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Abstract: Methods for estimating the qPCR amplification efficiency E from data for single reactions
are tested on six multireplicate datasets, with emphasis on their performance as a function of the
range of cycles n1–n2 included in the analysis. The two-parameter exponential growth (EG) model
that has been relied upon almost exclusively does not allow for the decline of E(n) with increasing
cycle number n through the growth region and accordingly gives low-biased estimates. Further,
the standard procedure of “baselining”—separately estimating and subtracting a baseline before
analysis—leads to reduced precision. The three-parameter logistic model (LRE) does allow for
such decline and includes a parameter E0 that represents E through the baseline region. Several
four-parameter extensions of this model that accommodate some asymmetry in the growth profiles
but still retain the significance of E0 are tested against the LRE and EG models. The recursion method
of Carr and Moore also describes a declining E(n) but tacitly assumes E0 = 2 in the baseline region.
Two modifications that permit varying E0 are tested, as well as a recursion method that directly fits
E(n) to a sigmoidal function. All but the last of these can give E0 estimates that agree fairly well
with calibration-based estimates but perform best when the calculations are extended to only about
one cycle below the first-derivative maximum (FDM). The LRE model performs as well as any of
the four-parameter forms and is easier to use. Its proper implementation requires fitting to it plus a
suitable baseline function, which typically requires four–six adjustable parameters in a nonlinear
least-squares fit.

Keywords: qPCR; data analysis; nonlinear least squares; statistical errors; calibration

1. Introduction

Quantitative polymerase chain reaction (qPCR) is an analytical method for estimating
numbers of molecules of specific genetic substances through amplification to easily detected
quantities [1]. The standard approach for “absolute” quantification is calibration procedures
that compare the unknown with results for the same substance measured at a range of
known concentrations chosen to encompass the unknown [2,3]. The standard curve plots
of quantification cycle Cq vs. the logarithm of the template number (N0) are ideally linear,
with slope −1/log(E), where E is the amplification efficiency (AE). Recommendations
for producing such curves involve three or more replicates at each of the five–seven
concentrations for unknown estimation, or even more concentrations if the AE is to be
estimated [4–6]. This procedure could then entail at least 15 and as many as ~30 individual
PCR reactions, with an estimation of Cq for each.

It has long been a dream to reduce this time and materials demand by estimating the
AE directly from the growth profile for a single reaction (SR) [7–9]. This would then permit
quantitative estimation of the unknown with a single calibration reference, or even from
the SR itself, if optical calibration could be trusted [10]. A number of such methods have
been discussed in detail and their performance compared on several multireplicate datasets
by Ruijter, et al. [11]. Clearly, the value of these methods depends upon their accuracy
and precision.
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In [11], Ruijter and coauthors included much information about accuracy and precision
in their comparisons. However, Spiess and I have pointed out statistical weaknesses in
the implementations of many of these methods [12–15]. Moreover, there are other SR
methods that were not considered in [11] that might perform better. The topic of the
present work is a more detailed examination of such methods, especially including the
dependence of the results on the range of cycles n1–n2 included in the analysis. To this
end, I employ six multireplicate datasets, the same number included in the comparisons
of [15], which focused on the estimation of Cq and its use in calibration. These datasets are
from [3,11,16–19], representative profiles from which are shown in Figure 1.
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data and those from [3] (not shown) appear to have had baselines subtracted. 

Before getting to the details of the present calculations, it is useful to note the afore-
mentioned statistical weaknesses in many methods. In almost all of those compared in 
[11], the baseline is estimated and then subtracted before the fluorescence data are ana-
lyzed. In fact, data are often presented after baselining, as is the case for at least three of the 
six datasets used here and shown in Figure 1. However if the model for the data is baseline 
+ signal, then the proper statistical analysis should be a direct fit to this model, since the 

Figure 1. Representative growth profiles (A) and expanded baselines (B) from the indicated references.
Numbers give the concentration, from highest to lowest, and letters represent the replicate of that
concentration. The two profiles from [11] are from the 94 × 4 technical replicates set. The profiles
from [16,17] have been scaled up by factors of 2000 and 200, respectively, for presentation. These data
and those from [3] (not shown) appear to have had baselines subtracted.

