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Abstract: Due to climate change, the attainment of global food security is facing serious challenges in
meeting the growing food demand. Abiotic stresses are the foremost limiting factors for agricultural
productivity. However, not much information is available on the effect of multiple abiotic stresses
on the morphological and biochemical aspects of kale and mustard. Therefore, an experiment was
designed to study the effects of UV-B radiation, CO2 concentration, and high temperature on the
growth, yield, and biochemistry of two Brassica species, namely B. oleracea L. var. acephala Winterbor
F1 (hybrid kale) and B. juncea var. Green wave O.G. (mustard greens), which were grown under
optimal nutrients and soil moisture conditions in soil–plant–atmosphere–research (SPAR) units. Two
levels of UV-B radiation (0 and 10 kJ m−2 d−1), two concentrations of CO2 (420 and 720 ppm), and
two different temperature treatments (25/17 ◦C and 35/27 ◦C) were imposed 12 days after sowing
(DAS). Several morphological and biochemical parameters were measured at harvest (40 DAS) in
both species. All the traits declined considerably under individual and multi-stress conditions in
both species except under elevated CO2 levels, which had a positive impact. Marketable fresh weight
decreased by 64% and 58% in kale and mustard plants, respectively, growing under UV-B treatment.
A slight increase in the chlorophyll content was observed in both species under the UV-B treatment
alone and in combination with high temperature and elevated CO2. Understanding the impacts of
high temperature, CO2, and UV-B radiation treatments on leafy vegetables, such as kale and mustard,
can help to improve existing varieties to enhance resilience towards environmental stresses while
simultaneously improving yield, morphology, and biochemistry in plants.

Keywords: temperature stress; elevated CO2; Ultraviolet (UV)-B; Brassica oleracea; Brassica juncea;
chlorophyll; carotenoids

1. Introduction

In the coming decades, a significant rise in agricultural productivity will be required
to meet the food requirements of ~800 million undernourished people, which has been
growing at an alarming pace, along with shrinking arable land [1–3]. In addition, adverse
climate change has further exacerbated this, with increased abiotic stress conditions that
detrimentally affect crop productivity and global ecosystem diversity [1,4–6]. Current
temperatures are approximately 1 ◦C above pre-industrial levels, and a rise of 0.5 ◦C in
global temperatures would increase the associated risks of high-temperature stress [7].
Furthermore, according to the fourth US climate assessment, a rise of 1.5 ◦C to 4.5 ◦C in
global temperature has been projected in the next century due to an alarming increase
in the levels of atmospheric CO2 and other greenhouse gases. The global atmospheric
CO2 concentration is currently 417 ppm, as reported in March 2021 by the Mauna Loa
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observatory, Hawaii, while it was only 270 ppm during the pre-industrial era and is
projected by climate models to reach 540 to 970 ppm by the year 2100 due to anthropogenic
activities, reducing carbon sinks, and natural global cycles [8,9]. A substantial number of
abiotic stress-related studies have been conducted during the past decade, but most of the
experiments have focused on plants’ responses to individual stress treatment. The studies
have overlooked the complex stress response generated in plants against combined or
sequential abiotic stresses and the interaction of stresses with each other [10,11]. Therefore,
it is imperative to understand the mechanisms associated with crops’ response to various
abiotic stresses to manage future food production.

Kale (Brassica oleracea L. var. acephala.) and mustard (Brassica juncea L.) are leafy
green brassica vegetables that have increased in production over the past ten years in
response to demand by North American consumers. Both vegetables are considered highly
nutritious leafy green vegetables even though their nutrient profile has not been well
characterized to date [12]. Kale and mustard are rich sources of dietary fiber and low
molecular weight nondigestible carbohydrates (LMWC), as well as vitamins A, K, and C;
they also contain the essential minerals potassium (K), calcium (Ca), and magnesium (Mg).
Despite the nutritional benefits, along with significant quantities of carotenoids and folates,
none of these nutritional quality traits have been well characterized to date [13]. A recent
study revealed that kale grown in the Southern US has the potential to provide significant
quantities of several essential minerals and adequate quantities of LMWC, also known as
“prebiotic carbohydrates”, with moderate to low levels of protein and energy [12].

Due to the suitability of kale for southern fall and winter growing conditions, kale has
become a significant Brassica vegetable crop in the Southern US. Indeed, the Southern US has
emerged as a leading kale production region over the last five years, responsible for more
than two-thirds of the US crop [14]. Kale production in southern areas of the US has been
increasing to meet American consumer demand, which has been growing at near-doubling
rates in recent years [15]. Although kale production has been increasing, Brassica vegetables
are generally widely under-consumed by Americans; this has been acknowledged in the
current Dietary Guidelines Advisory Committee, which calls for Americans to increase their
consumption of fruits and vegetables [15]. Both kale and mustard are hardy, cool season
crop that tolerates summer heat but grows best in the fall and winter in the southern regions
of the US. The suitable growth temperature is 15–22 ◦C [16,17]. However, kale and mustard
are sensitive to high temperatures [18]. Thus, elevated temperatures and high UV-B levels
can damage growth and developmental processes. Since the abiotic stresses are interlinked,
the combination of their effects on the morphological, physiological, and cellular processes
results in various changes in plant growth, productivity, and yield. Understanding plants’
mechanisms in response to multiple abiotic stresses are essential in devising management
and breeding decisions in the near future.

Deryng et al. [19] contributed significantly to the current understanding of climate
change impacts on crops under high temperatures and elevated CO2 concentration. Heat
stress leads to poor germination and plant establishment, reduced photosynthesis, leaf
senescence, decreased pollen viability, and fewer grains with smaller grain sizes [20,21]. It
has been revealed in previous studies that a significant direct effect of increased CO2 on
plant growth and yield could be seen that can compensate for a potentially hotter climate.
Although increased CO2 concentrations have been reported to significantly increase yield
in C3 plants [22–24], not many direct effects have been recorded on kale and mustard
plants. The projected higher doses of incoming UV-B radiation can stimulate a variety of
responses in higher plants [25,26]. Some harmful effects of UV-B radiation on plants include
DNA damage, dilation, and disintegration of cellular membranes, photooxidation of leaf
pigments and phytohormones, and inhibition of photosynthesis [27–29]. Additionally, UV-
B radiation leads to changes in leaf thickness, anatomy, and canopy morphology, eventually
affecting photosynthesis in plants [30]. Therefore, to enhance the production of green leafy
vegetables with proper management and breeding strategies in the coming years, it is
crucial to understand the effects of UV-B radiation individually and its interaction with
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other stresses. While some data exist on the crop’s growth, development, and productivity
in response to individual CO2, temperature, or UV-B stresses, very little data is available
on the effects of the interaction of these multiple factors on the growth and development of
kale and mustard.

