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Abstract: Foxtail millet (Setaria italica) is an important minor cereal crop in China. The yellow
color of the de-husked grain is the most direct aspect for evaluating the foxtail millet quality. The
yellow pigment mainly includes carotenoids (lutein and zeaxanthin) and flavonoids. To reveal
the diversity and specificity of flavonoids in foxtail millet, we chose three high eating quality and
two poor eating quality varieties as research materials. A total of 116 flavonoid metabolites were
identified based on Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem
Mass Spectrometry (UPLC-ESI-MS/MS) system. The tested varieties contained similar levels of
flavonoid metabolites, but with each variety accumulating its unique flavonoid metabolites. A total
of 33 flavonoid metabolites were identified as significantly discrepant between high eating quality
and poor eating quality varieties, which were mainly in the flavonoid biosynthesis pathway and one
of its branches, the flavone and flavonol biosynthesis pathway. These results showed the diversified
components of flavonoids accumulated in foxtail millets and laid the foundation for further research
on flavonoids and the breeding for high-quality foxtail millet varieties.

Keywords: foxtail millet; flavonoid metabolome; functional components; UPLC-ESI-MS/MS

1. Introduction

Foxtail millet (Setaria italica (L.) P. Beauv), a member of the family of Poaceae, origi-
nated in the Yellow River basin in China more than 11,000 years ago [1]. Foxtail millet
plays a nutritional and functional role in the diet for many people [2]. It is nutritionally
comparable to some other major cereals. For example, it has a higher content of protein,
lipids, and lower carbohydrate content than some cereals (wheat and maize) [3]. Compared
with rice, foxtail millet has double protein content, fourfold minerals and fat, and triple
calcium [4]. Ample evidence showed that increasing the consumption of foxtail millet was
associated with a lower risk of diabetes [5]. Therefore, foxtail millet is gaining increasing
attention among consumers. Generally, the yellow color of the de-husked grain is the most
direct indicator for consumers to evaluate the millet quality. Many compounds, including
carotenoids (lutein and zeaxanthin), flavonoids, are predominant yellow pigments in plants
and are believed to confer nutritional and pharmacological benefits to plants. There have
been preliminary studies on carotenoids in foxtail millet [6,7]. However, a systematic
understanding of flavonoid diversity in foxtail millet is still lacking.

Foxtail millets are rich in flavonoids [8,9], a large group of natural products with
variable phenolic structures, containing flavone, flavanone, flavonols, isoflavone, antho-
cyanins, and so on. Flavonoids play essential roles in plants in forming the color and
flavor of flowers and fruits, and resistance against ultraviolet B (UV-B), diseases, and pests
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damages [10–12]. For example, the accumulation of flavonoids led to the deep yellow col-
oration of red Chinese pears after methyl jasmonate (MeJA) treatment. It also affected the
appearance of radishes with multiple colors [13,14]. Furthermore, flavonoids have potential
benefits for human health, including antioxidation, anti-inflammatory, anti-cholinesterase,
anticancer and heart diseases, and countering antibiotic resistance [15–17]. The flavonoid
biosynthesis pathway has been well understood in Arabidopsis thaliana, Zea mays, and
Petunia hybrida, providing a basis for studying flavonoids in foxtail millet [18,19].

Metabolomics has been introduced as a novel technology to analyze the microbial,
plant, and animal metabolomes and is considered the bridge linking the genomes and the
phenotypes [20]. The high sensitivity and fast scanning speed make ultra-performance
liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) a preferred method
of component analysis, in which the multiple reaction monitoring (MRM) mode in triple
quadrupole mass spectrometry (UPLC-QQQ-MS/MS) is often used to eliminate the in-
fluence of matrix effects in quantitative analyses [21]. Various metabolites and the corre-
sponding genetic characteristics in plants have been identified based on this metabolic
path-based approach, such as the identification of glucosides in Arabidopsis leaves [22],
the synthesis and regulation of flavonoids in rice [23], and the comparison of metabolism
substances in plants [24].