Before getting to the details of the present calculations, it is useful to note the afore-
mentioned statistical weaknesses in many methods. In almost all of those compared
in [11], the baseline is estimated and then subtracted before the fluorescence data are
analyzed. In fact, data are often presented after baselining, as is the case for at least three
of the six datasets used here and shown in Figure 1. However if the model for the data is
baseline + signal, then the proper statistical analysis should be a direct fit to this model,
since the baseline is presumed to contribute to the total signal at all cycles. This requires
nonlinear least squares (NLS), but user-friendly programs for NLS have been available
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for decades. Through Monte Carlo simulations, Spiess and I showed in the Supporting
Information to [14] (Figures S1–S5) that this two-step procedure leads to an increase of 75%
in the dispersion of AE estimates, which translates into an efficiency loss of 1.752 ≈ 3. This
means that one reaction analyzed properly is the statistical equivalent of three analyzed
in the two-step procedure. One method covered in [11] that did include a baseline in the
fitting was PCR-Miner [20]; in fact, this method won out in the Cq precision comparisons
in [12].

A second problem with most SR methods is reliance on the exponential growth model,

y = y0 En, (1)

where the AE ranges from E = 1 (no amplification) to E = 2 (perfect doubling), n is the cycle
number, and y represents the fluorescence signal, with y0 being that in Cycle 0. However, E
must decline from ~2 in the baseline region to 1 in the plateau region at large n, so the use
of Equation (1) for early growth cycles is questionable. In fact, using the LRE model [21] to
generate data resembling typical growth profiles, Spiess and I showed that analysis with
Equation (1) yields low-biased estimates of E when enough cycles are included to give
good precision [14]. The extent of that problem for actual data is a major concern of the
present work.

The LRE model contains a parameter (E0) for the AE in the baseline region, with E
decreasing properly to 1 in the plateau region. The decline of E through the growth region
is illustrated in Figure 2, with a comparison with one additional method, from Carr and
Moore [22]. The CM method is an extension of the MAK2 method [23] (covered in [11]), but
with one additional parameter that allows for the decline of E, leading to realistic sigmoidal
profiles. Both methods tacitly assume E = 2 in the baseline region. However, with a minor
modification, E can be made an adjustable parameter in the CM method.
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Figure 2. Comparison of CMa and LRE estimates of amplification efficiency (scale to right) for rx std1
from [18], which is an average of rxs 1A-1C. For the purpose of this figure, E0 for both fits was fixed
at 1.93, as obtained for the LRE model (see below). The AE difference (LRE-CM) has been scaled by a
factor of 10 and incremented by 1, for display on the same AE grid. The baseline was taken as linear,
and the fits were done for Cycles 4–29.

The AE from the LRE fit in Figure 2 agrees closely (~0.02) with the calibration esti-
mate [15]. I will use such agreement as the quality marker in the present study, as there
seems no better way to judge the SR estimates for quantifying N0 in unknowns. However,
there are reasons the two estimates may not agree. Most importantly, the SR estimates
pertain to the early growth region, while the calibration estimates actually cover the early
cycles in the baseline region up to the first cycle for the most concentrated calibrant [12].
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This follows from the assumption that a dilute reaction amplifies the same as a more
concentrated one after N for the dilute reaction matches N0 for the concentrated one. Thus,
all of the difference comes from the first ∆Cq cycles of the dilute sample, and that ∆Cq
determines E for the pair.

In the present work, I emphasize the performance of the simple growth model of
Equation (1) and the essentially logistic LRE model. I also consider variations of the latter
with an additional parameter to handle asymmetry in the amplification profiles, as well
as the CM model and a direct-fitting approach that assumes a logistic E(n). In general, for
the present tests, these methods do not perform as well as just fitting to the LRE model
over a limited cycle range, namely, to about the half-intensity point or the first-derivative
maximum (FDM).

