an irregular component that may be
substantial and cause fluctuations in the data. Hence, we reviewed forecasting errors in
an attempt to ascertain whether an irregular component was so large as to completely
invalidate any forecasting technique or perhaps the forecasting technique used was not
capable of accurately predicting the trend, seasonal, or cyclical components of the data,
thus rendering the technique inappropriate [69].

The first metric to assess forecast quality is the mean error (ME), which is simply the
average of past errors between the n observed and forecast values:

ME =
1
n ∑n

t=1 et (10)
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where we used the following notation [70]:
et = Yt − Ŷt is the forecast error for a particular at time t;
Ŷt = the forecast value generated in period t (i.e., the fitted/predicted value);
Yt = the observed value at time t.

The ME metric reveals whether the forecasting process, on average, tends to under-
forecast (i.e., ME would be positive) or over-forecast (i.e., ME would be negative); it was, in
fact, a metric of bias. We, therefore, needed other metrics for forecast accuracy that could
capture the proximity between the prediction produced using our model and the actual
observed values.

The first metric for forecast accuracy is the mean absolute deviation (MAD). MAD uses
the absolute error to ensure that negative and positive errors do not cancel when averaged:

MAD =
1
n ∑n

t=1|et| (11)

The second metric for forecast accuracy is the root mean square error (RMSE)—this
measure squares errors to the sum of positive and negative ones. The RMSE is similar to
the standard deviation (except that the deviations are not around the mean value):

RMSE =

√
1
n ∑n

t=1 e2
t (12)

The previous metrics are measured in the same units as the data and are not scale-
independent. The normalisation of accuracy requires expression as a proportion or percent-
age. The metrics which accommodate for this are the mean percentage error (MPE) and
mean absolute percentage error (MAPE), which measure percentage bias and percentage
accuracy, respectively.

Our objective was to find a model that would have a prediction error rate of less than
10% (i.e., our prediction accuracy was not off by more than 10%):

MPE =
1
n ∑n

t=1
et

Yt
(13)

MAPE =

(
1
n ∑n

t=1
|et|
Yt

)
× 100 (14)

As these measures are percentages, no further scaling is required and interpretation is
straight forward [69].

2.5.6. The RIV Method

The RIV method ranks predictor variables by weights, where larger predictor weights
are considered more important, while those with lower weights are considered less impor-
tant [71]. The advantage of this method is that it ensures that the variables are not evaluated
as if all are equally important. By appropriate variable weighting, our model can determine
which factors will have the most influence on the outcome. The ranking and weighting of
variables improves the model accuracy, as the weighting reflects the contribution of each
parameter to the outcome. A package for AIC determination was used to identify the level
of importance for each variable using the RIV method [72].

To estimate the RIV of variable xj, the sum of all Akaike weights is required (i.e., AIC)
across all the models in the set where j occurs; the sum of w+(j) reflects the importance
of the variable. This sum is denoted as a numerical value between 0 and 1. The larger the
sum w+(j) (i.e., closer to 1), the more important the variable is relative to other variables
tested. Using w+(j), all the variables can be ranked in order of their importance.

The effect size is based on model-averaged estimates. It is, therefore, important to
ensure a balance in the number of models which include the variable j. In other words, to
ensure an accurate reflection of the importance of one variable versus another, a combi-
nation of models is required, which contain all prospective variables in equal proportion
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across all models, allowing each variable to be tested on an equal footing. Otherwise, if one
variable were to be found more frequently across our test models, as compared to another,
it may inadvertently give the more frequently occurring variable the advantage.

Typically, to calculate the Akaike weights, the following formulae are used:

AIC = −2 log
(
L
(
θ̂
∣∣data

))
+ 2K (15)

∆i = AICi −AICmin (16)

L(gi|data) = exp
(
−∆i

2

)
= likelihood of model gi (17)

wi =
exp

(
−∆i

2

)
∑R

r=1 exp
(
−∆r

2

) (18)

Alternatively, the weights can be viewed as a proportion of evidence,

w+(j) = ∑i for Xj∈gi
wi (19)

which is the sum of the model weights for the subset of the models that contain the predictor
variable xj. The sum of the models for the subset of all the models that did not contain the
predictor variable xj is:

w−(j) = ∑i for Xj /∈gi
wi (20)

Hence, the importance of predictor xj is associated with the contrast between w+(j)
and w−(j), with w+(j) + w−(j) = 1. The larger the w+(j) value is, the more important the
predictor xj.

2.5.7. Treatment of Missing Data

Generally, mixed-effects models are more flexible in the treatment of missing data than
fixed-effects models. It is reasonable to assume that a mixed model is capable of handling
the imbalance caused by missing observations, provided that the data points are missing
at random. When data cannot be considered to be missing at random, ad hoc approaches,
such as the “last value carried forward” (i.e., where the last observed value of the response
variable is substituted for every subsequent missing observation), are used [47].

