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Simple Summary: Obstructive sleep apnoea (OSA) is an underdiagnosed disorder from which
many patients are suffering, and may lead to severe complications. The adipose tissue near the
upper airways is essential in upper-airway collapses and OSA severity. The present investigation
aimed to determine the correlations between upper-airway adipose tissue MRI parameters and OSA,
using artificial intelligence to analyse the pathophysiology of OSA and predict obstruction location.
Including anthropometric and MRI adipose tissue parameters, OSA and upper-airway obstruction
can be predicted with high precision. Artificial intelligence can effectively be used in OSA diagnostics
as it can analyse non-linear correlations; thus, it can be helpful for undiagnosed OSA cases.

Abstract: This study aimed to analyse the thickness of the adipose tissue (AT) around the upper
airways with anthropometric parameters in the prediction and pathogenesis of OSA and obstruction
of the upper airways using artificial intelligence. One hundred patients were enrolled in this prospec-
tive investigation, who were divided into control (non-OSA) and mild, moderately severe, and severe
OSA according to polysomnography. All participants underwent drug-induced sleep endoscopy,
anthropometric measurements, and neck MRI. The statistical analyses were based on artificial intelli-
gence. The midsagittal SAT, the parapharyngeal fat, and the midsagittal tongue fat were significantly
correlated with BMI; however, no correlation with AHI was observed. Upper-airway obstruction was
correctly categorised in 80% in the case of the soft palate, including parapharyngeal AT, sex, and neck
circumference parameters. Oropharyngeal obstruction was correctly predicted in 77% using BMI,
parapharyngeal AT, and abdominal circumferences, while tongue-based obstruction was correctly
predicted in 79% using BMI. OSA could be predicted with 99% precision using anthropometric
parameters and AT values from the MRI. Age, neck circumference, midsagittal and parapharyngeal
tongue fat values, and BMI were the most vital parameters in the prediction. Basic anthropometric
parameters and AT values based on MRI are helpful in predicting OSA and obstruction location using
artificial intelligence.

Keywords: obstructive sleep apnoea; MRI; obesity; parapharyngeal adipose tissue; artificial intelligence;
drug-induced sleep endoscopy

1. Introduction

Obstructive sleep apnoea is the most common sleep-related breathing disorder and, in
unattended cases, is a major public health problem due to the background comorbidities [1].
Its increasing prevalence can be explained by the dynamic increase in obesity, the most
crucial risk factor for OSA [2]. The prevalence of obesity has tripled since 1975. In 2016, 39%
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of adults were overweight and 13% obese, representing 1.9 billion and 650 million people,
respectively [3]. Obesity is typical for developed countries, and explained by increased
calorie intake, physical inactivity, and changes in the gut microbiome [4]. In addition to
OSA, obesity is also a risk factor for other conditions, such as insulin resistance, diabetes
mellitus, hypertension, atherosclerosis, stroke, or myocardial infarction [5]. Obesity can
be classified into visceral and general types, of which visceral obesity is critical due to
its decreasing effects on lung volumes and pharyngeal wall tension [6]. Although the
pathophysiology of OSA is complex and multifactorial, impaired dilator muscle functions,
ineffective loop gain, and low arousal threshold are its essential background [7]. Upper-
airway obstruction can be the result of deposits of adipose tissue near the upper airways,
which can be examined by CT or MRI. The significance of the parapharyngeal adipose
corpus was first mentioned by Wlofram-Gabel et al., in 1996 [8]. The parapharyngeal region,
the tongue, and subcutaneous adipose tissue of the neck lead to upper-airway obstruction
in different ways. The correlations between OSA, obesity, and anthropometric parameters
have been particularly investigated in several studies to analyse the pathophysiology of
OSA in a more detailed manner and to predict OSA. Of the anthropometric parameters,
BMI, neck, abdominal, and hip circumferences and waist–hip ratio are mainly investigated.
In the recent ELSA-Brasil study, which included 2059 patients, all parameters mentioned
above were found to be significantly higher in the OSA group than in the non-OSA group [9].
The Sleep Heart study, which included 6167 patients, observed significantly higher BMI
and neck and hip circumferences in the case of severe OSA. However, it was also concluded
that the BMI cut-off does not precisely represent the severity of obesity in different races
and sexes [10]. The predictive role of anthropometric parameters in OSA depends on the
sexes. In women, waist circumference and waist-to-height ratio were the most crucial
parameters in predicting OSA, while in men, neck circumference and waist-to-height
ratio were crucial in predicting mild OSA, and BMI in severe OSA [11]. The Wisconsin
Sleep Cohort study, conducted in the USA, including 1520 participants between 30 and
70 years of age, observed a higher prevalence of sleep-related breathing disorders in older
men with higher BMI values. Moreover, BMI was also the most strongly correlated with
sleep-disordered breathing in younger participants [12].