2. Mathematical Background

The simplest way to estimate the AE from SR data is by fitting to Equation (1), which
contains just two parameters apart from those needed to represent the baseline. As already
noted, most of the methods reviewed in [11] are variations on this theme, with several
ways of treating the baseline, which is estimated separately and subtracted. Some methods
select a range of cycles where the logarithmic transformation of the “baseline-corrected”
data appears to be linear and then estimate E from a linear fit of these transformed data. In
testing this model here, which I will call the EG (exponential growth) model, I will employ
the statistically best approach: fit the data to Equation (1) plus a baseline function. The
issue is then how far into the growth phase to extend this fit, and the usual answer is to
about the second derivative maximum (SDM) cycle. I will examine results for fitting to
cycle n2 spanning a range including the SDM.

The LRE method devised by Rutledge and Stewart [21] involves several steps. However,
the results are equivalent to just fitting to the three-parameter model [24],

y(n) =
y0ymaxEn

0
y0En

0 + ymax − y0
(2)

≈ ymax

1 + exp(b(n1/2 − n))
(3)

for which I will retain the LRE label. Here, ymax is the limiting growth and E0 the initial
AE. The second expression is the logistic model and is obtained by neglecting y0 in the
denominator of the first; n1/2 is the half-intensity point and the FDM, with b = ln(E0) and
ymax/y0 = E0n1/2. Because normally y0 << ymax, there is insignificant difference in results
obtained with Equations (2) and (3). Figure 2 shows that this model can give very good
results for E(n), which is typically found to have declined by about 0.2 at the SDM [14].
However, it is inherently symmetrical about the half-intensity point (also the FDM), which
most qPCR curves are not. Accordingly, it does not perform well in whole-curve fitting of
asymmetrical growth profiles. Below, I describe how to include an asymmetry parameter
to improve the fit quality.

The log-logistic model is a sigmoidal alternative to Equation (3), and in the four-
parameter form [25],

LL4(n) = ymax [1 + (g/n)h]−p (4)

it can accommodate some asymmetry. With p = 1, it is nearly symmetrical, and g ≈ n1/2
(≈nFDM). This model was used in [15] to obtain the most precise Cq estimates, by fitting
to typically 22–26 cycles centered on the FDM. It cannot predict E0 in the baseline region,
because there are no parameters for this. However, it is useful for estimating ymax in
calculations where this parameter is held fixed in the LRE models.

2.1. The Logistic Model with Asymmetry

One can incorporate asymmetry in the model of Equation (2) by raising the denomina-
tor to the power p, as in Equation (4). In both cases there are two modes of convergence
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that are statistically inequivalent. An alternative is to raise ymax in the denominator of
Equation (2) to the power p and then raise the entire denominator to the power p−1. This
approach ensures that at small n, where ymax dominates the denominator, E0 retains its
significance as the initial AE, with physically reasonable prediction of E(n) into the growth
region. Similarly, the addition of the asymmetry parameter to Equation (3) preserves its
ability to predict physically reasonable E(n). The issue again is how well do the results
agree with calibration-based E for asymmetrical profiles?

We want to express the modified versions of Equation (3) in ways that contain E0
and the FDM as adjustable parameters, so that the LS fits return these and their standard
errors (SE) directly. We first note that n1/2 in Equation (3) is the FDM, and by replacing b by
ln(E0), we obtain E0 directly. Taking Mode A as the four-parameter version of Equation (3),
we have

yA (≡ LREA) = base(n) +
ymax(

1 + 1
p exp

[
ln(E0)

p (nFDM − n)
])p (5)

In Mode B the sigmoidal function can be expressed as a subtraction from the plateau
level [15], but it can also be written as

LREB = base(n) + ymax

[
1−

(
1 +

1
p

exp[ln(E0)(n− nFDM)]

)−p
]

(6)

in which form it is added to base(n). Mode C is obtained from Equation (2) as already
described, by raising ymax in the denominator to power p and the entire denominator to
power p−1:

LREC = base(n) +
y0ymaxEn

0(
y0En

0 + ymax
p − y0

)1/p (7)

We obtain a nearly equivalent expression by replacing y0 as a parameter with the FDM,

LRED = base(n) +
ymaxEn

0(
En

0 + (EnFDM
0 )

p − 1
)1/p (8)

in the same way that we went from Equation (2) to Equation (3). All of these expressions
revert to LRE when p = 1.