This study aimed to characterize flavonoid metabolites in foxtail millets and explore
the diversity of flavonoid metabolites among different varieties using UPLC-ESI-MS/MS.
It is expected that our work could provide a basis for further understanding of the quality
of foxtail millet and pave the way for the breeding of better varieties with high flavonoids.

2. Materials and Methods
2.1. Plant Materials

Five foxtail millet varieties were selected as experimental materials, which were
“Jingu21” (JG21), “Qinzhouhuang” (QZH), “Yugu1” (YG1), “Daobaqi” (DBQ) and “Niu-
maobai” (NMB). JG21 is an elite variety from Shanxi province with excellent quality and
the largest growing area in China. QZH is another outstanding variety bred from an elite
landrace that originated from Qinxian County in Shanxi province. YG1 is an elite variety
originating from Henan province in China, the most influential species in North China,
and has a high-quality reference genome sequence [25]. Both DBQ and NMB are landrace
with poor eating quality. All the foxtail millet varieties were planted in the experimental
field of Shanxi Agricultural University (37.42 N, 112.59 E), Taigu, China, in May 2018 and
harvested in October 2018 at full maturity. The region has a semiarid climate, with an
average annual temperature of 11.91 ◦C and annual precipitation of 396.24 mm in 2018.

2.2. Photo Recording and Color Determination

The husk of foxtail millet seeds was removed using small hulling separators. For each
variety, we selected well-developed grains for the experiments. The de-husked millets
were put into containers for taking photos. The colors of these millets were measured
by a colorimeter (X-Rite VS450, Big Rapids, Michigan, USA). After determining the color,
the freeze-dried seed was crushed using a mixer mill (Retsch MM400, Dusseldorf, North
Rhine-Westphalia, Germany) with a zirconia bead for 1.5 min at 30 Hz. The powder was
also photographed, and its color was measured. Three replicates were carried out. The
values of color parameters “L,” “a,” and “b,” which represent the luminosity, redness, and
yellowness, respectively, were collected. The color contribution index (CCI) values were
calculated according to CCI = 1000 × a/(L × b) [26].

2.3. Preparation and Extraction of Samples for Metabolomics Analysis

The preparation and extraction of samples were performed as previously described [27].
One hundred mg foxtail millet powder was weighed and extracted overnight at 4 ◦C with
1.0 mL 70% aqueous methanol (including 0.1 mg/L lidocaine or 0.1 mg/L acyclovir) to
ensure sufficient reaction. After that, the samples were centrifuged at 4 ◦C and 14,000 r
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for 5 min. The supernatant was collected and centrifuged again. Then, the water-soluble
extracts were absorbed on a CNWBOND Carbon-GCB SPE Cartridge (ANPEL, Shanghai,
China) and filtrated with SCAA-104 (ANPEL, 0.22 µm pore size, Shanghai, China), for
standby application.

2.4. Ultra-High-Performance Liquid Chromatography (UPLC) Conditions

The extracted samples were analyzed as described by Wang et al. [28]. A UPLC-ESI-
MS/MS system (UPLC, Shim-pack UFLC SHIMADZU CBM30A system; MS, Applied
Biosystems 6500 Q TRAP, Foster City, USA) equipped with a C18 chromatographic column
(Waters ACQUITY UPLC HSS T3, 2.1 mm × 100 mm, 1.8 µm) was used for the analysis.
The solvent systems contained mobile phase A (0.04% acetic acid in water) and mobile
phase B (0.04% acetic acid in acetonitrile). The gradient program (Mobile phase A: Mobile
phase B) was performed as follows: 95:5 (v/v) at 0 min, 5:95 (v/v) at 11.0 min, 5:95 (v/v)
at 12.0 min, 95:5 (v/v) at 12.1 min, and 95:5 (v/v) at 15.0 min; flow rate 0.40 mL/min. The
column temperature was kept at 40 ◦C, and the injection volume was set to 2 µL. The
UPLC effluent was input into an ESI-triple quadrupole-linear ion trap (Q TRAP)-MS and
analyzed further.