The anthropometric parameters and the parameters of the adipose tissue near the
upper airways can be analysed using medical imaging methods, resulting in large databases.
The complex pathophysiology behind OSA cannot be described using simple statistical
methods in all cases. Given the fast improvement in sciences, using artificial intelligence
is advantageous in diagnostics, prediction, and therapy. Although many possibilities
regarding OSA diagnostics are accessible (e.g., self-administered questionnaires, home
sleep tests, or polysomnography), the ratio of undiagnosed cases is still high.

In the last two decades, the improvement in bioinformatics and artificial intelligence
has allowed easy and rapid detection of OSA. At first, machine learning-based models
included essential risk factors for OSA (i.e., age, sex, BMI, or neck circumference) [13,14],
while others performed a prediction using anthropometric and faciocervical measure-
ments [15]. Regarding the methods, the most vital expectations were simplicity and
rapidity; therefore, ECG [16] and oxyhaemoglobin saturation [17], despite their effective-
ness in prediction, cannot be integrated into daily practice. Other studies investigated the
use of artificial intelligence to predict OSA using questionnaires [18]. The prediction of
OSA was also successful by 2D imaging [19] and 3D face reconstruction using artificial
intelligence [20].

In the present study, in addition to anthropometric parameters, the upper-airway
adipose tissue was examined using MRI in an OSA population to analyse its effects on OSA
pathogenesis. Furthermore, the prediction of OSA and upper-airway obstruction, including
the parameters mentioned above, was also investigated using artificial intelligence (the
Flexible Discriminance analysis and the Multivariate Adaptive Regression Splines).
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2. Materials and Methods
2.1. Participants

This prospective investigation was conducted at the Department of Otolaryngology
and Head and Neck Surgery of Semmelweis University, and included one hundred partici-
pants (74 men and 26 women, mean age ± SD, 42.15 ± 11.7 years). Those over 18 years of
age with snoring or suspected OSA, who gave their consent to participate in the investiga-
tion, were enrolled. Those who previously had oral or otorhinolaryngological surgeries,
those who had craniofacial malformations (e.g., Down syndrome), had claustrophobia,
soft tissue or thyroid gland disorders, neurological or psychiatric diseases, and those with
alcohol or drug abuse or pregnancy were excluded. All participants were examined us-
ing a general otorhinolaryngological examination, a sleep test (i.e., polysomnography),
drug-induced sleep endoscopy, and MRI of the neck region. The flow chart is presented in
Figure 1.
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The study was approved by the Hungarian Research Ethics Authority (National
Institute of Pharmacy and Nutrition, approval reference number: 2788/2019). All patients
gave their informed consent in writing.

Figure 1 shows the study population’s flow chart.

2.2. Anthropometric Measurements

Participants’ general anthropometric parameters, such as gender, age, body height,
weight, and BMI, were calculated. Neck circumference was measured in the cricothy-
roid membrane, hip circumference in the anterior superior iliac spine, and abdominal
circumference in the umbilicus, using a tape measure in each case.

2.3. Sleep Test

A SOMNOscreen Plus PSG device (SOMNOmedics GMBH Germany) was applied for
overnight polysomnography, at the Institute of Pulmonology Törökbálint, under medical
supervision. The examination results were adapted according to the American Academy of
Sleep Medicine. Apnoea is determined as a reduction of 90% or more airflow through the
oronasal thermistor for 10 s or more and hypopnoea as a reduction of 30% or more airflow,
accompanied by a desaturation or arousal of 3% or more oxyhaemoglobin. The severity
of OSA can be classified according to the apnoea-hypopnoea index (AHI) [21]. Due to the
relatively low number of participants, they were classified into control (AHI < 5), mild OSA
(5 ≤ AHI < 15), and moderately severe–severe OSA (AHI ≥ 15) groups.