2.2. Recursion Models

The “mechanistic” models of [22,23] employ recursion relations to generate y(n) from
y(n− 1), based on elements of the reaction chemistry thought to hold in the PCR process. As
already shown in Figure 2, the Carr–Moore (CM) model, with three adjustable parameters,
can predict realistic behavior for both the profiles and E(n) [22]. The MAK2 model of [23],
like the EG model of Equation (1), grows without limit, so must be restricted to the early
growth region in analysis. Because of these limitations and because the CM model is an
extension of it, I do not consider MAK2 any further here.

An alternative recursion approach defines E(n) as a sigmoidal function, with data
fitted to

y(n) = y(n−1) E(n−1) (9)

For the datasets I have analyzed with this method, its performance has been poorer
than that of the other approaches, so I provide only limited results for it below.

The recursion relation of the CM model is

yi = yi−1

(
1 +

A− yi−1

A
− yi−1

Kd + yi−1

)
= yi−1

[
2− yi−1

(
1
A

+
1

Kd + yi−1

)]
(10)

where I have retained their notation (i = n) of [22] and have used A in place of ymax, because
I have found that A does not have the physical significance of ymax, typically being a factor
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of 3 larger than the plateau. The final version of the relation makes it clear that E0 = 2 in
the baseline region, where y is small. One can accommodate variable E0 by (a) replacing 2
with E0 in this expression (Mode a), or (2) scaling the entire quantity in square brackets by
E0/2 (Mode b). I have tested both modes, which I will refer to as CMa and CMb.

Carr and Moore provided the KaleidaGraph routine they used to analyze their data
with Equation (10). However, this routine does not properly implement the recursion
relation; rather, it just predicts yi from the experimental yi−1. Accordingly, it contains just
the two parameters, A and Kd. A true recursion implementation starts with y0 as a third
parameter and generates a full set of y values, which are then altered iteratively with
adjustment of all three parameters in a nonlinear LS routine. (The FORTRAN function
routine for doing this is included in the Supplementary Material.) I have tested the model
in this way, with a 4th adjustable parameter for E0. The method used by CM does converge
readily and can provide good initial estimates of the parameters apart from y0, as needed
for the full calculation.

2.3. Baseline Functions

The choice of function for base(n) can depend on the range of early cycles included in
the fit. I have commonly used linear and quadratic functions of n, in which the need for
parameters beyond the minimal single constant is judged by their statistical significance in
the fit. Any parameter having SE greater than its magnitude is statistically undefined in ad
hoc fitting [26]. Baselines such as the two from [11] shown in Figure 1B exhibit “saturation”
behavior, so are represented as

base(n) = a − q exp(−rn) (11)

sometimes with an added linear term. The other baseline in this figure is represented as a
constant, after deletion of the first four or five cycles.

2.4. Least-Squares Fitting

The NLS fitting was done using routines such as those described before [12–15]:
KaleidaGraph for preliminary work and for the preparation of figures, in-house FORTRAN
codes similar to those in [26] for production work on the multireplicate datasets. Weighted
fitting was discussed in [15]; although weighting is less important in fitting growth profiles
than for Cq calibration data, I have used the same weighting here for consistency.

In assessing the quality of LS fits, important metrics are the sum of weighted squared
residuals, S = Σ wiδi2, and the estimated variance for unit weight, sy

2 = S/v, where the
number of statistical degrees of freedom v is the number of fitted points minus the number
of adjustable parameters. In typical fits of qPCR rx data to the models under investigation
here, the model will begin to fail as the number of cycles included in the fit increases, and
this failure will manifest as a pronounced rise in the fit variance sy

2.
For readers who code, I have a useful tip. Parameters such as y0 (and to a lesser extent,

ymax) can vary considerably—for example, by an order of magnitude with dilution change
for 10-fold dilutions. The annoying nonconvergences of NLS fits can be greatly reduced
by representing y0 through its logarithm, e.g., y0 = 10d, with d now being the adjustable
parameter [27].

