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Abstract: Functional imaging with new photoacoustic tomography (PAT) offers improved spatial
and temporal resolution quality in in vivo human skin vascular assessments. In the present study,
we followed a suprasystolic reactive hyperemia (RH) maneuver with a multi-spectral optoacoustic
tomography (MSOT) system. A convenience sample of ten participants, both sexes, mean age of
35.8 ± 13.3 years old, was selected. All procedures were in accordance with the principles of good
clinical practice and approved by the institutional ethics committee. Images were obtained at baseline
(resting), during occlusion, and immediately after pressure release. Observations of the RH by PAT
identified superficial and deeper vascular structures parallel to the skin surface as part of the human
skin vascular plexus. Furthermore, PAT revealed that the suprasystolic occlusion impacts both plexus
differently, practically obliterating the superficial smaller vessels and evoking stasis at the deeper,
larger structures in real-time (live) conditions. This dual effect of RH on the skin plexus has not been
explored and is not considered in clinical settings. Thus, RH seems to represent much more than the
local microvascular reperfusion as typically described, and PAT offers a vast potential for vascular
clinical and preclinical research.

Keywords: optoacoustic tomography; PAT; vascular physiology; reactive hyperemia; human upper
arm

1. Introduction

Vascular functional imaging has generated a considerable amount of interest in the
last years in preclinical and clinical research. Knowledge of vascular physiology and
pathophysiology is critical to the understanding of disease mechanisms [1–4], and recent
developments in non-invasive combined sound- and light-based technologies have pro-
vided new directions of exploration [1,3–5]. Photoacoustic tomography (PAT) depicts
acoustic waves generated by the thermoelastic expansion of structures, typically endoge-
nous chromophores such as hemoglobin and melanin, due to the absorption of light [3,5–8].
This expansion can be quantified, providing real-time information on the circulatory status
of the assessed body region.

PAT is regarded as a deep-tissue imaging technology, not comparable to surface
imaging techniques such as capillaroscopy and confocal microscopy or to other intermediate
imaging techniques such as OCT (optical coherence tomography) [3,8,9]. It is accepted
that PAT penetrates deeper with high-resolution than optical tomography and offers better
contrast with fewer artifacts than high-resolution sonography [3,5,6,10]. In fact, using
ultrasound in place of optical detection eliminates photon scattering. Moreover, considering
other comparable technologies, PAT is fast, accurate, and does not use ionizing radiation.
For all these reasons, the development of PAT applications has increased in various domains,
although with a particular interest in cardiovascular biology. Human skin is often targeted
as a primary organ due to its accessibility and the real-time structural, molecular, and
metabolic information which may be provided by PAT [3,10–14].
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Our research follows these views, assuming that PAT provides a different analytical
perspective and a deeper look into these multiple complexities of vascular physiology
and pathophysiology [1,2,5,15]. With the (specific) thermoelastic expansion measured,
PAT enables a vessel-by-vessel quantification of perfusion-related chromophores, supply-
ing functional information in different (spatial) planes that may allow researchers and
physicians to map each circulatory region. By extension, multiple wavelengths of light in
multi-spectral optoacoustic tomography (MSOT) enable the separation of different chro-
mophores, reportedly with higher spatial resolution and penetration capacities, and wave-
length unmixing and detailed image reconstruction is made with powerful post-acquisition
processing [1–5,16].

In the present study, we use an MSOT system to follow the live impact of reactive
hyperemia (RH), a classical experimental strategy used to challenge cardiovascular adaptive
capacity. Although long used as a predictor of cardiovascular impairment, many questions
remain regarding the mechanisms, significance, and applicability of RH responses [17–20].
Here we explore the applicability of the MSOT technology in healthy human vascular
physiology by assessing the RH evoked in the flexor forearm by the suprasystolic occlusion
of the brachial artery. By the diversity of information provided, we also aim to better
understand the adaptive intervenients in RH of the upper limb.

2. Materials and Methods
2.1. MSOT

The MSOT optoacoustic system from iThera Medical GmbH (Munich, Germany) was
used. The technical specifications and principles of the system have been detailed else-
where [5,6,8,16,21–23]. In brief, PAT detects sound waves generated when molecules absorb
optical light from a wave laser beam. This evokes a transitory thermoelastic expansion that
allows the identification of specific (excited) chromophores, as the signal pattern across the
wavelengths measured serves as an exclusive absorption feature for each (chromophore)
molecule [5–7].