For the selection of the mixed-effects model, we opted to use two methods to correct
for missing data: the multiple imputation (MI) method to identify potential predictor
variables and the stacked MI method to validate (or possibly further investigate) our
original findings. For the RIV analysis, we simply used the MI method. Both methods
aimed to restore the dataset from its incomplete state to that of completeness by substituting
reasonable estimates for each missing data point.

The MI method, which was proposed by Rubin in 1978, rectifies the major disadvan-
tage of single imputation—the under-representation of uncertainty [73–75]. While MI has
the appeal of restoring the full dataset, we realise that there is no way to recover the actual
unknown missing values. It is, therefore, important to note that imputed datasets are not to
be treated as substitutes for true completed datasets but rather designed to produce valid
overall inferences from the original incomplete dataset [76].

2.5.8. The Multiple Imputation (MI) Method

Generate an m number of copies of the incomplete dataset, using an appropriate
procedure to impute the missing values in each copy. As we do not know the true values,
the imputed values used in each copy are different from each other. The m values are
ordered in the sense that the first components of the vectors for the missing values are
used to create one completed data set, the second components of the vectors are used to
create the second complete data set, and so on. Each completed dataset is analysed using
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standard complete-data methods [77]. The repetition of m times accounts for variability
due to unknown values [78,79]. We opted to produce m = 5 imputed datasets, producing
five separate (and complete) datasets, each with 150 rows of data.

(a) For each imputed copy of the dataset, standard analysis is performed, and the param-
eter estimates of interest are stored.

(b) Using “Rubin’s rules”, a combined estimate of the parameter is generated as the
average of the m separate estimates [76].

Step 1, the imputation step, predicts or fills in the missing values multiple times using
the conditional distribution of the observed data. Although several imputation methods
exist, such as predictive mean matching, the Markov Chain Monte Carlo (MCMC), or
chained equations, the preferred method is one that matches that missing data pattern [80].

In the process of model selection, the MI method generally yields different predictor
variables across each dataset. Three strategies have been proposed which “combines” and
identifies the single most suitable model across all imputed datasets [81]:

(a) Select predictors that appear in any model;
(b) Select predictors that appear in at least half of the models;
(c) Select predictors that appear in all of the models.

In this study, it was found that the second of the proposed methods was preferred,
as it allowed us to find commonalities between each imputed dataset and provided the
flexibility to assess the discrepancies in variables that appeared infrequently across all
the datasets.

We additionally used the stacked weighted regression method to validate the model
findings using the MI method. Rather than reviewing each imputed dataset separately, the
five imputed datasets were “stacked” to create one large dataset of length m× n in place
(m imputed datasets for n individuals). While fitting models to single-stacked data yields
and valid parameter estimates, standard errors may end up being too small. To correct this
issue, we scaled the log-likelihood for the stacked data using weights in our regression
models, which additionally accounted for the degree of missing information in the dataset:

wi =
1− f

m
(21)

where f is the fraction of missing data across all variables—the total number of missing
data divided by np, with n being the number of individuals (150), and p is the number of
predictor variables (19) [81,82].

For both our MI and stacked MI methods, we used the R package Amelia [83]. Amelia
resamples the original data using a bootstrap algorithm while implementing an expectation-
maximisation (EM) algorithm—an iterative method for maximum likelihood or maximum a
posteriori estimates [84]. Amelia uses all observed data to estimate the missing values, then
creates several complete datasets that include the original data points plus slightly different
imputed points to account for uncertainty (Figure 1). For stacked MIs, the same method of
imputation takes place, with the addition of including the command separate = FALSE to
ensure the imputed datasets are not separated and kept as one (Figure 2).
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Figure 2. Schematic illustration of multiple imputation and stacked dataset method. This illustration
demonstrates the imputation of an incomplete dataset five times. The imputed datasets are then
“stacked” together to form one large dataset. Rather than carrying out multiple analyses and combing
the results, this method allows the analysis of one single dataset. * refers to imputed portions
of dataset.

3. Results
3.1. Summary Statistics

Our cohort of 150 eyes consisted of 85 eyes (56.7%) from females and 65 eyes (43.3%)
from males (Table 1). The mean age, with standard deviation (SD) at the baseline, was
78.9 ± 7.3 years. The mean baseline VA for the LE was 53.5 ± 24.0 letters, while the RE was
48.4 ± 24.3. At the baseline, ranibizumab was injected 122 times (81.3%) and bevacizumab
28 (18.7%).
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Table 1. Summary statistics: patient demographics and clinical characteristics collected at baseline.