2.5. Electrospray-Triple Quadrupole-Linear Ion Trap Mass Spectrometry (ESI-Q TRAP-MS/MS) System

The mass spectrometry (MS) followed the method described by Chen et al. [29]. The
Linear ion trap (LIT) and triple quadrupole (QQQ) scans were performed on a triple
quadrupole-linear ion trap mass spectrometer (Q TRAP, AB Sciex, Foster City, CA, USA),
API 6500 Q TRAP LC/MS/MS System. This system was equipped with an ESI Turbo
Ion-Spray interface, with both positive and negative ion modes controlled by Analyst 1.6.
The operating parameter of ESI was an ion source (turbo spray, 550 ◦C, 5500 V). Ion source
gas I (GS I), ion source gas II (GS II), and curtain gas (GRU) were set at 55, 60, and 25 psi,
respectively. The collision gas (CAD) was set to high. Polypropylene glycol solutions with
concentrations at 10 µmol/L and 100 µmol/L were used for instrument debugging and
mass calibration in QQQ and LIT modes, respectively. QQQ scanning was performed in
a multiple reaction monitoring (MRM) mode with the collision gas (nitrogen) set to 5 psi.
The de-clustering potential (DP) and collision energy (CE) for each MRM transition were
completed by further optimizing DP and CE. The specific MRM for each time quantum
was detected according to the metabolites eluted in this period.

2.6. Qualitative and Quantitative Analysis of Metabolites

The qualitative analysis of the primary and secondary spectral data of the MS was
analyzed based on the MWDB database (Metware Biotechnology Co., Ltd. Wuhan, China).
It removed the repetitive signals containing K+, Na+, NH4+, and fragment ions with larger
molecular weight. The quantitative analysis was performed using MRM analysis of QQQ
mass spectrometry. After induced ionization in the collision chamber, the precursor ions
were fractured into fragments and then filtered through the triple quadrupole in which
the desired characteristic fragments were selected. After obtaining the mass spectrom-
etry data, the chromatographic peaks of all the targets were integrated for quantitative
analysis [28,30].

2.7. Quality Control Analysis of Samples

The stability of the instruments ensured the repeatability and reliability of the data.
The quality control samples were composed of mixing equal parts extractions of three
groups of different millet varieties. The method of processing and testing samples was
the same as that of analyzing the samples. A quality control sample was inserted between
10 testing samples to guarantee the repeatability of the whole analytic process.
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2.8. Statistical Analysis

Three biological replicates were carried out for each experiment. The significant
difference between the groups was determined using a one-way analysis of variance
(ANOVA) and Duncan’s multiple range test (p < 0.05). Principal components analysis
(PCA), orthogonal partial least squares discrimination analysis (OPLS-DA), hierarchical
clustering analysis (HCA), and the volcano plot drawing were carried out using ggplot2,
muma, pheatmap packages of R (http://www.r-project.org, accessed on 2019) [31–33].

3. Results
3.1. The Millet Color of Different Varieties

It is generally believed the darker the yellow color is, the better the eating quality of
the millet [34]. To explore the color variation of different quality foxtail millet varieties, we
conducted the color measurement of the grains and their matching powder. In the tested
varieties, the kernels of JG21, QZH, and YG1 were of different shades of yellow. NMB was
a white millet variety, and DBQ was a millet variety with greyish green color (Figure 1A).
The powder of JG21 showed the deepest yellow, and DBQ and NMB were both lighter
yellow (Figure 1B).
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Figure 1. Samples of foxtail millet varieties. (A) The foxtail millet kernel samples. (B) The foxtail millet powder samples.
The top of (B) shows the powder of 5 foxtail millet varieties taken by the camera, and the bottom of (B) shows the color of
foxtail millet powder scanned by the colorimeter.