2.2. Study Population

This exploratory study included ten healthy participants of both sexes, 18 to 60 years
old, selected after specific inclusion/non-inclusion criteria and previously informed about
the study’s purposes and procedures. The primary selection aspects were normotensive,
nonsmokers, and free of any chronic disease demanding regular medication or food supple-
mentation. The body mass index (BMI) and mean arterial pressure (MAP) were calculated
for all participants (Table 1). Caffeine and alcohol consumption was restricted during the
24 h prior to measurements, as was the application of any topical (including cosmetic)
products to the surface of the skin. The study followed the principles of good clinical prac-
tice established for human research [24] and was previously approved by the institutional
Ethics Committee (Process CE.ECTS/P10.21).

Table 1. General characteristics of selected participants (N = 10).

Participants Mean ± sd

Sex (F female; M male) F (5); M (5)
Smokers 0

Physical Activity (h/week) 3.0 ± 1.9
Age, years 35.8 ± 13.3

Body mass, kg 68.2 ± 9.8
Height, m 1.7 ± 0.1

BMI, kg/m2 23.7 ± 2.5
MAP, mmHg 91.4 ± 4.1

Data tested for normality with D’Agostino and Pearson test in GraphPad Prism with the multi-variable module
(Prism version 9 for MacOS); sd—standard deviation.
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2.3. Experimental

Before measurements, volunteers were allowed to adapt to the laboratory temperature,
humidity, and light (20–30 min).

Circulatory functional imaging was obtained under dynamic conditions through a
post-occlusive reactive hyperemia maneuver performed in the upper limb. The pressure
cuff was applied in the middle arm while measurements were obtained in the ventral fore-
arm, with the MSOT measurement probe, a 3D cup fixed to the surface of the forearm by a
flexible metal arm [16]. After baseline scan acquisition, the cuff was rapidly inflated with
200 mmHg to occlude the brachial artery. This pressure was maintained for one minute to
ensure hemodynamical stabilization in the area. The cuff was then rapidly deflated, and
videos were recorded during the immediate post-occlusion recovery. Throughout the exper-
imental procedure, the main chromophores oxyhemoglobin HbO2 and deoxyhemoglobin
Hb were simultaneously visualized (in real-time) by the MSOT system.

Videos were post-processed for image reconstruction by the ViewMSOT software
(iThera Medical version 4.0). MSOT software was used to collect data from selected regions
of interest (ROI) and to quantify HbO2, Hb, HbT (total hemoglobin, the sum of HbO2
and Hb), and the mean saturation of oxygen (mSO2) during the different stages of the
experiments. Image J software (National Institutes of Health, version 1.53k14) was also
used in the image reconstruction process.

2.4. Statistical Analysis

Statistical analysis was performed in GraphPad Prism 9.2.0.283 MachineID: 0861F12-
DB8D10. Normal distribution was tested with the Kolmogorov–Smirnov test and direct
observation of generated QQ plots.

3. Results and Discussion

MSOT scans provided images in frontal, transversal, and longitudinal planes, from
which various ROIs might be selected for further calculations. Baseline scans obtained in
the (central) flexor forearm were compared with the occlusion and post-occlusion scans
in the same area. High-resolution images were assessed at different depths detailing the
skin microcirculation organization at this site. PAT consistently revealed two vascular
plexuses parallel to the skin surface—larger vessels located 2 to 6 mm below the skin
surface corresponding to the deep plexus and smaller vessels located 0.6 to 2 mm below
the skin. The capillary structures corresponding to the papillary dermis were difficult to
visualize (Figure 1). Perpendicular structures connecting both plexus and deeper vascular
structures, likely crossing subcutaneous tissue and/or muscle, were also visible (Figure 1).
Considering this resolution capacity, the aim of our study was to visualize and quantify the
impact of a real-time RH procedure in both plexuses.