Sex, n (%)
Female 85 (56.7)
Male 65 (43.3)
Age (years)
Mean ± SD 78.9 ± 7.3
Range 54–102
Baseline VA, LE
Mean ± SD 53.5 ± 24.0
Range 0–88
Baseline VA, RE
Mean ± SD 48.4 ± 24.3
Range 2–90
Number of injections at baseline, n (%)
Ranibizumab 122 (81.3)
Bevacizumab 28 (18.7)
Smoking Status, n (%)
No 53 (35.3)
Yes—Past 64 (42.7)
Yes—Present 19 (12.7)
Yes—Virtually Never 8 (5.3)
Missing 6 (4.0)
Smoker Packs (years)
Mean ± SD 39.1 ± 28.7
Range 2–126
Treated Eye, n (%)
LE 64 (42.7)
RE 86 (57.3)
Hypertension, n (%)
No 48 (32)
Yes 102 (68)
Diabetes, n (%)
No 118 (78.7)
Yes 25 (16.7)
Missing 7 (4.6)
OCT IRF, n (%)
Absent 24 (16)
Present 85 (56.7)
Missing 41 (27.3)
OCT SRF, n (%)
Absent 24 (16)
Present 84 (56)
Missing 42 (28)
OCT PED, n (%)

Most patients were treated for the RE, with 86 (57.3%) patients being treated in the RE,
while 64 (42.6%) were treated in the LE. Ten (6.7%) patients were treated in both the LE and
RE. A total of 102 (68%) patients had hypertension, and 25 (16.7%) had diabetes.

Missing Values

Figure 3 displays a Heatmap which highlights missing values. Variables with no
missing data included: the treated eye, age, gender, hypertension, smokerpacks, and
baseline VA. Variables with a few missing data included: paternal (2%) and maternal
ethnicity (1.33%), smoking status (4%), diabetes (4.67%), time (in weeks) (4.8%), and
treatment quantity (5.2%). Finally, variables that contained a substantial amount of missing
values included: OCT derived SRF (18.13%), IRF (18.27%), CMT (19.47%), PED (20.67%),
haemorrhage (24.8%), and the treatment drug (35.6%). We assumed that greater variability
in our outcomes would be found in the last set of variables and anticipated consistent
results for all other variables.
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Figure 3. Missing map for original dataset. The map illustrates missing values across all variables
tested for the treatment duration of 24 months. Those marked with dark red represent observed and
available data, while the light pink represents missing data. Most of the missing information can be
found in OCT derived variables. We found that treatment drug had the most missing values (35.6%),
followed by haemorrhage (24.8%), and PED (20.67%).

3.2. The Mixed-Effects Model
3.2.1. Identifying Predictor Variables

We tested for all possible combinations of all 19 predictor variables (i.e., 524,288 models,
including null models) for each imputed dataset and stacked imputed datasets. Possible
combinations were tested in the following format:

1. Inspect the ith combination of predictor variables;
2. Add the ith combination into a mixed-effects formula, which includes the random

effects variables for time and subject;
3. Store the AIC;
4. Store the BIC;
5. Once all possible combinations have been tested, list the combinations that produce

the smallest AIC and BIC values.

Each tested model followed the format below:

Response = ith combination of predictor variables + random effects (22)
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Using the MI method with five separate datasets (Table S2, Supplementary Materials),
we initially identified the following predictors as producing the models with the lowest
AIC/BIC for both the LE and RE.

In our methods (Treatment of Missing Data), our process of selecting the most appro-
priate predictors for a model included finding variables that appeared in at least half of
the imputed dataset outcomes, with the flexibility to explore other predictor variables that
occurred less frequently.

We then proceeded to repeat our analysis using the single stacked imputed dataset
(Table S3, Supplementary Materials) in place of five separate imputed datasets.

Following the results from both methods, we proceeded to test models that included
any of the predictors included in Tables S2 and S3 in the Supplementary Materials. The
final model choice was additionally based on: (1) diagnostic outcomes and (2) prediction
accuracy. The following model for both the LE and RE provided the most consistent
prediction outcomes, in line with model assumptions:

Yi = β0 + ∑j=10
j=1 β jXj + Ziui + εi (23)

Yi = VA at time t (LE or RE); X1 = LE baseline VA; X2 = RE baseline VA; X3 = OCT IRF;
X4 = OCT CMT; X5 = time (in weeks); X6 = treatment quantity; X7 = treatment drug;
X8 = treated eye; X9 = OCT haemorrhage; and X10 = OCT PED.