To accurately evaluate the color of these millets, color parameters “L” (luminosity), “a”
(redness), and “b” (yellowness) values were measured (Figure 2 and Table S1). Significant
differences (p < 0.05) were detected in the three parameters of the five foxtail millet varieties.
NMB had the highest “L” value, meaning the maximum brightness, followed by QZH,
YG1, JG21, and DBQ in order. The “a” value of the other four varieties displayed all lower
than JG21, especially in NMB, which implied the redness of JG21 was the highest. For
the “b” value, the three high eating quality varieties showed deeper yellow than DBQ
and NMB. CCI value was obtained by combining the three parameters above, with the
highest value in DBQ and the lowest value in NMB. These results were consistent with the
visual observation and showed the large discrepancies in millet color among varieties with
different eating quality.

http://www.r-project.org
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Figure 2. Barplot of color parameters in different foxtail millet varieties. (A) Luminosity of millet color. (B) Redness of millet
color. (C) Yellowness of millet color. (D) A composite indicator of millet color calculated according to CCI = 1000× a/(L× b).
The x-axis shows the variety name, and the y-axis shows the value of the parameter. The lowercase letters above the
histogram indicated the statistical significance at the level of 0.05 (p < 0.05).

3.2. Flavonoid Metabolites Profiles in Millets of Different Varieties

A total of 116 flavonoid metabolites (Table S2) from the five foxtail millet varieties
were identified using UPLC-ESI-MS/MS to obtain the profile of flavonoid metabolites
in foxtail millet. The heatmap showed the relative content of flavonoid metabolites after
homogenization (Figure 3A). The 116 flavonoid metabolites can be divided into eight
groups, including 56 flavones, 23 flavonols, 11 flavanone, 6 polyphenol, 3 anthocyanins,
2 proanthocyanidins, 2 isoflavones, and 13 other flavonoids (Figure 3B). Apigenin, luteolin,
naringenin, kaempferol, chrysoeriol, naringenin, and their derivatives made up most of
the total flavonoid metabolites, mainly involved four main clusters. The heat map also
showed a strong contrast in the relative content of metabolites between NMB and the other
four varieties. The relative content of metabolites in JG21 was similar to QZH, and YG1
was similar to DBQ.

Life 2021, 11, x FOR PEER REVIEW 5 of 14 
 

 

the visual observation and showed the large discrepancies in millet color among varieties 
with different eating quality. 

 
Figure 2. Barplot of color parameters in different foxtail millet varieties. (A) Luminosity of millet color. (B) Redness of 
millet color. (C) Yellowness of millet color. (D) A composite indicator of millet color calculated according to CCI = 1000 × 
a/(L × b). The x-axis shows the variety name, and the y-axis shows the value of the parameter. The lowercase letters above 
the histogram indicated the statistical significance at the level of 0.05 (p < 0.05). 

3.2. Flavonoid Metabolites Profiles in Millets of Different Varieties 
A total of 116 flavonoid metabolites (Table S2) from the five foxtail millet varieties 

were identified using UPLC-ESI-MS/MS to obtain the profile of flavonoid metabolites in 
foxtail millet. The heatmap showed the relative content of flavonoid metabolites after ho-
mogenization (Figure 3A). The 116 flavonoid metabolites can be divided into eight 
groups, including 56 flavones, 23 flavonols, 11 flavanone, 6 polyphenol, 3 anthocyanins, 2 
proanthocyanidins, 2 isoflavones, and 13 other flavonoids (Figure 3B). Apigenin, luteolin, 
naringenin, kaempferol, chrysoeriol, naringenin, and their derivatives made up most of 
the total flavonoid metabolites, mainly involved four main clusters. The heat map also 
showed a strong contrast in the relative content of metabolites between NMB and the 
other four varieties. The relative content of metabolites in JG21 was similar to QZH, and 
YG1 was similar to DBQ. 

 
Figure 3. Clustering heat map of all flavonoid metabolites. (A) Heatmap of all the detected flavonoid 
metabolites in the high and poor foxtail millet varieties. (B) The numbers and types of flavonoid 
metabolites in foxtail millet grains. 