3. Results and Discussion

As Figure 1 shows, the amplification profiles vary considerably over the six datasets,
with some having highly symmetrical growth regions (3 × 5 from [18]) and some quite
asymmetrical (94 × 4 from [11]). Some develop level plateaus, while others do not. The
baselines vary from constant or sloping, to the saturation form of Equation (11). All of
these properties can affect the quality of the NLS fits to the models being compared here.
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3.1. The 3 × 5 Data

I start with and devote much detail to the 3 × 5 data from [18], for which the high
symmetry favors the LRE model. As noted earlier in connection with Figure 2, both the
LRE and CM models predict realistic transition from E0 in the baseline region to E = 1
in the plateau. However, to prepare this illustration, I had to freeze E0 in the CM fit at
the LRE value; when freely fitted, it was 2.10(11) [≡2.10 ± 0.11] in Mode a and 2.17(7) in
Mode b. The S values (unweighted fitting) were 1.85 × 104 and 1.36 × 104, respectively,
as compared with 1.26 × 104 for the LRE model (with one fewer parameters). With the
addition of the asymmetry parameter p to the LRE model, the estimated E0 was 2.066(33)
for LREA (S = 5237), 1.988(13) for LREB (S = 4130), and 1.939(10) for LREC/D (S = 7399).
Only the last value is within error of the calibration result (1.916(13) from [15]), and it is the
statistically poorest of the LRE4 fits.

Figure 3 compares the CMa and LRE methods on the full 3 × 5 dataset, now giving
averages and standard deviations (SD) for the three replicates at each concentration. The
CMa E0s are lower with weighted fitting but are still about 0.1 above the calibration
estimate, while the LRE estimates are within about 0.02 of calibration and more precise.
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Figure 3. Estimates of initial AE values for the 5 concentrations of the 3 × 5 data from [18], obtained
using the LRE and CMa methods and weighted fitting from n1 = 4 to n2. Each value is an average of
the 3 replicates at that concentration, with error bars being standard deviations (SD). Both methods
assumed a constant baseline and used the weighting from [15]. The calibration-based AE is 1.916(13).

Both models fit the 3 × 5 data well for all n2, with the variances in these weighted
fits varying with n2 by only a factor of ~2, CMa’s being larger than LRE’s by less than a
factor of 2. This is in contrast with the behavior for the other datasets, where the variances
usually rise sharply around the FDM (see below). Accordingly, I show in Figure 4 the E0
estimates for n2 near the FDM, along with EG E estimates for n2 near the SDM. The latter
exhibit the behavior predicted by the modeling in [14]: negative bias, minimal near the
SDM, with precision increasing with n2. The CM and LRE estimates agree well with the
calibration-based estimate; however, the CM calculations failed to converge for n2 smaller
than ~2 cycles above the FDM, so these CM results are for the lowest converged n2 values.

In the weighted fits of these data, CMb and CMa gave nearly identical results for both
E0 and sy

2 in the range depicted in Figure 4, but the CMb E0s rose to ~0.01 higher for the
largest n2s covered in Figure 3. The E-recursion method of Equation (9) was tried on the
data for the highest concentration in this set and gave E estimates close to those from CM.
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However, these were much more disperse, with SDs four times larger than for CM.
This greatly reduced precision (and even poorer performance on the 94 × 4 data (below))
led me to drop further consideration of this model. The LRE4 models gave generally
lower E0 estimates than CM for all covered n2, with the estimates for n2 < 22 almost all
falling within 0.01 of the calibration value (Figure 5). The values for the parameter p
(Equations (5)–(8)) were mostly close to 1.0 and within their SEs of this value for the lowest
several n2 values, which means the LRE model is statistically better in this region [26].

The mentioned convergence problems occurred for the CM methods for n2 < FDM + 1
and for LRE with n2 < FDM − 3. Convergence can be achieved for lower n2 by freezing a
parameter. For LRE, the obvious choice is ymax, and for n2 < FDM the results are not very
sensitive to the value chosen, so values obtained for higher n2 can be used or even just
the approximate plateau value if the plateau is achieved. For the CM method, either Kd
or A may be frozen, but unfortunately, both begin to change just as convergence becomes
problematic. Moreover, these parameters are not related to the plateau in an obvious way;
in particular, A is about three times the ymax value. However, I have obtained reasonable
E0 by freezing A at either the trend from large n2 or at the values for nearby n2, where
A becomes increasingly uncertain. Since the plateau value can be obtained by simple
inspection of the data, the LRE method is easier to use in this way.