Field studies for understanding the interactive effect of abiotic stresses on Brassica
spp. are tedious, discrepant, and seasonally limited. Therefore, simple, rapid, and reliable
techniques are required to understand the response of these crops to various environmental
stresses. The present study’s results can help to quantify Brassica species’ response to these
abiotic stresses and improve existing varieties for enhanced resilience while improving
the plants’ yield, morphology, and biochemistry. Compared to other controlled environ-
ment facilities, the soil–plant–atmosphere–research (SPAR) systems have the advantage of
precisely controlling air temperature, CO2 concentration, UV-B dosage, and air humidity
under natural solar radiation compared to other controlled environment facilities [31].

Since only limited information is available, the present study was designed to evaluate
the interactive effects of elevated CO2, high temperature, and UV-B stress on kale and
mustard plants’ morphology, physiology, and phytochemistry.

2. Materials and Methods
2.1. Experimental Conditions and Plant Material

This study included two Brassica species, namely B. oleracea var. acephala Winterbor F1
(hybrid kale) and B. juncea var. Green Wave OG (mustard greens). The experiment was
conducted in a controlled environment facility (SPAR units) at the Environmental Plant
Physiology Laboratory, Mississippi State University (33◦28′ N, 88◦47′ W), Mississippi State,
MS, July–August 2019. The specifications and operation of SPAR units have been discussed
in detail in Reddy et al. [32].

Seeds of the two Brassica sp. were sown in 30.5 by 15.2 cm (height by diameter)
polyvinyl chloride pots filled with a soil medium consisting of 3:1 sand/topsoil (v/v).
Before the start of treatments, the seedlings were thinned down to one plant per pot. The
plants were watered and fertilized with a full-strength Hoagland nutrient solution [33]
based on daily evapotranspiration (Table 1). Pots were arranged in 10 rows with three
pots per row in each SPAR chamber with alternating rows of kale and mustard plants. The
experiment consisted of 2 factors (8 levels of treatments × 2 species) with 15 replications.
The pots were randomly arranged within each SPAR unit to avoid positional effects. In
this study, 240 plants (2 species × 8 treatments × 15 replications) were used to estimate the
impact of multiple stresses on the two Brassica species.

Table 1. The set treatments and results measured for day, night, and average temperatures, chamber
[CO2], daytime and nighttime vapor pressure deficit (VPD), and evapotranspiration (ET) during the
experimental period of each treatment on kale and mustard.

Treatments Measured Temperature (◦C) CO2 (µmol mol−1) VPD (kPa) Mean ET (L H2O d−1)

DAY NIGHT DAY/NIGHT DAY DAY NIGHT DAY/NIGHT

Control 24.90 ± 0.08 17.42 ± 0.03 21.56 ± 0.04 433 ± 1.92 1.35 ± 0.02 0.94 ± 0.01 11.55 ± 0.84

+CO2 25.13 ± 0.06 17.54 ± 0.02 21.73 ± 0.04 721.22 ± 1.27 1.33 ± 0.02 0.97 ± 0.01 11.71 ± 1.15

+T 31.31 ± 0.66 23.73 ± 0.65 27.93 ± 0.64 434.31 ± 1.30 2.30 ± 0.11 1.68 ± 0.08 12.56 ± 1.13

+UV-B 24.84 ±0.10 17.31 ± 0.03 21.48 ± 0.05 439.69 ± 1.72 1.37 ± 0.01 0.97 ± 0.01 8.48 ± 0.57

+T + CO2 31.69 ± 0.70 24.04 ± 0.69 28.28 ± 0.68 720.04 ± 2.49 2.75± 0.11 1.91 ± 0.08 13.79 ± 1.40

+UV-B + CO2 24.90 ± 0.09 17.35 ± 0.03 21.53 ± 0.05 715.98 ± 2.17 1.32 ± 0.02 0.90 ± 0.01 8.71 ± 1.01

+UV-B + T 31.32 ± 0.67 23.75 ± 0.66 27.94 ± 0.65 435.33 ± 1.27 2.74 ± 0.11 1.90 ± 0.09 11.68 ± 0.96

+UV-B + CO2 + T 31.34 ± 0.67 23.75 ± 0.66 27.96 ± 0.65 729.37 ±1.46 2.89 ± 0.14 1.99 ± 0.10 11.34 ± 1.21

During the experiment, the incoming daily solar radiation measured with a pyranometer (Model 4–8; The Eppley
Laboratory Inc., Newport, RI, USA) outside the SPAR units ranged from 11.3 to 31.3 MJ m2 d−1 with an average
value of 25.10 ± 0.82 MJ m2 d−1.
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2.2. Treatments

The treatments included combinations of two [CO2] concentrations, namely 400 and
720 µmol mol−1 (+CO2), two different temperatures, namely 25/17 ◦C and 35/27 ◦C (+T)
(day/night)], and two daily biologically effective UV-B radiation intensities, namely 0 and
10 kJ m−2 d−1 (+UV-B).

The control treatment was 400 µmol mol−1 [CO2], at 25/17 ◦C (day/night) tempera-
ture, and 0 kJ m−2 d−1 UV-B treatment. All SPAR chambers were maintained at control
conditions until 12 days after sowing (DAS). Subsequently, each chamber was set at one
of the following eight treatments until the final harvest (40 DAS): (1) a control treatment
with optimum temperature, ambient CO2 levels, and no UV-B; (2) optimum temperature
with elevated CO2 levels and no UV-B (+CO2); (3) elevated temperature with ambient CO2
levels and no UV-B (+T); (4) optimum temperature and ambient CO2 levels with 10 kJ UV-B
(+UV-B); (5) elevated temperature and CO2 levels with no UV-B (+T + CO2); (6) optimum
temperature with elevated CO2 levels and 10 kJ UV-B (+CO2 + UV-B); (7) elevated tem-
perature with 10 kJ UV-B at ambient CO2 levels (+T + UV-B); (8) elevated temperature
and elevated CO2 levels with 10 kJ UV-B (+UV-B + CO2 + T). The set and measured
environmental variables in this study using eight different SPAR units are provided in
Table 1.