Through the ROI analysis of the MSOT scan images, HbO2, Hb, HbT, and mSO2 can
be determined [16,21,22]. HbT and SO2 are semi-quantitative physiological parameters
automatically calculated for each pixel whenever both Hb and HbO2 components are un-
mixed. According to the instrument manufacturer, different fluence and spectral coloring
will consistently impair the comparison of these MSOT descriptors with similar from other
technologies. Thus, ‘m’ is used to designate MSOT-derived oxygen saturation [22]. HbT
refers to the semi-quantitative sum of unmixed deoxy- and oxy-hemoglobin components
calculated from all pixels after setting negative pixels in Hb and HbO2 to 0 [22]. mSO2 rep-
resents the MSOT-derived fraction of oxygenated hemoglobin divided by total hemoglobin,
where mSO2 is calculated if (and only if) a pixel has Hb > 0 and HbO2 > 0 [22].



Life 2022, 12, 1628 4 of 9
Life 2022, 12, x FOR PEER REVIEW 4 of 9 
 

 

 
Figure 1. Illustrative images from the flexor aspect of the human forearm obtained with the MSOT 
technology. (a) Different vascular structures parallel to the skin surface are seen at different depths 
and assumed to correspond to the superficial and the deep skin plexuses; the different diameters 
seen are consistent with this assumption. The vascular structure running perpendicular likely 
corresponds to an arteriole connecting both plexuses. Some deeper structures might also be present 
in the same ROI. (b) The same structures shown in a 3D view. 
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[22]. HbT refers to the semi-quantitative sum of unmixed deoxy- and oxy-hemoglobin 
components calculated from all pixels after setting negative pixels in Hb and HbO2 to 0 
[22]. mSO2 represents the MSOT-derived fraction of oxygenated hemoglobin divided by 
total hemoglobin, where mSO2 is calculated if (and only if) a pixel has Hb > 0 and HbO2 > 
0 [22]. 

Image reconstruction focused on our chromophores of interest (Figure 2) indicates 
that the suprasystolic pressure clearly decreases HbO2 in the superficial plexus due to the 
collapse of those vessels, while HbO2 seems to increase at the deeper skin plexus, likely 
due to some transfer of blood from higher structures but also due to stasis and reduction 

Figure 1. Illustrative images from the flexor aspect of the human forearm obtained with the MSOT
technology. (a) Different vascular structures parallel to the skin surface are seen at different depths
and assumed to correspond to the superficial and the deep skin plexuses; the different diameters seen
are consistent with this assumption. The vascular structure running perpendicular likely corresponds
to an arteriole connecting both plexuses. Some deeper structures might also be present in the same
ROI. (b) The same structures shown in a 3D view.

Image reconstruction focused on our chromophores of interest (Figure 2) indicates
that the suprasystolic pressure clearly decreases HbO2 in the superficial plexus due to the
collapse of those vessels, while HbO2 seems to increase at the deeper skin plexus, likely
due to some transfer of blood from higher structures but also due to stasis and reduction
of the capacity of (O2) transfer to the tissues. Following the pressure release, the HbO2
signal slowly increased at the surface and decreased in the lower skin plexus. During the
experiments, Hb concentration profiles consistently evolved in the opposite direction in
both plexus (Figure 3). The calculated mSO2 decreased in both plexuses with occlusion,
with slow recovery (increase) after cuff deflation (Figure 4).
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occlusion with suprasystolic pressure. Different vascular structures parallel to the skin surface are 
depicted by the different colored chromophores at different depths during the different phases of 
the experimental protocol and are assumed to correspond to the superficial and the deep skin 
plexus. Additional subcutaneous structures can also be detected at deeper locations, although with 
reduced resolution. 

 
Figure 3. HbO2 and Hb signals obtained in the superficial (top) and the deeper skin plexus (bottom) 
of healthy participants (n = 10) during the experimental RH protocol. As shown, these parameters 

Figure 2. Illustrative images of HbO2 (red) and Hb (blue) from the flexor aspect of the human
forearm obtained with the MSOT technology during the reactive hyperemia induced by arterial
occlusion with suprasystolic pressure. Different vascular structures parallel to the skin surface
are depicted by the different colored chromophores at different depths during the different phases
of the experimental protocol and are assumed to correspond to the superficial and the deep skin
plexus. Additional subcutaneous structures can also be detected at deeper locations, although with
reduced resolution.
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Figure 3. HbO2 and Hb signals obtained in the superficial (top) and the deeper skin plexus (bottom)
of healthy participants (n = 10) during the experimental RH protocol. As shown, these parameters
progress in different directions during the procedure, indicating that the suprasystolic occlusion has
different effects at different depths, affecting global hemodynamics (please see text). Signals are
quantified by MSOT based on the identification of the respective chromophores (values correspond
to mean and SEM; data distribution was tested with the Kolmogorov–Smirnov test.
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Figure 4. MSOT-derived oxygen saturation (mSO2) signals obtained in the superficial (top) and
the deeper skin plexus (bottom) of healthy participants (n = 10) during the experimental RH pro-
tocol (please see text). Signals are quantified by MSOT based on the identification of the respec-
tive chromophores (values correspond to mean and SEM; data distribution was tested with the
Kolmogorov–Smirnov test).