3.2. Other Datasets

For the 3 × 5 data examined above, the LRE model performs best and is easiest to
employ of the three- and four-parameter methods. Accordingly, in Figures 6 and 7, I
compare this method with the EG method that has dominated the literature in various
forms, on the representative reactions shown in Figure 1. The LRE results are obtained
for n2 near the FDM cycle, while the EG results center on the SDM cycle. From inspection,
the closest agreement with calibration E estimates occurs about one cycle below these
references in both cases. Comparing statistics for the two methods at these n2 values, the
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LRE mean discrepancy is only −0.004, while that for EG is −0.082 (with only one positive
difference). The rms differences are 0.053 for LRE and 0.112 for EG.
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Although the results shown in Figures 6 and 7 are for single reactions, the ensemble
statistics for replicates closely resemble them, as is shown in Figure 8 for the datasets and
concentrations of Figure 7. The ensemble SDs of Figure 8 do exceed the SR SEs of Figure 7
in several cases. However, the excess is not as great as found for the Cq estimates in [15].

LRE and EG estimates are compared with the calibration results for all concentrations
of the 94 × 4 data in Figure 9. Here, again the EG estimates systematically undershoot the
calibration values, while the LRE values agree at the lower concentrations but fall short
for higher. These estimates were obtained by fixing the ymax values; this will be discussed
further below.

It is instructive to compare the EG results with those given in the supplement to [11],
where four of the discussed methods employ the EG model in different ways, two using
direct fitting, two using logarithmic transformation, and three subtracting an estimated
baseline before fitting. As Figure 10 shows, the results are quite different, giving average
AEs ranging from 1.869(62) for LinReg to 1.991(75) for Miner. All sets show a statistically
significant slope in log(N0), and two—LinReg and Miner—support a quadratic dependence.

In an attempt to understand how such ostensibly similar methods can give such
disparate results, I have examined results for the 94 × 4 1A rx (MYCN_STDA15–1) of
Figure 1 in detail. Figure 11 shows the five-parameter fit of all cycles up to the SDM (22) to
Equation (1) plus saturation baseline (Equation (11)). The E estimate is smaller than those
given for all of the methods shown in Figure 10 and reaches its maximum value (1.848(38))
when n2 = 21. This is closest to the 1.884 for this rx from LinReg (supplement to [11]), which
subtracts a constant baseline and fits a limited range of early growth channels to a straight
line after logarithmic transformation. Using the baseline values provided by the authors
of this method, I was able to verify their E estimates by trial-and-error variation of the
fitted cycle range, for example, Cycles 16–22 for the 1A rx. The DART and FPLM methods
both subtract a saturation baseline obtained by fitting Cycles 2–10 to Equation (11). That
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procedure yields a baseline close to that given by the first three parameters in the fit results
box in Figure 11. Then FPLM fits the baseline-corrected cycles n1-SDM to Equation (1) plus
a constant, where n1 is determined from statistical tests. The result in [11] is 2.012. For
n1 = 11–18 and n2 = 22 (the SDM), this procedure yielded a maximum E of 1.800(18) in my
calculations. By reducing n2, I found a maximum E of 1.95(10) for Cycles 16–20. Similarly,
the Miner method fits to the same 3-parameter expression, but without first subtracting
a saturation baseline. The largest E I could get this way was 1.93(10) fitting Cycles 16–20,
as compared with the Miner estimate of 1.992. While the discrepancy is within statistical
error for these five-cycle fits, both methods claim to fit cycles to the SDM, and there the
differences are clearly an irreconcilable 0.2 in magnitude. As a further illustration of
such baseline and cycle-range problems, I note that adding a baseline slope to the Miner
procedure gives E = 1.986(63) fitting Cycles 9–21, as compared with a maximum of 1.900(34)
for n2 = 21 and any n1, with a constant baseline.
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Figure 7. E0 estimates and fit variances for the other 3 reactions shown in Figure 1, obtained and
labeled as in Figure 6.