2.3. Measurements
2.3.1. Morphological Measurements

At 40 DAS, kale and mustard plants from each SPAR unit were hand-harvested to
obtain their phenotype and growth data on the effects of multiple abiotic stresses. Plant
height (PH, cm) was measured, leaf number (LN) was counted, and then total leaf area (LA,
cm2 plant−1) was determined using an LI-3100 leaf area meter (LI-COR, Lincoln, NE, USA).
Plant components, such as aboveground dry weights and root weights (g plant−1), were
determined by drying the samples at 80 ◦C until a constant weight was reached.

2.3.2. Physiological Measurements

Leaf chlorophyll content, epidermal flavonoids index, epidermal anthocyanin, and
nitrogen balance index (the ratio of chlorophyll content/flavonoids) were measured on
the uppermost, fully expanded leaf, second from the top, across all treatments using a
handheld Dualex Scientific instrument (Force A DX16641, Paris, France) at 35 DAS.

2.3.3. Epicuticular Wax Content Determination

The extraction and quantitative analysis of leaf epicuticular waxes were carried out as
per the method of Ebercon et al. [34] with minor modifications. Ten leaf discs constituting
an area of 35.36 cm−2 from the third or fourth leaf from the stem apex were cut from both
species from five plants in each treatment. Leaf discs were stirred in 15 mL of chloroform
(Sigma-Aldrich, Inc., St. Louis, MO, USA) in a test tube for 20 s to remove leaf waxes.
The wax extract was evaporated on a water bath maintained at 80 ◦C, and then cooled to
room temperature; 5 mL of dichromate reagent was added and heated on a water bath
held at 80 ◦C for 30 min. The samples were removed from the water bath and cooled,
followed by the addition of 12 mL of de-ionized water. The samples were then allowed
to stand for 15 min. The intensity of the color was measured at 590 nm using a Bio-Rad
UV/VIS spectrophotometer (Bio-Rad Laboratories, Hercules, CA, USA). The wax content
was expressed on a leaf area basis (µg cm−2) using a standard curve developed from the
wax obtained from the same species.

2.3.4. Carotenoid Analysis

Carotenoid pigments were extracted and analyzed from freeze-dried leaf tissues,
according to Kopsell et al. [35,36], with a few changes, as described by Barickman et al. [37].
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2.4. Data Analysis
2.4.1. Combined Stress Response Index (CSRI)

Based on the summation of relative individual stress responses at each treatment and
similar to the cumulative response index quoted in other UV-B studies [38], the combined
stress response index (CSRI) was calculated to evaluate the interactive effects of eight
treatments (+ CO2, + T, + UV-B, + CO2 + T, + CO2 + UV-B, + UV-B + T, and + CO2 + T
+ UV-B) in comparison to control treatment. The CSRI was calculated as the value of a
parameter under control (c) subtracted from the value of the parameter under treatment (t),
and then by dividing from the value of a parameter under control (c) as follows:

CSRI = (PHt−PHc)
(PHc) + (LNt−LNc)

(LNc) + (LAt−LAc)
(LAc) + (MFWt−MFWc)

(MFWc) + (ADWt−ADWc)
(ADWc) +

(RDWt−RDWc)
(RDWc) + (TDWt−TDWc)

(TDWc) + (RSt−RSc)
(RSc) + (Neot−Neoc)

(Neoc) + (Violt−Violc)
(Violc) +

(Zeat−Zeac)
(Zeac) + (Lutt−Lutc)

(Lutc) + (Bcart−Bcarc)
(Bcarc) + (TXant−TXanc)

(TXanFc) + (ZA/ZAVt−ZA/ZAVc)
(ZA/ZAVc) +

(Chlt−Chlc)
(Chlc) + (Flavt−Flavc)

(Flavc) + (Antht−Anthc)
(Anthc) + (NBIt−NBIc)

(NBIc) + (Waxt−Waxc)
(Waxc)

Here, CSRI is the combined stress response index, PH is the plant height, LN is the
leaf number, LA is the leaf area of the plant, MFW is the marketable fresh weight, ADW is
the aboveground dry weight, RDW is the root dry weight, TDW is the total dry weight,
RS is the root-to-shoot ratio, Neo is the neoxanthin concentration, Viol is the violaxanthin
concentration, Zea is the zeaxanthin concentration, Lut is the lutein concentration, Bcar is
the β-carotene concentration, TXan is the total xanthophyll concentration, ZA/ZAV is the
xanthophyll cycle ratio, Chl is the chlorophyll concentration, Flav is the flavonoid index,
Anth is the anthocyanin index, NBI is the nitrogen balance index, Wax is the wax content,
under t (treatment) and c (control).

2.4.2. Statistical Analysis

The experimental layout was a split plot with a complete randomized block design,
considering multi-stress treatments as the whole plot and species as the subplot. The one-
way ANOVA of the general linear model, PROC GLM, was performed to test the effects
of treatments, species, and their interactions on the measured traits using SAS 9.2 (SAS
Institute, Cary, NC, USA). Fisher’s protected least significant difference tests at p = 0.05
were employed to test the differences among treatments for measured parameters. The
standard errors of the mean were calculated and presented in the figures as error bars.
Graphs were generated using Sigma Plot 13.0 (Systat Software, San Jose, CA, USA).

3. Results
3.1. Aboveground Morphology Parameters

Here, UV-B and mostly elevated temperatures reduced vegetative growth in both
crops. However, CO2 masked most of the other stresses’ adverse effects. Treatment and
species interaction significantly affected the plant height, number of leaves, leaf area, and
marketable fresh weight parameters (Table 2; Figure 1). Plants grown under +UV-B + T
treatment were significantly shorter in both Brassica sp. compared to the control plants.