2.4. MRI

The MRI examinations were performed at the Medical Imaging Centre of Semmelweis
University, using a Philips Ingenia 1.5 T MRI device. Neck MRI was conducted using
coronal T1 TSE (with 3.5 mm slice thicknesses without a gap), axial T2 SPIR, T1 TSE, and
DWI measurements (with 3 mm slice thicknesses with a 1.5 mm gap), and sagittal T2 TSE,
STIR, and T1 TSE analyses. Examinations were performed from the posterior nasal spine
to the hyoid bone. Participants were instructed to breathe normally through their nose
and avoid movements and swallowing. The images were analysed by an experienced
radiologist using a Philips IntelliSpace Portal (Philips Healthcare, Best, The Netherlands).

Parapharyngeal adipose tissue was defined as the largest extent of parapharyngeal
fat tissue in the axial plane on both sides of the parapharyngeal wall and its areas were
calculated using the region of interest (ROI) tool in the DICOM viewer. The thicknesses were
also determined in the axial plane, using T1-weighed measurements using the ruler tool of
the software. To calculate the estimated percentage of tongue fat, the area of the tongue
in the midsagittal axis of the T1-weighted images with the ROI tool was also measured.
In the next analysis step, the well-defined contiguous areas of the tongue adipose tissue
in the same plane were differentiated using the same tool. Then, the tongue area and the
areas of the tongue fat tissue were compared and a rough percentage of the ratio of the
adipose tissue to the tongue was calculated from the measured data. The neck SAT was
determined in the midsagittal region and was of the parapharyngeal AT in the axial plane,
using T1-weighed measurements and the contour of the analysed region [22–24]. The MRI
parameters are presented in Figure 2.
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Figure 2. (A) T1-weighed measurements in the axial plane showing parapharyngeal adipose tissue on
the left and right sides; (B,C) midsagittal axis of the T1-weighted MRI scans showing the midsagittal
subcutaneous adipose tissue of the neck and adipose tissue of the tongue (taken from our data).
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2.5. Drug-Induced Sleep Endoscopy

Drug-induced sleep endoscopy was performed in an operating room. A quantity
of 1.5 mg per kilogram of propofol was applied for sedation and an Olympus flexible
endoscope was inserted through the nose to the larynx. The results were adapted according
to the VOTE classification, making it possible to determine precisely the location, severity,
and configuration of the obstruction. Consequently, location could be determined as ‘V’,
velum; ‘O’, oropharynx; ‘T’, tongue base; and ‘E’, epiglottis. The severity of obstruction
could be 0, indicating that there is no obstruction; ‘1’, indicating a partial obstruction; or ‘2’,
a total obstruction. ‘X’ means that the obstruction cannot be visualised. Configuration ‘L’
means a lateral, ‘AP’ an anteroposterior, and ‘C’ a concentric type of obstruction [25].

2.6. Data Processing

The correlations were examined using linear regression analysis. The differences
between the grouping criteria were examined using the one-way analysis of variance
(ANOVA). A critical condition of ANOVA is the homogeneity of variances, which was
tested by Levene’s test. The test values were above the critical level of 0.05; therefore, the
homogeneity of variance criterion was satisfied. Based on this, the differences between
groups were analysed by the Bonferroni test. This is the most widely used test for multiple
comparisons, and is capable of detecting differences similar to the relatively conservative
tests (e.g., Schaffé’s S test) [26].

Our original idea was to determine the relationships between AHI and different pa-
rameters of the anthropometric and adipose tissue by a multivariable regression equation.
However, the correlations between the parameters of the adipose tissue (i.e., independent
variable) and the AHI values (i.e., dependent variable) were seen to be weak. This can be
explained by the relatively high variance of the independent variables. Similar results were
also obtained using the linear quadratic discriminant analysis. Consequently, more robust
methods were selected which are less sensitive to the variance of the input variables. There-
fore, each input variable was classified into three equal groups. In this case, the traditional
logistic regression method was unable to be applied, as the number of empty cells was
more than two-thirds of the total cells. At the same time, the unpredictable development
of artificial intelligence, generally, and specifically machine learning, offers new tools for
automatic, supervised patients’ classification in the case of AHI and obstructions based on
their demographic, anthropometric, and adipose tissue parameters. Different classification
algorithms have been tested, indicating an abundance of methods [27]. The efficiency of
the ‘classic’ machine learning algorithms (e.g., random forest method) was found to be rela-
tively poor. Therefore, the methods and algorithms developed for classification problems
in chemometrics were selected because, in this field, the number of independent variables
(inputs) is generally relatively high, compared to the number of samples (records) [28].
Consequently, it was possible to find algorithms to classify patients according to input
parameters with unexpected efficiency. The most favourable results were produced using
the Flexible Discriminance analysis and the Multivariate Adaptive Regression Splines. The
algorithms can be found in the freely downloadable ‘mda’ R-package [29]. Garson’s method
was used to test the relative significance of each parameter [30]. The cross-validation index
was applied to detect the location of the obstruction [31].