0

20

40

60

JG
21

YG1
QZH DBQ

NMB

L*

Varieties

b c d
a

e(A)

0.0

2.5

5.0

7.5

10.0

JG
21

YG1
QZH DBQ

NMB

a*

Varieties

e

c d
b

a

(B)

0

10

20

30

40

JG
21

YG1
QZH DBQ

NMB

b*

Varieties

e c d

b
a

(C)

0

1

2

3

4

JG
21 YG1

QZH DBQ
NMB

CCI

Varieties

c
b b

d

a

(D)

Anthocyanins

Flavone

Flavonol

Polyphenol

0 10 20 30 40 50

Flavanone

Other Flavonoids

Isoflavone

Proanthocyanidins

3

11

56

13

23

2

6

2

(B)

NM
B-3

NM
B-1

NM
B-2

JG
21-3

JG
21-1

JG
21-2

Q
ZH-1

Q
ZH-2

Q
ZH-3

YG
1-3

YG
1-1

YG
1-2

DBQ
-1

DBQ
-2

DBQ
-3

pmb0701
pme1580
pmb2976
pmb0645
pma6371pmb0588
pmf0265
pme0088
pmf0277
pme3129
pmf0109
pme1478
pmb0639
pme0089
pme1662
pme0371
pmf0151
pme0376
pme2957
pmf0057
pmf0058
pme3473
pmb0665
pmb0835
pme1518
pme1550
pme1611
pme3211
pme3267
pme1622
pme2457
pma6496
pmb3024
pmf0247
pme1598
pme0374
pma6647
pme0363
pmf0208
pmf0204
pmb0569
pmb0618
pmb0607
pmb0603
pme0197
pmb0711
pma0214
pma6639
pmf0375
pmb0595
pma1108
pma6389
pmb0608
pmb0622pma0795
pmb0736
pma0779
pmc1990
pme3461
pmb3013
pmb0720
pma0760
pmb0712
pmb0713
pma6558
pme3288
pmb0605
pme0433
pme1500
pmb3052
pmb3032
pmb2957
pmf0614
pmf0617
pmb3042
pme1605
pme0369
pme0002
pme2950
pmf0011
pmb0693
pmf0234
pmb0716
pmf0381
pmb3044
pma6586
pmf0548
pma1087
pmb0745
pmb3053
pmb3031
pma6518
pme0355
pmf0279
pme2977
pme2493
pme0361
pme2898
pmf0274
pmb0602
pmf0458
pme3263
pmb3894
pmb0277
pme0431
pme3401
pme2478
pmb0322
pme3237
pme1824
pmb0600
pme3227
pmf0179
pmb0653
pme1521
pme2247

-3

-2

-1

0

1

2

3

(A)

Figure 3. Clustering heat map of all flavonoid metabolites. (A) Heatmap of all the detected flavonoid
metabolites in the high and poor foxtail millet varieties. (B) The numbers and types of flavonoid
metabolites in foxtail millet grains.
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We conducted a multivariate statistical analysis of 116 metabolites using PCA. A
model with two principal components was constructed. The contribution rates of PC1
and PC2 were 35.88% and 26.78%, respectively. The total contribution rate reached 62.66%
(Figure 4). The five varieties were separated clearly, and the replicates were compactly
gathered, showing ideal repeatability and reliability. For PC1, four varieties (JG21, QZH,
DBQ, and YG1) got similar scores and were significantly separated from NMB, indicating
the metabolites profiling of NMB was notably distinguished from the other four varieties.
This was consistent with the row-clustering of the heatmap. For PC2, the score of NMB was
close to DBQ, and JG21 was close to QZH, caused by their common flavonoids. However,
YG1 was located away from the other two high-quality varieties, which might be caused
by the large difference in the content of certain flavonoids.
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3.3. Pairwise Comparison of Flavonoid Metabolites Between High and Poor Eating Quality
VarietiesBased on OPLS-DA Model