Elevated CO2 (+CO2) slightly increased plant height (7%) in kale and mustard com-
pared to the control treatment. The highest reduction in plant height (47%) was observed in
kale plants growing under +UV-B treatment and +T + CO2 (30.7%) for mustard. Mustard
had taller plants and fewer reductions among the two species (Table 3).
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Table 2. The analysis of variance across the treatments of CO2 concentration, temperature, UV-B
radiation, and two crops (kale and mustard), and their interactions on kale and mustard root and shoot
growth and developmental traits, plant height (PH), mainstem leaves (LN), whole plant leaf area (LA),
marketable fresh weight (MFW), aboveground dry weight (ADW), root dry weight (RDW), total plant
dry weight (TDW), root/shoot ratio (RS), neoxanthin concentration (Neo), violaxanthin concentration
(Viol), zeaxanthin concentration (Zea), lutein concentration (Lut), β-carotene concentration (Bcar),
total xanthophyll concentration (TXan), xanthophyll cycle ratio (ZA/ZAV), chlorophyll concentration
(Chl), flavonoid index (Flav), anthocyanin index (Anth), nitrogen balance index (NBI), and wax
content (Wax).

Source of
Variance PH LN LA MFW ADW RDW TDW RS Neo Viol Zea Lut Bcar TXan ZA/ZAV Chl Flav Anth NBI Wax

Treatment *** *** *** *** *** *** *** *** *** *** N.S. ** ** *** ** *** *** *** *** ***
Crop *** *** *** *** *** *** *** ** * ** ** *** N.S. N.S. ** *** N.S. *** *** ***

Trt *Crop *** *** *** ** N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. ** ** *** * ***

*** indicates significance levels, **, * and N.S., representing p < 0.001, p < 0.01, p < 0.05, and p > 0.05, respectively.
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Figure 1. Pictorial representation of climate stress factors either alone or in combination on kale and
mustard growth and development, 40 days after sowing, as follows: control, ultraviolet-B radiation
(+UV-B), high temperature (+T), and elevated carbon dioxide (+CO2), ultraviolet-b radiation and
elevated CO2 (+Uv-B + CO2), high temperature and elevated CO2 (+T + CO2), high temperature and
high ultraviolet- radiation (+T + UV-B), and all three stressors combined (+T + CO2 + UV-B).

Table 3. Mean values and percent change for plant height (PH), leaf number (LN), leaf area (LA), mar-
ketable fresh weight (MFW), root/shoot ratio (RS), aboveground dry weight (ADW), root dry weight
(RDW), and total dry weight (TDW) measured under CO2 concentration (control, 400 µmol mol−1

and + CO2, 720 µmol mol−1), elevated temperatures (25/17 ◦C and 35/27 ◦C (day/night)), and UV-B
radiation (control, 0 kJ m−2 d−1 and + UV-B, 10 kJ m−2 d−1), and their interactions for kale and
mustard at 40 DAS.

Traits Crop Treatments

Shoot
Traits

Control +CO2 +T +UV-B +T + CO2
+UV-B +

CO2
+UV-B + T +UV-B +

CO2 + T

PH (cm)

Kale 53.8 57.7 (+7%) 37.7
(−29.8%)

28.3
(−47.3%)

35.7
(−33.6%)

37.1
(−31%) 31.1 (−42%) 35.1

(−34.7%)

Mustard 52.4 56.1 (+7%) 38.7
(−26%)

40.3
(−23%)

36.3
(−30.7%) 44 (−16%) 39.6

(−24.5%)
42.4

(−19%)

LN
(plant−1)

Kale 14.2 14.7 (+3%) 13 (−8.5%) 14.3 (0%) 13.8 (−3%) 15.3
(+7.8%) 13.4 (−5.4%) 14 (−1.5%)

Mustard 32 43 (+34%) 36.2 (+13%) 20.6
(−35.6%)

50.1
(+50.6%)

28.6
(−10.7%) 30.7 (−4%) 36.7

(+14.8%)

LA (cm2

plant−1)

Kale 1805.7 2558.7
(+39%)

1357.3
(−24.8%)

570.1
(−68.4%)

1843.6
(+2%)

1136.9
(−37%)

882.8
(−51%)

1153.1
(−36%)

Mustard 4613.7 6220.2
(+34.8%)

3724.6
(−19%)

1934.7
(−58%)

4993.5
(+8%)

2857.1
(−38%)

2637.4
(−42.8%)

3830.9
(−17%)

MFW
(g plant1)

Kale 241.3 359.2
(+48.8%)

151
(−37.4%)

85.9
(−64.3%)

188.8
(−21.7%)

176.8
(−26.7%)

105.3
(−56.3%) 151.7 (37%)

Mustard 569.2 755 (+32.6) 353 (−40%) 256 (−55%) 437.8
(−23%)

384.6
(−32.4%)

266.2
(−53%)

404.2
(−30%)
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Table 3. Cont.

Traits Crop Treatments

Dry weight
traits

RS

Kale 0.27 0.35
(+29.6%)

0.32
(+18.5%) 0.46 (+70%) 0.28

(+3.7%)
0.51

(+88.8%)
0.31

(+14.8%) 0.37 (+37%)

Mustard 0.27 0.35
(+29.6%)

0.32
(+18.5%)

0.36
(+33.3%)

0.23
(−14.8%)

0.38
(+40.7%)

0.33
(+22.2%)

0.28
(+3.7%)

ADW (g
plant−1)

Kale 21.7 37.4
(+72.1%)

17
(−21.7%) 8.9 (−59%) 22.4

(+3.2%)
19.4

(−10.8%)
10.9

(−49.4%)
17.3

(−20%)

Mustard 38.6 57.9 (+50%) 33.2
(−14%)

21.7
(−43.6%)

40.4
(+4.7%)

33.4
(−13.3%)

26.3
(−31.8%) 38 (−1.5%)

RDW (g
plant−1)

Kale 6 11.7 (+95%) 5.5 (−8.5%) 4.3 (−28%) 6.4 (+6.5%) 9.6
(+60.5%) 3.3 (−45.3%) 6.3 (+5.6%)