While other potential variables such as age, hypertension, and OCT SRF were also
tested, it was found that the addition of these variables to the model neither added nor
subtracted from the accuracy of the model. The preference was for an efficient model, with
the least variables needed to produce an accurate outcome and to guard against over-fitting
with the ten selected variables forming the basis of the final model.

3.2.2. Model Diagnostics

Residual versus fitted plots for both LE and RE models (Figure 4) demonstrated a
relatively even distribution. Some data points which were located considerably further out
than most other data points could be considered potential outliers. The normal probability
plots (Figure 5) for both these models were generally normally distributed, with some
deviation noted at the tail ends. While these plots suggested that the models were a good
fit for the data, we must consider the possibility of influential data points.

Using DFBETAS plots for both the LE (Figure 6) and RE (Figure 7) models, several
data points for both models exceeded the cut-off value of 2√

n = 0.17. Using the sigtest(),
which identified the statistical changes in the model that may be caused by the removal
of a potentially influential data point, the removal of the DFBETAS, which exceeded the
cut-off values, did not cause changes in the outcome for either the LE or RE models.

Using Cook’s distance plots for both the LE (Figure 8) and RE (Figure 9), several plot
points exceeded the cut-off 4

n = 0.027. We reviewed these points by momentarily excluding
them using exclude.influence() and re-assessing our models; we found that the exclusion of
these points did not affect or change our model outcomes.

These results suggest that, while there are several potentially influential data points, no
data points appeared to be overly influential on our models. Additionally, we noticed that
the original outliers we had noted in the residual versus fitted plots (Figure 4) appeared
in our potentially influential analysis. However, similar to all the other potential data
points, we noticed that the originally identified outliers had no bearing on the model
(or prediction) accuracies. While we opted not to delete outlier points for posterity, we
modified the dimensions of the residual versus fitted plots to demonstrate that, sans the
outliers, we could clearly see evenly distributed and well-spaced data points of our residual
plot (Figure 10), further validating that our model assumptions had been met.
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Figure 4. Residual versus fitted value plots. (a) LE model and (b) RE model. The residual plots
appear to be evenly distributed, with no particular patterns emerging; this suggests the models are
generally good fits to the data.
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Figure 10. Residual versus fitted value plot. (a) LE model and (b) RE model without outliers. It is
evident that the model assumptions include evenly distributed and randomly spaced plot points.

3.2.3. Prediction Accuracy

The forecasting accuracy for the prediction model was evaluated for both the LE and
RE models (Table 2). Very low ME results were evident in both LE and RE models. Both
sets of MAD results were quite low, with the LE model having a MAD of 1.70–1.87 and the
RE model with a MAD value of 1.48–1.55. The RMSE ranged from 3.54 to 3.95 for the LE
model and from 3.54 to 3.95 for the RE model.

Table 2. Metrics for model performance.

ME MAD RMSE MPE MAPE (%) Marginal R2 Conditional R2

LE Model
0.016 1.70 3.54 −0.02 5.56 0.80 0.92
0.004 1.87 3.94 −0.02 6.37 0.80 0.92
−0.002 1.87 3.95 −0.02 6.39 0.80 0.92

RE Model
−0.002 1.48 3.54 −0.03 7.02 0.75 0.95
0.016 1.53 3.94 −0.03 7.01 0.75 0.95
−0.005 1.55 3.95 −0.03 7.41 0.75 0.95

With respect to the MPE and MAPE, the aim was to identify models which had a
MAPE of less than 10%. MAPE for the LE model ranged from 5.56 to 6.39%, and for the
RE model, from 7.02 to 7.41. Both models met the MAPE objective. Both LE and RE model
MPE results were very low, being −0.02 and −0.03, respectively.
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Finally, for goodness-of-fit, which included both the marginal and conditional R2,
both models had values close to 1, suggesting that the models were a good fit to the data.
Figures 11 and 12 provide a visual demonstration of the proximity between the observed
and predicted values. The forecasting errors, along with the visual aids, suggest that the
models, in general, have very good prediction accuracy, and the approach is suitable for
predicting VA outcomes during anti-VEGF treatment for AMD patients.
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3.3. Relative Variables of Importance

We computed two sets of RIV analyses: (1) for all nineteen variables that were available
(i.e., clinical variables available to ophthalmologists) and (2) for the ten predictor variables
found only in our LE and RE models. We ran analyses across the five imputed datasets
produced using Amelia. RIVs were weighted for both the LE (Table 3 for the full list of
variables; Table 4 for model-only variables) and RE (Table 5 for the full list of variables;
Table 6 for model-only variables), with the outcome set as the follow-up VA scores over the
course of 24 months.

Table 3. Relative variables of importance across five imputed datasets for treated LE of all variables.