The present investigation, such as all academic endeavours, had to combine the
ambition to achieve well-founded results with the restriction of limited resources. Based on
our preliminary calculations, following the recommendations of Shuster, an ideal sample
should be three–five times larger [32]. This is a considerable difference, but we did not
achieve one order of magnitude. The relatively low but not extraordinarily small sample
size is an inherent limitation of the generalisability of results, although modern statistical
methods, mainly bootstrapping, offer a favourable possibility to evaluate the robustness of
results [33]. However, the application of cross-validation methods in sampling in the case
of classifications considerably contributes to increasing reliability. Notwithstanding this, it
should be noted that our results can only be considered to be preliminary. Validity must be
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further analysed and improved by increasing patients’ numbers and involving other races
with different craniofacial and obesity characteristics.

3. Results

Of the 100 participants, 36 belonged to the control, and 32 to the mild and 32 to the
moderately severe–severe OSA group. A male predominance was observed in all groups.
Additionally, a higher ratio of participants under 40 years of age and a lower BMI was
detected in the control group. Patients over 40 years of age and with higher BMI values
were found in the OSA groups.

3.1. Basic Demographic Values, Laboratory Test, and AT MRI Parameters

The groups’ basic demographic values, laboratory test parameters, and AT MRI
parameters are summarised in Table 1.

Table 1. Patients’ basic demographic, MRI, and laboratory test results. The parameters show the
mean ± SD values. *** indicates the significant difference at p < 0.01 level, while ** the significant
difference at p < 0.05 level and * the significant differences at p < 0.1.

Indicators Control Group
n = 36 (A) Mild OSA n = 32 (B) Moderately Severe +

Severe OSA n = 32 (C) p-Value Differences

Age (years) 38.42 ± 12.13 45.34 ± 11.17 43.16 ± 10.9 0.042 ** A-B

Weight (kg) 78.94 ± 13.15 93.03 ± 14.58 101.97 ± 17.21 0.000 *** A-B; A-C; B-C

Hip circumference (cm) 100.49 ± 11.97 106.28 ± 10.46 111.15 ± 10.96 0.001 *** A-C

Abdominal circumference (cm) 94.73 ± 12.7 104.97 ± 11.68 111.01 ± 12.51 0.000 *** A-B; A-C

Neck circumference (cm) 37.95 ± 4.12 40.69 ± 3.42 42.73 ± 3.33 0.000 *** A-B; A-C; B-C

Tongue fat midsagittal (cm2) 824.82 ± 159.43 928.64 ± 154.39 933.66 ± 176.27 0.01** A-B; A-C

Tongue fat (%) 0.33 ± 0.05 0.33 ± 0.05 0.33 ± 0.06 0.957 No significant
difference

Midsagittal SAT of the
neck (mm) 6.1 ± 1.69 6.62 ± 1.75 7.26 ± 1.57 0.019 ** A-C

Parapharyngeal AT on the right
side (cm2) 253.47 ± 62.88 269.89 ± 64.37 304.58 ± 61.64 0.004 ** A-C; B-C

Parapharyngeal AT on the left
side (cm2) 256.19 ± 63.67 285.45 ± 83.97 311.63 ± 60.54 0.006 ** A-C

Sum of the parapharyngeal
AT (cm2) 509.66 ± 121.96 555.34 ± 141.88 616.21 ± 110.07 0.003 ** A-C

Total cholesterol (mmol/L) 5.59 ± 1.15 5.9 ± 1.17 5.47 ± 1.01 0.279 No significant
difference

HDL-cholesterol (mmol/L) 1.31 ± 0.29 1.22 ± 0.32 1.13 ± 0.17 0.024 ** A-C

LDL-cholesterol (mmol/L) 3.58 ± 0.81 3.89 ± 0.82 3.7 ± 0.8 0.282 No significant
difference

Triglycerides (mmol/L) 1.82 ± 1.33 2.58 ± 1.8 2.04 ± 1.17 0.097 * A-B

As Table 1 reveals, in the case of the anthropometric and most MRI parameters, a
significant difference was observed between the OSA and control groups. Of the parameters
examined, only the values of tongue fat%, total cholesterol, and LDL-cholesterol did not
differ between the groups.