Mustard 10 13.9 (+39%) 10.4
(+3.9%) 7.6 (−24%) 8.9

(−10.3%)
12.6

(+25.6%) 8.7 (−12.8%) 10.4
(+4.4%)

TDW (g
plant−1)

Kale 27.7 49 (+76.8%) 22.5
(−19%)

13.2
(−52.3%) 28.8 (+4%) 29 (+4.6%) 14.2

(−48.5%)
23.7

(−14.5%)

Mustard 48.6 71.8
(+47.8%)

43.6
(−10%)

29.3
(−39.6%)

49.4
(+1.6%)

45.9
(−5.3%) 35 (−28%) 48.5 (0%)

The two Brassica species exhibited different responses for the number of leaves pro-
duced, among other treatments. A maximum reduction of 35% in the mustard leaves was
observed under the +UV-B treatment, whereas the leaf number in kale remained unaffected
(Table 3). Elevated CO2 treatment (+CO2) significantly increased the leaf number in both
species. The highest number of leaves in mustard was found under +T + CO2 treatment
and +UV-B + CO2 treatment in kale plants. Leaf number under the combination of all three
stresses (+UV-B + CO2 + T) decreased by 1.5% in kale, whereas an increase of +14.8% was
observed in mustard.

Even though +UV-B + CO2 treatment did not alleviate the negative effect of UV-B
on leaf area, +CO2 treatment alone or in combination with high-temperature treatment
(+T + CO2) increased leaf area by 39% and 2% in kale and 34.8% and 8% in mustard,
respectively, in comparison to the control (Table 3, Figure 2A). Maximum reduction in leaf
area was observed under UV-B treatment, with 68.4% (kale) and 58% (mustard) compared
to the control. Mustard plants showed higher leaf area values than kale for all treatments
(Figure 2A).

A significant decrease in marketable fresh weight was observed under all treatments
except +CO2. The UV-B treatment alone (+UV-B) showed a 64% and 58% decrease in
fresh weight in kale and mustard, respectively. In contrast, the +UV-B + T treatment
exhibited a 56% (kale) and 53% (mustard) decrease compared to the control condition
(Figure 3). Maximum values for fresh weight were recorded under +CO2 in kale and
mustard compared to their control showed a 49% and 32.6% increase.

3.2. Dry Weight Components

All the dry weight components displayed insignificant differences under the treatments–
crop interaction (Table 2). Aboveground dry weight, root dry weight, and the total dry
weight (Figure 2B) increased under +CO2 treatment, whereas they decreased to the lowest
under +UV-B treatment in both kale and mustard (Table 3). Under +CO2 treatment, 78%
and 48% more dry matter was produced in kale and mustard, respectively, compared to
their control counterparts. High temperature, either alone (+T) or in combination with UV-B
(+UV-B + T), also showed a considerable reduction in dry weight components (Table 3).
Root/shoot ratio increased under all the treatments, but a maximum increase was observed
under +UV-B treatment in both kale and mustard (Figure 2C, Table 3).
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ratio for kale and mustard. Bars indicate standard errors of the mean.
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Figure 3. Impact of CO2 concentration (control, 400 µmol mol−1 and + CO2, 720 µmol mol−1),
elevated temperatures (25/17 ◦C and 35/27 ◦C (day/night)), and UV-B radiation (control, 0 and +
UV-B, 10 kJ m−2 d−1), and their interactions on marketable fresh weight for kale and mustard. Bars
indicate standard errors of the mean.
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3.3. Physiological Parameters

The different treatments and species affected the chlorophyll content, flavonoid index,
anthocyanin index, and nitrogen balance index (Table 4). The interaction of treatment and
crop for all four parameters was significant (Table 2). Chlorophyll content and flavonoid
index increased, whereas anthocyanin index decreased under all treatments in both species.
The chlorophyll content showed a maximum increase of 43.4% under +UV-B treatment in
kale and 93.3% under +UV-B + T treatment in mustard (Figure 4, Table 4). The average
flavonoid index ranged from 0.72–1.40, showing the highest increase under the +UV-B +
CO2 + T treatment and a minimum increase under +T alone in kale and mustard.

Table 4. Mean values and percent change for chlorophyll concentration (Chl), flavonoid index
(Flav), anthocyanin index (Anth), nitrogen balance index (NBI), and wax content (Wax) under
CO2 concentration (control, 400 µmol mol−1 and + CO2, 720 µmol mol−1), elevated temperatures
(25/17 ◦C and 35/27 ◦C (day/night)), and UV-B radiation (control, 0 kJ m−2 d−1 and + UV-B,
10 kJ m−2 d−1), and their interactions for kale and mustard at 35 DAS.

Traits Crop Treatments

Control +CO2 +T +UV-B +T + CO2
+UV-B +

CO2
+UV-B + T +UV-B +

CO2 + T

Chlorophyll
conc.

(µg/cm2)

Kale 30.4 37
(+21.7%)

31.5
(+3.6%)

43.6
(+43.4%)

33.8
(+11%) 42 (+38%) 38.8

(+27.6%)
38.8

(+27.6%)

Mustard 18.77 20.6
(+9.7%)

24
(+27.8%)

27.1
(+44.3%)

24.7
(+24.2%)

29.3
(+56%)

36.3
(+93.3%)

29.8
(+58.7%)

Flavonoid
index

Kale 0.72 0.81
(+12.5%)

0.74
(+2.7%)

1.21
(+68%)

0.81
(+12.5%)

1.26
(+75%)

1.25
(+73.6%)

1.32
(+83.3%)

Mustard 0.82 0.85
(+3.6%)

0.83
(+1.2%) 1 (+30%) 0.84

(+2.4%)
1.12

(+36.5%)
1.19

(+45%)
1.40

(+70.7%)

Anthocyanin
index

Kale 0.09 0.09 (0%) 0.08
(−11%)

0.06
(−33.3%) 0.09 (0%) 0.06

(−33.3%)
0.07

(−22.2%)
0.06

(−33.3%)

Mustard 0.14 0.13
(−7%)

0.12
(−14.2%)

0.12
(−14.2%)