Variable Weights 1st Imputed
Data

2nd Imputed
Data

3rd Imputed
Data

4th Imputed
Data

5th Imputed
Data Average

Age w+ 0.33 0.32 0.31 0.34 0.35 0.33

w− 0.67 0.68 0.69 0.66 0.65 0.67

Baseline VA (LE)
w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

Baseline VA (RE)
w+ 0.42 0.39 0.43 0.42 0.4 0.412

w− 0.58 0.61 0.57 0.58 0.6 0.588

CMT
w+ 0.35 0.27 0.31 0.33 0.31 0.314

w− 0.65 0.73 0.69 0.67 0.69 0.686

Diabetes
w+ 0.71 0.61 0.61 0.73 0.71 0.674

w− 0.29 0.39 0.39 0.27 0.29 0.326

Ethnicity (maternal) w+ 0.32 0.32 0.34 0.27 0.31 0.312

w− 0.68 0.68 0.66 0.73 0.69 0.688

Ethnicity (paternal) w+ 0.32 0.31 0.37 0.29 0.29 0.316

w− 0.68 0.69 0.63 0.71 0.71 0.684

Gender
w+ 0.3 0.31 0.38 0.32 0.3 0.322

w− 0.7 0.69 0.62 0.68 0.7 0.678

Haemorrhage w+ 0.29 0.29 0.27 0.27 0.29 0.282

w− 0.71 0.71 0.73 0.73 0.71 0.718

Hypertension w+ 0.35 0.32 0.29 0.33 0.33 0.324

w− 0.65 0.68 0.71 0.67 0.67 0.676

IRF
w+ 0.33 0.29 0.34 0.27 0.77 0.4

w− 0.67 0.71 0.66 0.73 0.23 0.6

PED
w+ 0.27 0.5 0.77 0.27 0.38 0.438

w− 0.73 0.5 0.23 0.73 0.62 0.562

Smokerpacks w+ 0.28 0.3 0.28 0.28 0.3 0.288

w− 0.72 0.7 0.72 0.72 0.7 0.712

Smoking status w+ 0.49 0.43 0.45 0.39 0.44 0.44

w− 0.51 0.57 0.55 0.61 0.56 0.56

SRF
w+ 0.27 0.34 0.37 0.35 0.31 0.328

w− 0.73 0.66 0.63 0.65 0.69 0.672
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Table 3. Cont.

Variable Weights 1st Imputed
Data

2nd Imputed
Data

3rd Imputed
Data

4th Imputed
Data

5th Imputed
Data Average

Time (weeks)
w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

Treated eye w+ 0.99 0.99 0.99 0.99 0.96 0.984

w− 0.01 0.01 0.01 0.01 0.04 0.016

Treatment drug w+ 0.27 0.33 0.42 0.27 0.28 0.314

w− 0.73 0.67 0.58 0.73 0.72 0.686

Treatment quantity w+ 0.91 0.85 0.95 0.88 0.96 0.91

w− 0.09 0.15 0.05 0.12 0.04 0.09

CMT: Central macular thickness; IRF: Intra-retinal fluid; PED: Pigment epithelium detachment; SRF: Sub-retinal
fluid; VEGF: Vascular endothelial growth factors.

Table 4. RIV across five imputed datasets for LE prediction model only.

Variable Weights 1st Imputed
Dataset

2nd Imputed
Dataset

3rd Imputed
Dataset

4th Imputed
Dataset

5th Imputed
Dataset Average

Treated eye w+ 1 0.99 0.99 0.99 0.99 0.99

w− 0 0.01 0.01 0.01 0.01 0.01

Baseline VA (LE)
w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

Time (weeks)
w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

Treatment quantity w+ 0.91 0.84 0.84 0.84 0.84 0.85

w− 0.09 0.16 0.16 0.16 0.16 0.15

Treatment Drug w+ 0.3 0.29 0.29 0.29 0.29 0.29

w− 0.7 0.71 0.71 0.71 0.71 0.71

IRF
w+ 0.51 0.54 0.54 0.54 0.54 0.53

w− 0.49 0.46 0.46 0.46 0.46 0.47

CMT
w+ 0.29 0.27 0.27 0.27 0.27 0.27

w− 0.71 0.73 0.73 0.73 0.73 0.73

Haemorrhage w+ 0.32 0.46 0.46 0.46 0.46 0.43

w− 0.68 0.54 0.54 0.54 0.54 0.57

Baseline VA (RE)
w+ 0.41 0.4 0.4 0.4 0.41 0.40

w− 0.59 0.6 0.6 0.6 0.59 0.60

PED
w+ 0.93 0.65 0.65 0.65 0.65 0.71

w− 0.07 0.35 0.35 0.35 0.35 0.29

CMT: Central macular thickness; IRF: Intra-retinal fluid; PED: Pigment epithelium detachment; SRF: Sub-retinal
fluid; VEGF: Vascular endothelial growth factors.
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Table 5. Relative variables of importance across five imputed datasets for treated RE for all variables.