3.2. Correspondence between Demographic and MRI Parameters along with AHI and BMI

The correspondence between demographic and MRI parameters, along with AHI and
BMI, is presented in Table 2.
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Table 2. Pearson’s correlation coefficients (r2) between basic demographic values and MRI, and AHI
and BMI. The parameters show the correlation coefficients. ** indicates the significant difference at
p < 0.05 level.

Correlation with

Indicators BMI (kg/m2) AHI (events/hour)

p-Value p-Value

Age (years) 0.015 0.066

Hip circumference (cm) 0.793 ** 0.011

Abdominal circumference (cm) 0.872 ** −0.014

Neck circumference (cm) 0.357 ** −0.035

Tongue fat midsagittal (cm2) 0.358 ** −0.035

Tongue fat (%) 0.146 0.022

Midsagittal SAT of the neck (mm) 0.509 ** −0.167

Parapharyngeal AT on the right side (cm2) 0.311 ** −0.067

Parapharyngeal AT on the left side (cm2) 0.299 ** −0.125

Sum of the parapharyngeal AT (cm2) 0.322 ** −0.103

As Table 2 reveals, most anthropometric and BMI parameters were correlated with
BMI, of which the correlations with abdominal and hip circumferences and midsagittal
neck SAT were the strongest. However, no significant correlations with AHI were observed.

3.3. Prediction of Velopharyngeal Obstruction

The prediction of velopharyngeal obstruction using anthropometric and MRI parame-
ters is summarised in Tables 3 and 4.

Table 3. Prediction of velopharyngeal obstruction using anthropometric and MRI parameters. The
table presents the categorisation of real and predicted velopharyngeal obstruction, along with number
of patients in each group.

Reference

Non-Velopharyngeal
Obstruction

Velopharyngeal
Obstruction

Prediction
Non-Velopharyngeal Obstruction 16 5

Velopharyngeal Obstruction 15 64

Table 4. Relative significances of the parameters in the prediction of velopharyngeal obstruction,
applying two statistical approaches (i.e., general cross-validation and residual sum-square methods).
The table shows the role of different factors in predicting velopharyngeal obstruction, indicating the
relative importance of each parameter.

Number of Subsets General Cross Validation Residual Sum Squares

Sum of the parapharyngeal
AT (cm2) 100.0 100.0

Neck circumference (cm) 53.8 65.9

Age (years) 30.7 47.1

As Tables 3 and 4. present, in the case of both of the above-mentioned statistical meth-
ods, the most vital parameters were the parapharyngeal AT, followed by the circumference
and age. Velopharyngeal obstruction could be predicted in 80% of the cases using these pa-
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rameters. In the other 16% of the cases, the algorithm incorrectly predicted velopharyngeal
obstruction, and, in 5%, the algorithm did not detect the presence of obstruction.

3.4. Prediction of Oropharyngeal Obstruction

The correlation between oropharyngeal obstruction, and anthropometric and MRI
parameters and their predictive values, is presented in Tables 5 and 6.

Table 5. Prediction of oropharyngeal obstruction using anthropometric and MRI parameters. The
table presents the categorisation of real and predicted oropharyngeal obstruction, together with
patient numbers in each group.

Reference

Non-Oropharyngeal
Obstruction

Oropharyngeal
Obstruction

Prediction
Non-Oropharyngeal obstruction 20 9

Oropharyngeal obstruction 14 57

Table 6. Prediction of oropharyngeal obstruction using anthropometric and MRI parameters, by
general cross-validation index. The table shows the role of the different parameters in predicting
oropharyngeal obstruction in%, indicating the relative importance of each parameter.

Indicators General Cross-Validation Index Value Residual Sum of Squares

BMI (kg/m2) 100.0 100.0

Sum of the parapharyngeal AT (cm2) 44.1 68.4

Abdominal circumference (cm) 44.7 57.2

As can be seen from Table 5, the prediction of oropharyngeal obstruction was efficient
in 77% of cases using anthropometric and MRI parameters. In the other 14% of cases, the
algorithm indicated false obstruction, and in 9%, it was unable to predict the presence
of obstruction.

The relative importance of different parameters in predicting obstruction is sum-
marised in Table 6.

Table 6 shows that BMI played the most crucial role in the prediction, although
abdominal circumference and the sum of parapharyngeal AT also contained important
information. The relatively low confidence interval indicates that the possibility of an
obstruction in the case of higher BMI values is relatively high. In the case of lower BMI
values, the sum of the parapharyngeal AT parameter is essential to predict obstruction.