Results for this rx obtained with the four-parameter models are shown in Figure 12.
For estimating E0, the best performers are the simple LRE model (i.e., p = 1) and LREC,
illustrated in Frame A. The fit variance rises sharply beyond n2 = 24 (the FDM) for all CM
and LRE modes except LREA (n2 = 25), indicating that the fit models are inadequate over
cycle ranges extending beyond these n2s. Further, for all methods except LRE and LREA, I
had to freeze at least one parameter in order to achieve convergence for n2 ≤ 24. For the
CM methods, this requires fitting the data for larger n2 to arrive at appropriate values for
the frozen parameter(s). Figure 12A includes results obtained for LRE at all n2 with the
plateau level frozen at the value of y for the last cycle (making ymax the difference between
this yi value and the baseline a).
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Figure 9. Ensemble AE results for EG and LRE methods on 94 × 4 data from [11], compared with the
calibration error band (1 σ) from [15]. EG and LRE estimates are displayed for n2 values near the
SDM and FDM, respectively, with integer values of the abscissa representing those references. In the
LRE calculations, ymax was fixed at the y value of the last cycle for each rx.
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Figure 10. AEs for 94 × 4 data from [11] for four methods that use Equation (1) in various ways.
The LinReg values are displayed at the given N0, while the others have been displaced by ~25%
from one another to facilitate display. The lines are LS fits to a straight line in log(N0); the slopes are
significant in all cases, though only marginally so for LinReg. The quotation marks on the n-axis
label are to indicate that the actual concentrations are the reverse of the labeling given in the Excel
data file from [11].
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It is noteworthy that the E0 estimates at n2 = 24 are the closest to the calibration value 
for most variations on these methods: 1.925(22) for LRE, 1.88(6) for LREA [1.94(4) at n2 = 
26], 1.921(23) for LREB, 1.926(22) for LREC, 1.945(19) for both CMa and CMb [1.97(2) at n2 
= 22]. These values all undershoot the “true” E0 = 1.99 but are mostly within ~0.05. For 

Figure 12. E0 and fit variance for 94 × 4 rx 1A analyzed as a function of n2 for 4 LRE (A,B) and 2 CM
modes (B). Solid curves and points indicate that all parameters were fitted, while dashed curves
and open points represent results obtained with parameters frozen—ymax for the LRE models, Kd

for CM and then A also below n2 = FDM (24). The fitted cycles start with n1 = 1, and the saturated
baseline function is used. Error bars are estimated SEs from the fits; for CMa (not shown), they are
comparable to those for CMb.

It is noteworthy that the E0 estimates at n2 = 24 are the closest to the calibration
value for most variations on these methods: 1.925(22) for LRE, 1.88(6) for LREA [1.94(4) at
n2 = 26], 1.921(23) for LREB, 1.926(22) for LREC, 1.945(19) for both CMa and CMb [1.97(2)
at n2 = 22]. These values all undershoot the “true” E0 = 1.99 but are mostly within ~0.05.
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For reference, the FDM for this profile is 24.4. So again, here, the best estimates of E0 and
the rise in variance occur near the FDM.

A few additional details of these calculations warrant mention. (1) For most of the
E0 results stated just above, at least one parameter had to be held fixed in the fit—Kd for
the CM estimates (and A at n2 = 22), ymax for LRE4. (2) While the E0 parameter correctly
describes E(n) in the baseline region for all models, E(n) does not go properly to 1 in
the plateau region for LREC and LRED. (3) Correspondingly, ymax in the expression for
LREC (Equation (7)) and nFDM for LRED depart from their “true” values with increasing
n2. (4) The SE error bars for the CMb method in Figure 12B are greatly pessimistic, as
the ensemble SDs are close to those for the LRE4 methods for both CM modes. (5) The
E(n) recursion method of Equation (9) performs poorly on these data, giving E0 > 2.5 with
SD > 0.15 for data at the highest concentration. With regard to point (1), all parameters can
be fitted for LRE; and for LREB and LREC, E0 is insensitive to the fixed plateau, changing
by <0.01 for ±1000 change from the actual plateau of ~10500.