Variable Weight 1st Imputed
Dataset

2nd Imputed
Dataset

3rd Imputed
Dataset

4th Imputed
Dataset

5th Imputed
Dataset Average

Age w+ 0.87 0.86 0.87 0.78 0.7 0.816

w− 0.13 0.14 0.13 0.22 0.3 0.184

Baseline VA (RE)
w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

Baseline VA (LE)
w+ 0.3 0.28 0.28 0.28 0.31 0.29

w− 0.7 0.72 0.72 0.72 0.69 0.71

CMT
w+ 1 1 1 1 0.99 0.998

w− 0 0 0 0 0.01 0.002

Diabetes
w+ 0.26 0.26 0.37 0.28 0.26 0.286

w− 0.74 0.74 0.63 0.72 0.74 0.714

Ethnicity (maternal) w+ 0.35 0.38 0.39 0.37 0.34 0.366

w− 0.65 0.62 0.61 0.63 0.66 0.634

Ethnicity (paternal) w+ 0.4 0.45 0.44 0.42 0.42 0.426

w− 0.6 0.55 0.56 0.58 0.58 0.574

Gender
w+ 0.3 0.27 0.3 0.29 0.29 0.29

w− 0.7 0.73 0.7 0.71 0.71 0.71

Haemorrhage w+ 0.34 0.27 0.34 0.27 0.26 0.296

w− 0.66 0.73 0.66 0.73 0.74 0.704

Hypertension w+ 0.28 0.29 0.27 0.28 0.27 0.278

w− 0.72 0.71 0.73 0.72 0.73 0.722

IRF
w+ 0.28 0.26 0.27 0.27 0.34 0.284

w− 0.72 0.74 0.73 0.73 0.66 0.716

PED
w+ 0.26 0.3 0.27 0.28 0.48 0.318

w− 0.74 0.7 0.73 0.72 0.52 0.682

Smokerpacks w+ 0.36 0.45 0.38 0.47 0.53 0.438

w− 0.64 0.55 0.62 0.53 0.47 0.562

Smoking status w+ 0.74 0.73 0.82 0.49 0.31 0.618

w− 0.26 0.27 0.18 0.51 0.69 0.382

SRF
w+ 0.27 0.26 0.27 0.27 0.36 0.286

w− 0.73 0.74 0.73 0.73 0.64 0.714

Time (weeks)
w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

Treated eye w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

Treatment drug w+ 0.95 1 0.43 0.58 0.98 0.788

w− 0.05 0 0.57 0.42 0.02 0.212

Treatment quantity w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

CMT: Central macular thickness; IRF: Intra-retinal fluid; PED: Pigment epithelium detachment; SRF: Sub-retinal
fluid; VEGF: Vascular endothelial growth factors.
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Table 6. RIV across five imputed datasets for RE prediction model only.

Variable Weights 1st Imputed
Dataset

2nd Imputed
Dataset

3rd Imputed
Dataset

4th Imputed
Dataset

5th Imputed
Dataset Average

Treated eye w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

Baseline VA (LE)
w+ 0.3 0.27 0.27 0.27 0.27 0.28

w− 0.7 0.73 0.73 0.73 0.73 0.72

Time (weeks)
w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

Treatment quantity w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

Treatment Drug w+ 0.49 0.44 0.44 0.44 0.44 0.45

w− 0.51 0.56 0.56 0.56 0.56 0.55

IRF
w+ 0.29 0.27 0.27 0.27 0.27 0.27

w− 0.71 0.73 0.73 0.73 0.73 0.73

CMT
w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

Haemorrhage w+ 0.29 0.33 0.33 0.33 0.33 0.32

w− 0.71 0.67 0.67 0.67 0.67 0.68

Baseline VA (RE)
w+ 1 1 1 1 1 1

w− 0 0 0 0 0 0

PED
w+ 0.28 0.32 0.32 0.32 0.32 0.31

w− 0.72 0.68 0.68 0.68 0.68 0.69

CMT: Central macular thickness; IRF: Intra-retinal fluid; PED: Pigment epithelium detachment; SRF: Sub-retinal
fluid; VEGF: Vascular endothelial growth factors.

Generally, results across all the imputed datasets were consistently similar. We did,
however, note a single anomaly in the LE outcomes (Table 3): the IRF in the fifth imputed
dataset had a w+ of 0.77 and w− of 0.23, which contrasted with the previous four imputed
dataset outcomes. We repeated our analysis for this measure, and the weight scores re-
mained the same. To account for any uncertainties, we averaged the results across all five
imputed sets for each variable.