3.5. Prediction of Tongue-Based Obstruction

The prediction of tongue-based obstruction applying anthropometric and MRI param-
eters is summarised in Table 7.

Table 7. Prediction of tongue-based obstruction, including anthropometric and MRI parameters. The
table presents the 100 patients’ real and predicted categorisation of obstruction along with patient
numbers in each group.

Reference

Non-Tongue-Based
Obstruction

Tongue-Based
Obstruction

Prediction
Non-Tongue-based obstruction 12 4

Tongue-based obstruction 17 67

As shown in Table 7, the tongue-based obstruction could be predicted in 79% of cases,
using anthropometric and MRI parameters. However, the algorithm indicated a false
obstruction in 17% of cases and a false negative obstruction in 4% of cases.
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3.6. Prediction of OSA

The prediction of OSA, applying anthropometric, laboratory test, and MRI parameters,
and the relative significance of each parameter, were analysed using artificial intelligence
(i.e., the Garson test). The efficiency of OSA categorisation is presented in Table 8, while
the relative significance of each parameter is presented in Table 9.

Table 8. Prediction of OSA categories, including anthropometric, laboratory test, and MRI parameters.
The table presents 100 patients’ real and predicted OSA categorisation, along with patient numbers
in each group.

Estimated OSA Categories

Control Mild OSA Moderately Severe + Severe OSA

Non-OSA 34

Mild OSA 1 33

Moderately severe + Severe OSA 32

Table 9. Relative importance of different factors (%) by multivariate discriminant analysis in the
prediction of OSA subcategories, including anthropometric, laboratory test, and MRI parameters.
The table shows the role of the different parameters in predicting OSA in%, indicating the relative
importance of each parameter.

Indicators Importance (%)

Age (years) 10.8

Tongue fat midsagittal (cm2) 7.8

Neck circumference (cm) 7.7

Triglycerides (mmol/L) 7.5

HDL-cholesterol (mmol/L) 7.3

Parapharyngeal AT on the left side (cm2) 7.1

Total cholesterol (mmol/L) 6.8

Hip circumference (cm) 6.1

BMI (kg/m2) 5.65

Weight (kg) 4.9

Height (cm) 4.75

Abdominal circumference (cm) 4.5

LDL-cholesterol (mmol/L) 4.4

Tongue fat % 4.1

Parapharyngeal AT on the right side (cm2) 3.8

Gender 3.6

Midsagittal SAT of the neck (mm) 3.2

Including anthropometric, laboratory test, and MRI parameters, using artificial in-
telligence, the presence of OSA could be predicted in 99% of cases. This means that the
algorithm performed a false calculation in only one non-OSA case. To validate the results,
the data were randomly divided into ’teaching’ and ’test’ parts in a 75:25 ratio. After
hundreds of analyses, the average OSA prediction was over 90%. Age, tongue fat%, and
neck circumference were determined as the essential parameters in the prediction, followed
by laboratory test parameters (i.e., triglyceride and HDL-cholesterol). Left-sided parapha-
ryngeal AT was also essential in the prediction, preceding other parameters, such as BMI
and hip circumference.
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4. Discussion

OSA affects a significant proportion of society and the ratio of undiagnosed cases is
high; therefore, its diagnosis must be improved. Although many possibilities regarding the
diagnosis of OSA are accessible, the earliest diagnosis is essential, due to the appearance
of comorbidities. The primary purpose of diagnostic methods is to easily and quickly
screen for OSA or diagnose the disorder with high specificity and sensitivity. Efficient
screening is possible using self-administered questionnaires, of which the STOP-BANG (i.e.,
snoring, tiredness, observed apnoea, high blood pressure, BMI, age, neck circumference,
and male gender) is generally used with reliable results. This questionnaire contains
eight questions, and patients can answer with ‘yes’ or ‘no’ [34]. In addition, screening is
also possible using the Berlin, Epworth, or STOP questionnaires. A meta-analysis that
included 108 investigations with 47,989 participants determined a significantly higher
sensitivity of the STOP-BANG questionnaire, although its specificity was lower than that
of the Epworth questionnaire [35]. An alternative diagnostic approach is a home-sleep test
(HST, Types III or IV), which can be effectively used when there is a high risk of moderate
or severe OSA. The one-night polysomnography, in which sleep specialists interpret the
results, is essential in the follow-up of the effectiveness of therapy and the diagnosis of
OSA [36]. Notwithstanding the relatively low specificity of the questionnaires and their
time requirement, and the necessity for qualified staff for home sleep tests, alternative
methods, e.g., using artificial intelligence, are necessary. Previous results indicated that
anthropometric parameters, the Epworth questionnaire, and expired gas analysis using
machine learning could effectively predict OSA; only in 5.7% was a false mild instead of
severe classification found [13]. The prediction of OSA based on machine learning was
improved when the model was completed with physical examination parameters [14]. The
prediction based on anthropometric and craniofacial parameters and the STOP-BANG
questionnaire was more efficient in cases of moderate to severe OSA with no daytime
symptoms [15]. Based on the correspondences mentioned above, the examination of
vital OSA risk factors is not only essential regarding OSA pathophysiology, but using
modern statistical methods (e.g., artificial intelligence), their role in OSA prediction can
also be analysed.