To find differential metabolites between high and poor eating quality varieties, we
performed the OPLS-DA model to produce pairwise comparisons. In this model, the
systematic variation in variable X was decomposed into two parts: linear correlation to
Y and orthogonality to Y [35]. It can complete the prediction of sample categories by
establishing the relational model between the flavonoid metabolites and sample categories
and maximize the distinction between groups mainly reflected in T1 (Figure 5A). In this
study, the flavonoid metabolites in high and poor-eating quality millets were explicitly
separated based on the OPLS-DA model, showing a significant difference between the two
groups. The explanation degree of the principal component to the independent variable X
and categorical variable Y was 86.8% (R2X) and 99.9% (R2Y), respectively. The prediction
indicator of the model on the five foxtail millet varieties was 99.8% (Q2 = 0.998). The OPLS-
DA model was tested by permutation analysis (Figure 5B). As the similarity gradually
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decreased, the R2 and Q2 of the random model gradually decreased, indicating no over-
fitting phenomenon in the original model. Therefore, these two groups could be used to
screen differential flavonoid metabolites.
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3.4. Identification of Differential Flavonoid Metabolites

We screened differential flavonoid metabolites between high and poor eating quality
varieties by combining the fold-change (FC) and variable importance in project values (VIP).
There were 33 differential flavonoid metabolites (19 up-regulated, 14 down-regulated)
including 21 flavones, six flavonols, two flavanones, two proanthocyanidins, and two
other flavonoids in high-quality varieties compared with poor quality varieties, with
|log2 FC| > 2 and VIP > 2 (Table S3). The volcano plot could broadly display the number of
differential flavonoids metabolites and the variation between high and poor eating quality
foxtail millet varieties (Figure 6A). These metabolites might represent the differential
flavonoid metabolites in foxtail millet varieties that caused different eating qualities.

We conducted HCA to compare the differences in 33 flavonoid metabolites among
varieties. These metabolites were presented as a heatmap after normalization (Figure 6B).
As shown in the heatmap, specific metabolites in each variety were displayed intuitively.
All of the 33 flavonoid metabolites in the different varieties could be divided into two cate-
gories. NMB and DBQ were clustered into one category, whereas JG21, QZH, and YG1 were
clustered into the other, in which JG21 and QZH shared more similarities. Luteolin and its
derivatives (pma6371, pmb0622, pmb0588), chrysoeriol O-malonylhexoside (pmb0608), and
tricetin O-malonylhexoside (pma0795) were the metabolites more abundant in three high-
quality varieties. Syringetin 5-O-hexoside (pmb0569), 8-C-hexosyl-hesperetin O-hexoside
(pmb0618), procyanidin A1 (pme0431), and syringetin 7-O-hexoside (pmb0602) were the
main differential flavonoid metabolites between YG1 and the other two high-quality vari-
eties. Rutin (pme0197), showing the highest content in YG1 and lower in the other four
varieties, was a derivative of quercetin and pertained to flavonol. Proanthocyanidins
(pme0431, pme0433) were mainly detected in NMB and DBQ.
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3.5. Enrichment Analysis Clarified the Metabolic Pathways of Differential Flavonoid Metabolites

The differential flavonoid metabolites were mapped to the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/, accessed on
2019). We mainly identified two metabolic pathways, the flavonoid biosynthesis pathway
(ko00941) and one of its branches, flavone and flavonol biosynthesis pathway (ko00944), at
a 0.05 level (p-value) (Figure 7, Table S3). The specific flavonoid metabolites in high eating
quality varieties were mainly distributed in the flavonoid biosynthesis pathway (ko00941).
In contrast, specific flavonoid metabolites in poor eating quality varieties were distributed
primarily on the flavone and flavonol biosynthesis pathway (ko00944).