Once averaged, the weights were identified for each eye, and the variables were then
ranked based on their average weighted scores across both eyes (Table 7 for the full list of
variables; Table 8 for model-only variables). The top four variables were always classified
as “Highly Important” and with average w+ scores of at least 0.9 were: the treated eye, the
baseline VA of the treated eye, the time (measured in weeks), and the number of injections
received throughout the 24 months. No variables were classified as “Important”, which
included weight scores of between ≥0.7 and <0.9.

For the full list of variables, four variables were identified as “Moderate” based on a
weighted score of between ≥0.5 and <0.7; these were: age, smoking status, the treatment
drug, and CMT. It is worth noting that the moderate score for the treatment may purely
be due to the use of either ranibizumab or bevacizumab in our studies; both anti-VEGFs
were categorised as having similar treatment profiles. Diabetes and the baseline VA of
the untreated eye were classified as “Low to Moderate” in importance based on weight
scores of between ≥0.4 and < 0.5. Finally, variables with the lowest ranks (i.e., w+ < 0.4)
were gender, IRF, SRF, haemorrhage, PED, smokerpacks, hypertension, and ethnicity (both
maternal and paternal).
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Table 7. Classification of all 19 variables into groups.

Variables Level of Importance

Baseline VA of treated eye Highly Important
Treated eye Highly Important
Time (weeks) Highly Important
Number of injections Highly Important
Age Moderate
Smoking Status Moderate
Treatment drug Moderate
CMT Moderate
Baseline VA of untreated eye Low to Moderate
Diabetes Low to Moderate
Gender Low
IRF Low
SRF Low
Haemorrhage Low
PED Low
Smokerpacks Low
Hypertension Low
Ethnicity (maternal) Low
Ethnicity (paternal) Low

Level of importance was based on the following criteria: Highly important: w+ ≥ 0.9; Important: w+ ≥ 0.7 and
<0.9; Moderate w+ ≥ 0.5 and <0.7; Low to Moderate: w+ ≥ 0.4 and <0.5; Low: w+ < 0.4.

Table 8. Rank of all nine variables found in LE and RE models.

Variables Level of Importance

Baseline VA of treated eye Highly Important
Treated eye Highly Important
Time (weeks) Highly Important
Number of injections Highly Important
CMT Moderate
PED Moderate
IRF Low to Moderate
Baseline VA of untreated eye Low to Moderate
Haemorrhage Low
Treatment drug Low

Level of importance was based on the following criteria: Highly important: w+ ≥ 0.9; Important: w+ ≥ 0.7 and
<0.9; Moderate w+ ≥ 0.5 and <0.7; Low to Moderate: w+ ≥ 0.4 and <0.5; Low: w+ < 0.4.

For the model-only variables, those that were identified as “Moderate” included CMT
and PED. Those in the “Low to Moderate” categories were the baseline VA of the untreated
eye, and IRF. Treatment drug and haemorrhage in this instance was noted as being “Low.”

When comparing the rank of variables between the full list of variables available and
those of our model, we noticed for the most part the rank/order of the variables were
similar. Minor differences were evident. However, this is unsurprising given that the RIV
method ranks variables as relative to the presence of other variables. Overall, though, the
rank/order generally appears to remain the same across the board.

4. Discussion

Many AMD patients have variable responses to anti-VEGF injections due to medical
issues, lifestyle, and demographic factors. A machine learning approach was developed for
the prediction of VA outcomes that accounted for these modifying factors and also ranked
the predictors in order of importance. The prediction model included age, treated baseline
VA, the time of treatment, treatment quantity, the treated eye, baseline of the untreated eye,
treatment drug, CMT, IRF, PED, and haemorrhage.

The analytic approach combined a mixed-effects (ME) model and RIV methods, to-
gether with the treatment of missing values with the multiple imputation (MI) method and
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various statistical diagnostic tests to confirm the validity of the model assumptions, such as
the normality of residuals.

The variables with the highest rankings included the baseline VA of the treated eye,
the time of treatment, treatment quantity, and the treated eye. Given that these variables
are important aspects of the anti-VEGF response, their high rankings are unsurprising. The
presence of variables, such as age, hypertension, and SRF, had a less significant impact
on the accuracy of the model predictions of VA. The analytic approach had a number of
strengths and weaknesses, which are described as follows.