LRE and EG results are compared for the data from Rutledge and Cote [3] in Figure 13.
The amplification profiles are fairly symmetrical for these data, and again the LRE results
agree well with calibration, while EG fall below. Similar results are shown for the datasets
from [16], [17], and [19] in the online supplement. For two of these, the Cq-based calibration
estimates are themselves uncertain, as the dependence of Cq on log(N0) is not linear, and
the AE values vary significantly with the fit order [15].
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Figure 13. Ensemble AE results for EG and LRE methods on 20 × 6 data from [3]. The horizontal
line indicates the calibration estimate from [15]. The EG and LRE estimates are displayed for n2

values near the SDM and FDM, respectively, with integer values of the abscissa representing those
references. In the LRE calculations, ymax was fixed at the value determined from fits to the LL4 model
of Equation (4).

From these examples, we see that both the CM and LRE methods can give reasonable
estimates of E0 for both symmetrical and unsymmetrical growth profiles. For the latter,
however, practical problems—especially convergence difficulties and for CM, problems
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choosing the values for frozen parameters—make implementation difficult for large-scale
applications processing many profiles without operator intervention. The simplest ap-
proach is just the LRE method (i.e., p = 1) with ymax either fitted or determined by yi for
the last cycle: As the fitted estimates of ymax become progressively more uncertain with
decreasing n2, the so-fixed ymax values are generally within the statistical uncertainty given
by the parametric SE, and the E0 estimates are not very sensitive to this choice anyway.

As was noted in the discussion of Figures 6 and 7, overall, the best EG E estimates come
from n2 = SDM – 1, and the best LRE E0s come from n2 = FDM− 1, where the computations
generally converge easily. With the latter, freezing ymax at either the last yi or the estimate
from a fit of the data in the transition region to the LL4 model of Equation (4) sometimes
lowers the estimated E0, and it sometimes raises it. For the six datasets examined here,
freezing ymax improved agreement with calibration for three datasets, but worsened it for
the other three.

4. Conclusions

The standard approaches for estimating qPCR amplification efficiency from single-
reaction data have relied on the two-parameter exponential growth model of Equation (1),
with various ways of treating (and usually subtracting) the baseline and selecting the
cycle range for the AE estimation. These methods have previously been shown to lead
to bias and loss of precision. In this work, I have examined several models that allow for
reasonable decline of E(n) in the growth region: (1) the three-parameter LRE model [21,24],
(2) four four-parameter extensions of LRE that preserve the physical significance of E0 as
the AE through the baseline region, (3) two four-parameter modifications of the recursion
method of Carr and Moore [22] that also permit estimation of E0 6= 2 in the baseline region,
and (4) a four-parameter recursion method that fits directly to a sigmoidal E(n) function.
All but the last of these can give good estimates of E0, and for the six multireplicate datasets
considered here, give results closest to the calibration-based AE estimates when the data
are fitted to about one cycle below the FDM. For such small n2, the four-parameter methods
can give convergence problems, necessitating that at least one parameter be held fixed.

For the six multireplicate datasets tested here, the LRE method rarely presented such
problems. Since, overall, its E0 estimates were as good as those from the four-parameter
methods, my presently recommended procedure is to fit the three-parameter LRE model to
data extending to one cycle below the FDM. Importantly, a suitable baseline function must
be included in the fit model for optimal performance. The resulting four–six parameter
models are easily handled by readily available nonlinear least-squares algorithms.

Given that the SR methods are destined to remain uncertain in their estimation of
E0 for new systems, it may be necessary to benchmark them against standard calibration
methods for similar systems and experimental procedures. Of course, such corrections can
also be used for the EG method, which, however, is typically less precise near n2 = nSDM
and varies more with a change in n2. It is also useful to consider how much error can be
expected and/or tolerated in SR estimates for unknowns. This error will depend upon
how far removed the unknown is from some known reference, as given by ∆Cq. If the E0
estimate is off by 5% (0.1 for E0 ≈ 2), the error will be about E0

0.05 ∆Cq, which, for example,
is +65%/−40% for ∆Cq = ±10. From the present work, 5% error in E0 is a conservative
estimate of the LRE reliability. It was only clearly exceeded for the data from Guescini
et al. [17] (see supplement), where the estimates exceeded 2.0 and so would be reduced to
that value in recognition of the physical limit on E0.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life11070693/s1, includes three Figures S1–S3 comparing EG and LRE results for the datasets
from refs [16,17,19], and two Figures S4 and S5 giving FORTRAN function routines for the two
recursion models examined in this work.
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