RH is a widely used functional challenger used in vascular research. Mechanisms of
this response to ischemia in the human skin microcirculation are not clearly understood.
Still, RH is accepted to represent the magnitude of reperfusion in that anatomical location
following a (short) period of arterial occlusion [17–20]. Both metabolic and myogenic
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components seem to be present, but past studies suggest that sensory nerves play a central
role [3,17,25].

A principal concern involves the distinction between venous and arterial occlu-
sion. Measurements are normally performed after occluding macrocirculation vessels
(the brachial artery in the arm, as an example) to assess microcirculation through the skin. It
is known that venous and arterial systems interact permanently to adjust local and systemic
hemodynamics. Therefore, the perfusion changes caused by RH are certainly influenced
by venous dynamics during the occlusion–disocclusion process [26,27]. Even so, weak RH
reperfusion is commonly regarded as a sign of (micro)vascular impairment [17,19,20].

These questions, partially explained by time-related technological limitations, mo-
tivated RH exploration with other instruments in addition to plethysmography and
laser Doppler flowmetry. RH has been investigated with near-infrared spectroscopy
(NIRS) [28,29] and compared with PAT [30], assessed with diffuse correlation spectroscopy
(DCS) [31], contrast-enhanced ultrasound (CEUS) [32], and peripheral artery tonometry [33].
Although these studies confirm the possibility of the use of quantifiable metabolic and
molecular variables, together with image(s), in clinical and preclinical settings, there is
still no agreement about outcomes. Stronger correlations for the “time-to-peak” variable
from CEUS and NIRS were recently reported [32]. Moreover, the venous and arterial
involvement in RH is still not properly controlled in typical procedures, meaning that the
vascular responsiveness of both micro and macrocirculation at different depths cannot be
clearly distinguished [17,28,29,34,35]. Additionally, recent data from DCS suggests that
skin circulation is not the best model to study skeletal muscle vasculature by RH [31].

In our study, we demonstrate for the first time, to the best of our knowledge, the
in vivo functioning of skin plexus under suprasystolic pressure. While the smaller vessels
of the superficial plexus immediately collapse when pressure rises and perfusion is nearly
reduced to zero, the opposite effect is observed at the deep plexus, where larger vessels
and higher amounts of blood are present with blood accumulating on site, enlarging these
structures and increasing their visibility (Figure 2). The main chromophores HbO2 and
Hb, along with calculated mSO2, progress accordingly (Figures 3 and 4). We believe from
the present data that the deeper vascular structures shown correspond to the deeper skin
plexus and not to the muscle beneath.

It is also clear that the intensity and duration of the occlusion clearly affect the proce-
dure. The separate control of venous and arterial occlusion by using different cuff pressures
offers multiple controversies [27,28,30,36]. We opted for the application of 200 mmHg
suprasystolic pressure in our study to ensure arterial occlusion, confident that pressure
affects multiple structures in depth and involves more than the microcirculatory units in
the area. This is in line with previous findings showing that the RH response to the arterial
occlusion of one limb was detectable in the contra-lateral non-occluded limb [32,37,38].
This observation suggests that RH involves a centrally mediated control we previously
termed as a prompt adaptive hemodynamical response (PAHR) [39].

In the present study conditions, the use of PAT to monitor RH not only fills the gap
between morphology and function but also suggests that RH represents much more than
the previously believed local microvascular reperfusion. Further, the microcirculatory
detail provided with these results indicates that the predictive value of RH in clinical
practice still faces important challenges.

Our study should be regarded as exploratory, as our focus was limited and our
population small. Nevertheless, it is clear that PAT technologies have great advancement
potential for functional vascular imaging, with remarkable clinical potential.

Author Contributions: Conceptualization, L.M.R.; Data curation, T.F.G.; Investigation, S.F.d.A.;
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