0.12
(−14.2%)

0.11
(−21.4%)

0.09
(−35.7%)

0.10
(−28.5%)

NBI
Kale 42.8 46.4

(+8.4%)
46.2

(+8%)
37.7

(−11.9%)
43

(+0.5%)
34.4

(−19.6%)
31.5

(−26.4%) 30 (−30%)

Mustard 23.4 24.6
(+5%)

31.4
(+34%)

28.5
(+21.7%)

36.5
(+60%)

27.4
(+17%)

31.8
(+35.8%)

21.9
(−6.4%)

Waxes
(µg/cm2)

Kale 122.5 115.6
(−5.6%)

133
(+8.5%)

92.5
(−24.4%)

140.82
(+15%)

87.9
(−28.2%)

66.3
(−45.8%)

70.1
(−42.7%)

Mustard 17.4 13
(−25.2%)

14.7
(−15.5%)

13.4
(−30%)

18.18
(+4.5%)

11
(−36.7%) 17.5 (0%) 21

(+20.6%)

The minimum adverse effect on the anthocyanin index was observed under +T treat-
ment for kale and +CO2 treatment for mustard, with an average decrease of 11% and 7%,
respectively, compared to the control. There was no change observed in the anthocyanin
index under +CO2 treatment alone and in combination with high temperature (+T + CO2)
in kale. Additionally, UV-B treatment alone (+UV-B) and in combination with CO2 and
T (+UV-B + CO2, +UV-B + T, +UV-B + CO2 + T) showed significant reductions in the
anthocyanin index (Table 4).

Nitrogen balance index (NBI) increased under all treatments in mustard except under
+UV-B + CO2 + T, where a 6% decrease was observed compared to the control. A maximum
decrease of 30% was observed in kale under +UV-B + CO2 + T, whereas an increase in NBI
was exhibited under +CO2, +T, and their combination (Table 4).
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UV-B, 10 kJ m−2 d−1), and their interactions on chlorophyll concentration for kale and mustard. Bars
indicate standard errors of the mean.

3.4. Epicuticular Wax Content

Wax production was significantly increased under +T + CO2 treatment for kale and
+UV-B+ CO2 treatment for mustard; the increase was 15% and 20.6%, respectively, com-
pared to their control treatment (Table 4). The average wax content ranged from 66 to
140.8 µg cm−2 in kale and 21 to 11 µg cm−2 in mustard leaves. The lowest epicuticular
wax was recorded under +UV-B + CO2 treatment in kale and under UV-B + CO2 treatment
in mustard (Table 4). Kale plants grown under +UV-B + T + CO2 treatment and mustard
plants grown under +UV-B treatment produced less wax on the leaves, and the reduction
was 42.7% and 30%, respectively, compared to the plants growing under control conditions.
Kale plants had the highest wax content under all the treatments.

3.5. Total Carotenoid Concentration

None of the pigments displayed significant differences under the treatments–crop
interaction (Table 2); however, a substantial reduction in ZA/ZV in kale (38.3%) was
observed under +UV-B + CO2 treatment and in mustard (19%) under +UV-B + T treatment
compared to their respective control. Total xanthophyll content increased highest in kale
under +UV-B + CO2 treatment, whereas a decrease of 10% was observed in mustard under
the same treatment. An increase of 19% was recorded in total xanthophylls in mustard
plants at elevated CO2 concentrations. Furthermore, β-carotene was atypically much
lower (20%) under elevated CO2 in mustard than in control plants (Table 5). Neoxanthin,
violaxanthin, zeaxanthin, lutein, and β-carotene increased significantly in kale plants at
high CO2 concentrations (Table 5). Under +UV-B treatment, both Brassica species increased
the concentration of neoxanthin, violaxanthin, and lutein.
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Table 5. Mean values and percent change for neoxanthin concentration (Neo), violaxanthin concen-
tration (Viol), zeaxanthin concentration (Zea), lutein concentration (Lut), β-carotene concentration
(Bcar), total xanthophyll concentration (TXan), and xanthophyll cycle ratio (ZA/ZAV), measured
under CO2 concentration (control, 400 µmol mol−1 and + CO2, 720 µmol mol−1), elevated tempera-
tures (25/17 ◦C and 35/27 ◦C (day/night)), and UV-B radiation (control, 0 kJ m−2 d−1 and + UV-B,
10 kJ m−2 d−1), and their interactions for kale and mustard at 40 DAS.

Traits Crop Treatments

Control +CO2 +T +UV-B +T + CO2
+UV-B +

CO2
+UV-B + T +UV-B +

CO2 + T

Neo (µg/g
dry mass)

Kale 290 355
(+22.4%)

276.8
(−4.5%)

407.7
(+40.5%)

298.5
(+3%)

372.1
(+28.3%)

371.5
(+28.1%)

397
(+36.8%)

Mustard 273.3 256.3
(−6.2%)

246.3
(−9.8%)

370.4
(+35.5%)

269
(−1.6%)

361.2
(+32%)

378.5
(+38.4%)

319.3
(+16.8%)

Viol (µg/g
dry mass)

Kale 163.7 195
(+19%)

167.5
(−2.3%)

314.4
(+92%)

150
(−8.3%)

337.8
(+106%)

276.2
(+68.8%)

242
(+47.8%)

Mustard 323.9 217.3
(−40%)

248.8
(−23%)

327.7
(+1%)

208
(−35.7%)

274.8
(−15%)

391.2
(+20.7%)

264
(−18.4%)

Anth (µg/g
dry mass

Kale 37.6 39.3
(+4.5%)

23.8
(−36.7%)

46.6
(+23.9%)

34.6
(−8%)

41.6
(+10.6%)

43.6
(+16%)

31.2
(−17%)

Mustard 64.1 48.2
(−24.8%)

44.6
(−30.4%)

67.7
(+5.6%)

38.3
(−40%)

51.8
(−19%)

45.4
(−29%)

37.7
(−41%)

Zea (µg/g
dry mass)

Kale 209.5 219.2
(+4.6%)

132.9
(−36.5%)

149.4
(−28.6%)

139.2
(−33.5%)

157.4
(−24.8%)

140.8
(−32.7%)