The correlation between OSA and obesity is highly complex and has been particularly
investigated; however, there are still some questions remaining. The present study aimed
to investigate the role of anthropometric and AT MRI parameters of the neck, tongue, and
parapharyngeal regions in the pathogenesis and prediction of OSA, plus the obstruction
and location of the upper airways. Determining the correlation between BMI and AT
is relatively easy; however, the correspondence between OSA and AT is more complex,
as these correlations are not intuitive and cannot be described using simple functions.
Therefore, other methods must be applied to analyse the correspondence between AT and
anthropometric parameters (i.e., independent variables) and OSA (i.e., dependent variable)
and predictive values. Consequently, artificial intelligence (i.e., Flexible Discriminance
analysis and Multivariate Adaptive Regression Splines) was applied in our analyses.

The significance of the present investigation is that the use of artificial intelligence in
OSA diagnostics on a relatively large sample was analysed.

Based on the fact that obesity is one of the most critical risk factors for OSA and is also
correlated depending on age and sex with the severity of OSA, including anthropometric
and AT MRI parameters of the upper airways, the severity categories of OSA could be
correctly determined in 99% of cases. In the prediction, gender and hip circumference
showed the most vital role. Carlisle et al. also observed the effect of age on pharyngeal
morphology. In the case of older males, a higher retropharyngeal and retroglossal length
was observed, along with the cross-sectional area of the soft palate and the diameter and
cross-sectional area of the parapharyngeal fat pad, in that study [37,38]. The effect of age is
also presented in increased genioglossus muscle activity in older awake males [39], which
decreases during sleep, leading to vulnerability and collapsibility of the upper airways [40].
In the OSA prediction, age was a key factor based on the results of the current investigation,
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although no significant correlation with AHI and BMI was observed. Neck circumference
was defined as the second essential parameter in the OSA prediction of anthropometric
parameters. The literature contains conflicting data on neck circumference in OSA; some
investigations have concluded a strong correlation between neck circumference and OSA
severity [41,42], while others have not [43,44]. A meta-analysis regarding the correlation
between neck circumference and obesity stated a sensitivity of neck circumference in the
prediction of obesity of 80% and a specificity of 85% [45]. Neck circumference was defined
to correlate with age, BMI, and hip and waist circumference, in both men and women [46].

In the OSA prediction, the algorithm indicated the anthropometric and left-sided
parapharyngeal and tongue fat midsagittal MRI parameters as being the most crucial,
showing a strong correlation with obesity. Accumulation of AT near the upper airways (i.e.,
tongue, parapharyngeal space, and central region) in obesity leads to increased collapsibility
of the pharynx by mechanical effects and based on neuromuscular regulations in the
central nervous system [47]. Compared to other somatic muscles, AT accumulation in
the tongue showed a higher correlation with BMI and therefore, with obesity severity,
which is strongly correlated with OSA severity [48]. Jugé et al. found similar results, and
observed a significant positive correlation between tongue AT and BMI and older ages [49].
Our results showed that tongue fat% did not significantly differ between OSA categories
and the control group, but the midsagittal region fat% parameter did. The tongue fat%
neither correlated with AHI nor BMI; however, tongue midsagittal region fat% significantly
correlated with BMI. Kim et al. observed a significant positive correlation between tongue
fat volumes and AHI and BMI. Furthermore, a higher percentage of tongue fat% in the OSA
group was detected; however, there was no significant difference compared to the control
group [50]. Parapharyngeal AT is strongly correlated with obesity, highlighted by the
correlation between parapharyngeal AT and BMI. However, no correlation with AHI was
detected. Consequently, parapharyngeal AT parameters contained essential information
in the algorithm; however, they did not significantly correlate with OSA severity. Chen
et al. detected a significant correlation between AHI and the subglosso-supraglottic-level
parapharyngeal fat pad, independently of BMI and neck circumference parameters [51].
According to Gao et al., in patients with a BMI over 28 kg/m2, a significant positive effect
of age on parapharyngeal AT volumes was detected [52].