Based on the KEGG database, we constructed a foxtail millet flavonoid metabolic
network containing 33 differential flavonoid metabolites, with approximately two branches
from naringenin (Figure 8). In this network, most enzymes might possess functions in
metabolite modification when most of the detected flavonoids were decorated forms
by glycosyltransferase, hydroxylase, and methyltransferase. According to the network,
flavonoid 3′,5′-hydroxylase (F3′5′H), flavone synthase I (FNSI), flavone synthase II (FN-
SII), flavonoid 3′-monooxygenase (CYP75B3), flavone 3′-O-methyltransferase (F3′OM),
flavonoid 3′,5′-methyltransferase (AOMT), flavone 7-O-β-glucosyltransferase, flavonol
3-O-glucosyltransferase (F3OG), flavonol-3-O-glucoside L-rhamnosyltransferase (FG2)
and quercetin 3-O-methyltransferase (OMT2) were the key enzymes in the process of the
differential metabolites biosynthesis.

http://www.genome.jp/kegg/
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4. Discussion

With high nutritional value, foxtail millet has received more and more attention from
consumers. According to the “Compendium of Materia Medica” (a book on traditional
Chinese medicine, written in 1578), the millet porridge is exceedingly nourishing for the
stomach and effective for children’s diarrhea. The yellow color is the primary indicator for
consumers to choose millet, and carotenoids and flavonoids are the dominating yellow pig-
ments in dehulled foxtail millet. Studies have shown that the accumulation of carotenoids
and flavonoids contributes to the seeds’ palatability and nutritional value [36,37]. As an
important provitamin A, carotenoids can be metabolized to retinol, effectively preventing
vision loss [38]. By comparing the transcript levels of carotenoid structural genes between
green and yellow color millets, the role of carotenoids in the formation of yellow millet color
has been proven [39]. Flavonoids also affect the color, nutritional value, and antioxidant
properties of plants and possess a wide range of healthcare activities and pharmacological
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functions [40]. The studies on flavonoids in plants have also provided a theoretical basis
for its application in medicine, healthcare, food, and cosmetics [41]. Therefore, it is of great
importance to explore the flavonoids in foxtail millet.

Studies have shown the content of flavonoids varied among different species and
different varieties of the same species [42,43]. It was reported that wheat varieties with
different flavonoid content resulted in the difference in bread taste. Apigenin was only
identified in the poor wheat variety [44], which was consistent with our findings. This
could be applied to wheat breeding and improve wheat varieties using molecular breeding
approaches. The flavonoid metabolites in different buckwheat varieties also provided a
theoretical basis for the sufficient utilization of special buckwheat varieties [45]. Flavonoids
in plant leaves play vital roles in defending against abiotic stresses [46]. Researchers have
clarified the accumulation and variations of more than 300 metabolites in the leaves of
foxtail millet at three-leaf and five-leaf stages [47]. Still, there is little research on the
flavonoids in millet grains. In our study, flavonoid metabolites in foxtail millet varieties of
different qualities were investigated. The three high eating quality varieties, JG21, QZH,
and YG1 contained similar flavonoid contents. They were significantly different from NMB
and DBQ, which provided a theoretical basis for the utilization of functional ingredients in
foxtail millet.

According to the comparison group, luteolin, quercetin, and their derivatives were
mainly present in three high-eating quality varieties. As a flavone, luteolin is one of the most
common flavonoids in edible plants, and it has been found in different fruits and vegetables,
including carrots, peppers, and celery [48]. Recent research pointed out that luteolin might
be a promising molecule for developing topic formulations and systemic agents against
inflammatory skin diseases. It has also been suggested as a cancer chemopreventive
agent [49,50]. In our study, luteolin was abundant in three high-quality foxtail millet
varieties but absent in the other two varieties. Quercetin, belonging to flavonols, has been
asserted to have many valuable effects on health, including preventing diseases such as
lung cancer, osteoporosis, and inflammatory disorders [51,52]. It is a dietary flavonoid
found in fruits (mainly citrus), many seeds (buckwheat), and so on [53]. Present studies
have provided evidence that quercetin improves gut health and helps alleviate metabolic
disorders, which is likely to be one reason why the millet porridge is effective for children’s
diarrhea [54]. Most of the quercetin existed in YG1, and a small amount was detected in
JG21. This study showed that the seven glycoside derivatives of chrysoeriol were mainly
accumulated in JG21, QZH, YG1. The metabolites mentioned above might be part of the
high eating quality of JG21, QZH, and YG1.