147.5
(−29.5%)

Mustard 129.6 126.2
(−2.6%)

99.1
(−23.5%)

148.7
(+14.7%)

146.8
(+13.2%)

138.5
(+6.8%)

123.9
(−4.3%)

139.2
(+7.4%)

Lut (µg/g
dry mass)

Kale 898.3 967.3
(+7.6%) 825 (−8%) 1093.6

(+21.7%)
679.2

(24.3%)
1105.5
(+23%)

1066.9
(+18.7%)

948.1
(−5.5%)

Mustard 746.7 635.7
(−14.8%)

676.4
(−9.4%)

766.7
(+2.6%)

654.8
(−12.3%)

742.3
(−0.5%)

899.6
(+20.4%)

695
(−6.9%)

Bcar (µg/g
dry mass)

Kale 548.4 656.7
(+19.7%)

580.5
(+5.8%)

477.6
(−13%)

439.8
(−19.8%)

710.7
(+29.5%)

766.6
(+39.7%)

636.8
(+16%)

Mustard 649 521.1
(−19.7%)

588.2
(−9.3%)

620.9
(−4.3%)

476.6
(−26.5%)

517.7
(−20%)

745.2
(+14.8%)

568.3
(−12.4%)

Total Xanth
(µg/g dry

mass)

Kale 410.8 453.5
(+10.3%)

324.1
(−21%)

510.3
(+24.2%)

323.7
(−21.2%)

536.7
(+30.6%)

460.6
(+12%)

420.7
(+2.4%)

Mustard 517.6 391.8
(−24.3%)

392.5
(−24.1%)

544
(+5.2%)

393.3
(−24%)

465
(−10%)

560.5
(+8.2%)

440.9
(−14.8%)

ZA/ZAV

Kale 0.60 0.57
(−5%)

0.48
(−20%)

0.38
(−36.6%)

0.53
(−11.6%)

0.37
(−38.3%)

0.40
(−33.3%)

0.44
(−26.6%)

Mustard 0.37 0.44
(+18.9%)

0.36
(−2.7%)

0.41
(+10.8%)

0.47
(+27%)

0.41
(+10.8%)

0.30
(−18.9%)

0.40
(+8.1%)

3.6. Combined Stress Response Index (CSRI)

The CSRI values ranged from −4 to 6.4 in kale and −0.6 to 9.3 in mustard. The lowest
CSRI value for both crops was observed under the +T treatment. The highest CSRI value
for kale was observed under +UV-B + CO2 treatment, whereas for mustard it was observed
under +T + CO2 treatment. The CSRI values under all the treatments except +T treatment
were positive in mustard. However, CSRI values under +T treatment and its combination
with high UV-B levels (+UV-B + T) were negative for kale (Figure 5).
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Figure 5. Cumulative stress response index (CSRI) was calculated over all the treatments of kale and 
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Figure 5. Cumulative stress response index (CSRI) was calculated over all the treatments of kale
and mustard in response to elevated carbon dioxide (720 ppm) (+CO2), high temperature (35/27 ◦C
day/night) (+T), and increased UV-B radiation (10 kJ m−2 d−1) (+UV-B) and their interactions.

4. Discussion

Brassica plants are often exposed to multiple stresses concurrently during their growing
season. Thus, when experimenting with growth chambers, it is essential to conduct
experiments in an environment that mimics the natural conditions. This experiment
studied two Brassica sp. for their response of morphological and physiological parameters
to high temperature, UV-B treatment, and high CO2 and their interactions. To the best of
our knowledge, this is the first study that tests leafy Brassica species across various abiotic
stresses in combination.

The recent reduction in plant height under higher UV-B levels, like our study, has
been reported in Capsicum annuum [39,40] and Brassica napus [41]. Reduced height in plants
exposed to UV-B radiation implied that the specific photomorphogenic response of plants
could be related to a UV-B photoreceptor by UV-B radiation [42]. Moreover, to some extent,
low photosynthetically active radiation (PAR, 400–700 nm) might have also affected plant
height. Colett et al. [43] reported that increased PAR reduces the impacts of UV-B radiation
on plant height [43]. In another study conducted by Conner and Zangori [44] with two
other Brassica species (B. rapa and B. nigra), reduced plant height was observed in plants
exposed to high UV-B radiation [44].

Heat stress decreases stem growth by reducing cell size through the loss of cell water
content, resulting in reduced plant height [45–47]. Following our results, many crops have
reported reduced plant height at higher temperatures, including recent reports in Brassica
juncea [48] and Oryza sativa [49]. Heat stress mainly affects the plant meristems, promotes
leaf senescence and abscission, and reduces photosynthesis, ultimately reducing plant
growth [50,51]. The number of leaves was decreased in Brassica napus under high UV-B lev-
els [52] and at high temperatures [53]. Another study, under controlled conditions, showed
a decrease in leaf number in different quinoa (Chenopodium quinoa Willd.) varieties under
elevated UV-B radiation levels [54,55], further confirming our results.

Raghuvanshi and Sharma [56] suggested that decreased concentration of photosyn-
thetic pigments was associated with a decline of leaf area in Phaseolus vulgaris under UV-B
treatment, which further resulted in reduced growth, stem length, and root dry weight.
These factors can lead to lower absorption of sunlight and affect photosynthetic activity,
leading to a decrease in photosynthesis and indirectly affecting plant growth. The UV-B
radiations mainly reduce cell division and expansion, reducing leaf area [56–58]. In contrast,
Nedunchezhian and Kulandaivelu [59] observed in cowpea that slightly elevated UV-B
radiation increases leaf area i.
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The decrease in marketable fresh weight under UV-B treatment in the present study is
supported by Cechin et al. [60], who reported that the decline in fresh weight production
in crops is predominately due to UV-B exposure. Plants exposed to UV-B might allocate
more energy for other physiological activities, especially defense mechanisms, rather than
biomass production, resulting in a UV-B-mediated synthesis of protective pigments, such as
carotenoids, anthocyanins, or phenolic acids [61,62]. The increased CO2 through increased
activity of rubisco enzyme and reduced photorespiration increases leaf photosynthesis
inside the leaf, leading to increased fresh weight and dry weight [63].