In predicting velopharyngeal obstruction, the algorithm determined parapharyngeal
AT as the most vital parameter, followed by neck circumference and age. Using these
parameters, by artificial intelligence, the velopharyngeal obstruction could be correctly
detected in 80% of cases. Jang et al. detected a higher percentage of retropalatal concentric
obstruction in patients with OSA with higher parapharyngeal AT volumes [53]. This is
in agreement with our results, referring to the significant role of parapharyngeal AT in
velopharyngeal obstruction.

The importance of parapharyngeal AT in predicting oropharyngeal obstruction was
not found, in contrast to the prediction of velopharyngeal obstruction, since BMI was
indicated as the most crucial parameter, followed by abdominal circumference and para-
pharyngeal AT, with the latter two showing the same importance. Applying these three
parameters, using artificial intelligence, the oropharyngeal obstruction could be predicted
in 77% of cases. However, interestingly, the algorithm did not determine the other anthro-
pometric and MRI parameters that are essential for prediction. Pahkala et al. highlighted
the importance of increased lateral pharyngeal collapsibility associated with accumulation
of parapharyngeal adipose tissue in obese patients, explained by impaired mechanisms
controlling passive collapse of the pharyngeal wall [54]. However, Li et al. determined the
increased mechanical loading of parapharyngeal AT on the lateral pharyngeal wall as a
possible background [22]. Chen et al. observed a strong correlation between subglosso-
supraglottic-level AT and lateral pharyngeal obstruction at the same level [51].

Regarding tongue-based obstruction, the higher tongue volume, the adipose deposits
accumulated in the tongue, and the decreased muscle activity during sleep can be defined,
and are also negatively influenced by the accumulated intramuscular AT [55]. To predict
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tongue-based obstruction, BMI was defined as the most vital parameter; thus, tongue-based
obstruction could be predicted in 79% of cases. The correspondence between BMI and
tongue volumes is highly complex; some researchers have indicated a strong correlation
between them [56], while others have not [50]. According to our investigation results,
tongue volumes significantly correlated with AHI and BMI in both sexes, while tongue fat
significantly correlated with BMI.

Finally, it can be concluded that an MRI of the adipose tissue surrounding the upper
airways can be an alternative examination of OSA when an MRI in the neck region is used
with another indication other than OSA. Both OSA and velopharyngeal obstruction can be
predicted using artificial intelligence. Compared to self-administered questionnaires, an
essential advantage of our algorithm is that the location of obstruction can be identified
with high precision and the examination is relatively fast compared to the home sleep test.
Our results are especially crucial in cases where MRI was performed and was previously
not diagnosed.

The present investigation had some limitations. First, the relatively low number of
participants did not allow for the division of OSA into categories based on its severity.
Moreover, the magnetic resonance examinations were performed on awake subjects and,
therefore, did not present the situations during physiological sleep.

5. Conclusions

Based on the results of the present investigation, the MRI-based AT and anthropomet-
ric parameters were not significantly correlated with OSA severity; however, a significant
correlation with BMI was detected. Parapharyngeal AT plays a significant role in the
presence of velopharyngeal obstruction and OSA pathophysiology. However, it has a
limited effect on oropharyngeal obstruction; moreover, it does not affect tongue-based
obstruction. The BMI was defined as the most vital parameter of oropharyngeal and
tongue-based obstruction; furthermore, its role in OSA pathophysiology is also signifi-
cant. Neck circumference is essential to predict velopharyngeal obstruction and OSA, and
abdominal circumference to predict oropharyngeal obstruction and OSA. In predicting
OSA, age was determined as the most vital parameter, followed by the tongue fat midsagit-
tal and neck circumference parameters, which had the same importance. In conclusion,
using anthropometric and MRI AT parameters, by artificial intelligence, OSA and upper-
airway obstruction can be predicted in 99% of cases, velopharyngeal obstruction in 80%,
oropharyngeal obstruction in 77%, and tongue-based obstruction in 79%.
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