4.1. Strengths of the Study

Incorporating mixed-effects modelling as part of a machine learning approach is
consistent with the analysis of biological and medical data [31], as it provides flexible
and powerful statistical tools for controlling stratification, relatedness, and confounding
factors [32–34]. Features that support statistical confidence in the methodology include the
use of the ME and RIV methods to aid in the assessment of predictor importance and the
multiple imputation (MI) treatment of missing values. Statistical diagnostics produced very
good support for the model with respect to the analysis of residuals and outliers, using
methods such as Q–Q plots and Cook’s distance.

There were two noteworthy features of the machine learning approach described
in this investigation. First, the use of time as an explicit variable in the model is often
absent in other machine learning approaches, especially in classification studies compar-
ing training data with test data. This means that no assumptions were necessary on the
issue of non-stationarity in the time-series statistics for function approximation, and there
was no confounding of the time in either the training or test data, thus reducing error
and uncertainty.

The second feature of note is that the weighting and ranking of predictors, as described
by the methods in this study, provides information on the relative impact of each predictor
on visual acuity and, therefore, adds a degree of explainability to the results. In machine
learning research, there is currently a strong interest in improving explainability in order
to reveal the reasoning used in decision-making and to avoid a black-box analysis by
AI algorithms [38]. In the case of explainable AI research, there is a class of approaches
commonly referred to as ‘attribution’ methods, which assign to each input feature a score
representing its contribution to the response function [85,86]. The machine learning method
in this study is an example of such an attribution approach.

4.2. Limitations of the Study

The study also has several limitations. With respect to the collection of clinical data.
The data were collected retrospectively, and the treatment protocol varied according to a
clinician’s choice. The cohort was collected early in the history of anti-VEGF treatment, and
as such, individual clinician treatment protocols may have evolved in more recent cases.
Similarly, the OCT quality was lower compared to the current advances in spectral domain
OCT technology. As such, the ability to judge the presence of SRF and IRF scarring was not
as accurate as it could have been if the cohort had been collected more recently. Missing
data, particularly relating to retinal characteristics identified by OCT, were most likely due
to poor-quality OCT images.

To account for the missing data, we created both multiple and separately imputed
and stacked imputed versions of the original dataset, with the latter being created for
model validation purposes. The objective of the multiply imputed datasets was to account
for uncertainty by generating imputed values that not only mimicked the distribution of
the original data but were also slightly different for each imputed dataset to account for
any potential uncertainty. Our second limitation was the use of RIV itself. We assessed
these variables as relative to each other; their values may have changed if they were tested
against other, stronger predictor variables.



Life 2022, 12, 1926 26 of 30

We believe that the model weights wi summed over all the models that included a
given variable provided a better weight of evidence for the importance of each variable in
the context of the set models considered. Using the predictor variables that were considered
of interest, the rank of the aforementioned predictors (Tables 5 and 8) provided a good indi-
cation of the relative importance of the variables considered in determining the treatment
response. However, with improved imaging technology, new variables, and new data, it is
feasible that the relative importance of some variables may need updating—which can be
accomplished using the proposed approach.

5. Conclusions

This study developed a methodology and prediction model for visual acuity (VA)
response following anti-VEGF therapy in nAMD patients. The analysis provided an ap-
proach for targeting and prioritising contextual factors that may have an impact on the
degree of success in the treatment of wet AMD with anti-VEGF treatments. The evaluation
of visual responses included the assessment of clinical, lifestyle, and demographic factors.
The approach combined mixed-effects modelling with the relative importance of variables
(RIV) modelling, together with statistical learning approaches and data processing with
diagnostic tests. The most important predictors were confirmed as the baseline VA, time
to treatment, treatment quantity, and the treated eye involved. There were also impacts
from OCT features, such as CMT, IRF, PED, and the presence of haemorrhage, together
with lifestyle and demographic factors, such as age and ethnicity.

There are several noteworthy features of the study. The incorporation of mixed-effects
modelling as part of the machine learning approach is compatible with the analysis of
biological and medical data. The approach provided powerful statistical tools for con-
trolling stratification, relatedness, and confounding factors. Statistical confidence in the
methodology is highlighted by the use of mixed-effects modelling and RIV methods for the
assessment of predictor importance and the multiple imputation (MI) treatment of missing
values. Statistical diagnostics underpinned the model performance with respect to the
analysis of residuals and outliers, using methods such as Q–Q plots and Cook’s distance.

The study provided support for the use of machine learning in personalised medicine.
The machine learning approach investigated had some notable attributes. First, the use of
time as an explicit variable avoids issues of non-stationarity and confounding in statistics
that may be a problem in classification studies. Second, the approach had a degree of
explainability because of its inclusion of attribution analysis.

The flexibility of the approach allowed for extending the model to investigate other
potential predictors from personal electronic health records and also updating weights with
new training data.

Supplementary Materials: The following supporting information can be downloaded at: https:
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based on stacked imputed dataset.
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