Results observed in Arabidopsis thaliana leaves [64], soybean [65], cotton [25], maize [29,
66]; Phaseolus vulgaris [67], sweet potato [68], and basil [69] further corroborated our results,
such as a reduction in total leaf area and fresh and dry weights, number of leaves, and
height of plants (Table 3) under higher UV-B levels. In contrast to our results, Sakalauskaite
et al. [70] reported an increase in plant height, leaf area, and dry weight under elevated UV-
B in Ocimum basilicum. Reduction in leaf area in rice plants under high temperature alone
and combination with elevated CO2 concentration has recently been reported by Wang
et al. [71]. High temperature and UV-B interaction decreased leaf area in Brassic napus [41].
A decrease in fresh and dry weight was reported in B. campesteris under high-temperature
conditions [72].

Our study’s dry weight reduction can be explained as a reaction to stress caused by
UV-B radiation in plant development and metabolism [73]. In Beta vulgaris, a decrease of
10–12% in dry weight was reported under high UV-B levels [74]. On the contrary, increased
dry weight was observed under high UV-B levels in broad bean and wheat plants [75].
Similarly, studies on broad bean and wheat, Prunella vulgaris plants, when exposed to
15-day UV-B radiations in a growth chamber, showed an increase in whole plant dry
weight [76]. This suggests that the UV-B effect is species/cultivar specific, and sometimes
it benefits the growth and development of some crops [77]. Indeed, UV-B exposure led to a
significant decrease in root weight which could have caused an increased shoot/root ratio.
Similar results under high UV-B levels were observed in Manihot esculentum [78] and under
+CO2 levels in Raphanus sativus and Daucus carota [79].

Reduced plant weight under high temperatures can also be related to decreased
photosynthesis, increased transpiration [80], and, in turn, reduced water use efficiency
(WUE) [81]. A decrease in dry weight has been recently reported in three Brassica sp. [82],
namely Brassica oleracea [83], Raphanus sativus [84], and Chenopodium quinoa [85], which
further validates our study. High temperature and UV-B interaction decreased leaf weight
in Brassica napus [41]. Mustard plants, compared to kale, showed higher dry weight under
all the treatments. The concentration of CO2 lessened the effects of high temperature and
UV-B, resulting in lesser reductions. Interaction of high temperatures and elevated CO2
increased plant height, the number of leaves, and leaf area in Fragaria x ananassa [86],
Capsicum annuum [87], and Solanum lycopersicum [88]. In contrast to our results, Wang
et al. [71] reported reduced whole plant dry weight in rice under high temperatures and
elevated CO2 [71].

An increase in chlorophyll content under high temperatures has also been recently
reported in other vegetable crops, such as tomatoes [89] and basil [90]. A recent study
reported increased flavonoid content in kale under high UV-B levels [91], confirming
our findings. Due to the strong antioxidant activity that flavonoids possess, higher total
flavonoid content in the leaf implies a higher nutritional value in leaves [92]. Our results
are consistent with the results of a study conducted by Olsson et al. [93], which reported
a 70–150% increase in the overall flavonoid content of B. napus when subjected to high
UV-B levels. Analogous to our results, an increase in anthocyanin content was reported
in Ocimum basilicum under elevated UV-B levels by Sakalauskaite et al. [70]. The nitrogen
balance index (NBI) is one of the critical indicators for crop growth. The NBI indicates C/N
allocation changes due to N deficiency [94–96]. An increase in NBI was also observed in
basil [90] and canola [97] under high temperatures.
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A higher amount of wax for those leaves that were developed under elevated CO2
with UV-B radiation might have reduced the amount of incident UV-B radiation penetrating
the plant tissue. The reduction in UV-B penetration most likely caused minor damage
to the plants, which continued their relatively normal developmental process without
a considerable loss in final yield. Qaderi and Reid [39] reported similar results under
+UV-B + CO2 treatment in Brassica napus. In contrast to our findings, Martel et al. [97]
observed higher epicuticular wax in leaves of Brassica napus under high temperatures,
and Steinmüller and Tevini [98] reported that enhanced UV-B radiation increased wax
content by 23% in barley and 28% in the bean. In a study by Gonzalez et al. [99], six
pea genotypes differing in their surface waxiness showed increased wax content under
6.5 kJ m−2 per day UV-B radiation. Higher wax content on the leaves of plants exposed
to UV-B radiation indicates the importance of this chemical in plant defense mechanisms
against environmental stresses. Both kale and mustard produced less wax content under
high UV-B levels, pointing toward their weaker chemical defense against abiotic stresses.

The combined stress response index used in this study integrates the morphological
and physiological responses, which reflect the overall sensitivity of kale and mustard
to multiple stress conditions. The lowest CSRI value for both crops was observed un-
der +T treatment, suggesting higher harmful effects of high-temperature treatment on
all the parameters. The highest value for kale observed under +UV-B + CO2 treatment
and for mustard under +T + CO2 treatment indicate the positive impacts of elevated
CO2 concentrations.

5. Conclusions

Most current studies on plant stress response have mainly focused on the effect of in-
dividual stresses. However, combined, and sequential stress responses must be thoroughly
studied to gain a meaningful understanding. The interaction of temperature stress, elevated
CO2, and UV-B levels significantly impacted kale and mustard plants’ morphological and
physiological processes. High temperature and UV-B conditions had considerable detrimen-
tal effects on most of the parameters while, under elevated CO2 concentration, a positive
increase in all morphological and physiological traits was observed. This study recom-
mends that varying the temperature and UV-B radiation levels in kale and mustard plants
would significantly affect the growth and developmental rates and biochemistry compared
to increasing the CO2 concentrations, which mitigates the constraining effects of tempera-
ture and UV-B stress. Farmers and researchers should, thus, attach much more importance
to optimizing environmental conditions to enhance vegetable production [100,101]. Vegeta-
bles, such as kale and mustard, have been widely recommended in people’s daily diets as
they provide various healthy compounds, such as antioxidants, vitamins, minerals, and
dietary fiber [102]. Therefore, more research needs to be focused on the effect of multiple
stresses on the nutritional quality of leafy vegetables.
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