Although exhibiting poor eating quality, specific flavonoids with pharmacological
functions were also detected in NMB and DBQ. Procyanidins existed mainly in NMB, with
YG1 and DBQ containing just a minute quantity of procyanidin A1. Previous studies have
shown that procyanidins exert physiological and cellular activities, facilitate homeostasis,
and possess anti-inflammatory effects in vitro and in vivo [55]. However, procyanidins
gave the grape wine astringent taste [56,57], and this might also be a reason for the
astringent flavor of NMB. Apigenin 7-O-glucoside (pmb0605) and di-C, C-hexosyl-apigenin
(pmb0605) were glycoside compounds of apigenin, whereas the former mainly accumulated
in NMB and the other mainly in DBQ. As a dietary flavonoid, apigenin is widely distributed
in plants like celery, parsley, and chamomile, which has shown an interesting link between
diet and treating chronic diseases, including cancer [58,59]. Foxtail millets with poor quality
may also have a specific health role. Therefore, DBQ and NMB represent valuable resources
for the improvement of foxtail millets.

The flavonoid metabolic network we proposed here was based on the differential
flavonoid metabolites. We specified the key enzymes that might regulate the biosynthesis
of the differential flavonoid metabolites. However, the genes encoding these enzymes and
their regulation mechanism of the whole flavonoid metabolic network need to be further
studied. CitF3H in citrus plants was verified to convert naringenin into dihydrokaempferol,
which contributed to the genetic improvement of citrus plants and the synthesis of ben-
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eficial flavonoids [43]. The functions of flavonoid-related enzyme genes in foxtail millet
need to be verified. An enzyme (TraesCS1A01G347100) in wheat kernels has been shown
to function on flavonoids (apigenin, kaempferol, naringenin) to produce various glyco-
sylation products by in vitro enzymatic validation [60]. Derivatives of metabolites from
different varieties also differed. For instance, the contents of four derivatives of chrysoeriol
(pmb0701, pmb2976, pmb0607, pmb0608) were higher in high eating quality varieties,
whereas pma6518 and pmb0600 were mainly found in two poor eating quality varieties, the
enzymes that play catalytic roles in which need to be identified. In this flavonoid metabolic
network, one gene may be involved in regulating the biosynthesis of multiple metabolites,
or on the contrary, multiple genes may also be related to the same flavonoid. At present, a
rapid-cycling mini foxtail millet mutant, xiaomi, has provided us with a good resource for
deeper exploration of these genes [61]. Moreover, the complex structure of flavonoids poses
a considerable challenge to their identification. Therefore, precise structure determination
of the metabolites will help enlighten a complete network.

Flavonoid metabolites varied greatly in the tested foxtail millet varieties, and each
of them accumulated its unique metabolites, which might provide these varieties with
potentially medical functions. Additionally, the result of this study identified the main
biosynthesis pathways involved in these differential metabolites. Combing the whole regu-
lation networks of flavonoids metabolism could provide a theoretical basis for researching
the quality and the breeding for high-quality varieties in foxtail millet.

5. Conclusions

In summary, we initially identified 116 flavonoid compounds in foxtail millet. Then
we identified 33 differential flavonoid metabolites between high and poor eating quality
varieties. By further analyzing these 33 metabolites, we found specific metabolites in each
variety, such as the luteolin in three high eating quality varieties, the quercetin in YG1,
and the procyanidins in NMB. Finally, we combined the differential metabolites with the
KEGG database and found the key enzymes that might regulate the biosynthesis of these
metabolites. This project provides information for the study of flavonoid biosynthesis in
foxtail millet. It will also lay a theoretical foundation for the breeding of high-quality foxtail
millet varieties.
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