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Abstract: Current hypotheses implicate insulin resistance of the brain as a pathogenic factor in the
development of Alzheimer’s disease and other dementias, Parkinson’s disease, type 2 diabetes,
obesity, major depression, and traumatic brain injury. A variety of genetic, developmental, and
metabolic abnormalities that lead to disturbances in the insulin receptor signal transduction may
underlie insulin resistance. Insulin receptor substrate proteins are generally considered to be the node
in the insulin signaling system that is critically involved in the development of insulin insensitivity
during metabolic stress, hyperinsulinemia, and inflammation. Emerging evidence suggests that
lower activation of the insulin receptor (IR) is another common, while less discussed, mechanism of
insulin resistance in the brain. This review aims to discuss causes behind the diminished activation
of IR in neurons, with a focus on the functional relationship between mitochondria and IR during
early insulin signaling and the related roles of oxidative stress, mitochondrial hypometabolism, and
glutamate excitotoxicity in the development of IR insensitivity to insulin.

Keywords: insulin; insulin receptor; brain insulin resistance; mitochondria; brain; neuron; H2O2;
glutamate excitotoxicity

1. Introduction

Insulin resistance has long been recognized as a key feature of type 2 diabetes. His-
torically, the term insulin insensitivity (synonymous with insulin resistance) was used
to define the relatively poor glucose response to exogenous insulin exhibited by obese
diabetic patients [1]. The meaning of this term has become much broader over time, and
insulin resistance is now defined as an impaired biological response to insulin [2] that is not
confined just to parameters of glucose metabolism, but includes, in theory, all the biological
responses to insulin, e.g., cell growth, differentiation, and protein synthesis. In addition to
the classic peripheral insulin-sensitive tissues, such as muscle, liver, and adipose tissue,
insulin resistance has been shown to occur in the brain, even in the absence of concurrent
type 2 diabetes. Current hypotheses implicate the brain’s insulin resistance as a pathogenic
factor in the development of Alzheimer’s disease (AD) and other dementias [3], Parkinson’s
disease (PD) [4], type 2 diabetes [5], obesity [6], major depression [7,8], and traumatic brain
injury (TBI) [9].

Insulin elicits its cellular actions by binding to insulin receptors (IRs) presented on
the surface of most cells. Evidence suggests that impaired insulin functions in the brain
may relate to both insulin deficiency and impaired insulin signal transduction via IRs. The
insulin deficiency can occur due to the reduction in insulin transport from the periphery
to the brain across the blood-brain barrier [10,11]. It can be compensated by exogenously
administered insulin to the brain, e.g., via intranasal route, thereby increasing IRs signaling
in AD animal models [12] and improving memory recall in the clinical setting [13]. The
impairment of central insulin action can occur also as a result of disturbances in the IR
signal transduction, particularly in the activation states of IR and signaling molecules,

Life 2021, 11, 262. https://doi.org/10.3390/life11030262 https://www.mdpi.com/journal/life

https://www.mdpi.com/journal/life
https://www.mdpi.com
https://doi.org/10.3390/life11030262
https://doi.org/10.3390/life11030262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/life11030262
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life11030262?type=check_update&version=2


Life 2021, 11, 262 2 of 16

thereby giving rise to insulin resistance. Insulin signaling is governed by reversible in vivo
phosphorylation of the IR itself and downstream effectors, with insulin receptor substrate
(IRS) proteins being the first critical node in the signaling cascade, and the nodes further
downstream being phosphoinositide 3-kinase (PI3K), protein kinase B (PKB/Akt), and the
mammalian target of rapamycin (mTOR) (Figure 1). The IR is a transmembrane protein
composed of two extracellular α-subunits (IRα) and two intracellular β-subunits (IRβ),
the latter having tyrosine kinase activity. Insulin binding to the IRα evokes fast autophos-
phorylation of IRβ at Y1146, Y1150, and Y1151 (IR isoform A numbering), upon which the
receptor tyrosine kinase becomes fully active [14] and evokes tyrosine phosphorylation
of IRS proteins, principally IRS1 and IRS2, to transduce the insulin signal from the IR
to downstream effectors PI3K, Akt, and mTOR [5]. Alternative serine/threonine phos-
phorylation of IRS with downstream kinases PI3K, Akt, and mTOR blocks the insulin
signal through the IRS, thereby being a physiological autoregulation mechanism [15–19].
This negative feedback is believed to be co-opted by hyperinsulinemia, metabolic stress,
and inflammation for the inhibition of insulin signaling [15,18]. The resulting disbalance
between tyrosine and serine/threonine phosphorylation of IRS proteins represents one of
the most common mechanisms for development of insulin resistance in the brain [19–23]
and peripheral tissues [24–26].
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Figure 1. Inhibition of insulin signaling via serine/threonine phosphorylation of IRS proteins.
Upon insulin binding to insulin receptor, the receptor tyrosine kinase becomes fully active and
evokes tyrosine phosphorylation (pY) of IRS proteins to transduce insulin signal from receptor to
downstream effectors PI3K, Akt, and mTOR, which in turn phosphorylate IRS at serine/threonine
residues (pS), thereby inhibiting insulin signaling [15–17]. This negative feedback autoregulation
mechanism is co-opted by hyperinsulinemia, metabolic stress, and inflammation for the development
of insulin resistance. In particular, activation of the tumor necrosis factor receptor (TNFR) with tumor
necrosis factor-α (TNF-α) leads to activation of downstream c-Jun N-terminal kinase (JNK) and
phosphorylation of IRS at the serine residue [27], thereby inducing insulin resistance. Abbreviations:
IRS, insulin receptor substrate; pY, phosphotyrosine; pS, phosphoserine; PI3K, phosphatidylinositol
3-kinase; Akt, protein kinase B; mTOR, mammalian target of rapamycin; TNF-α, tumor necrosis
factor α; TNFR, tumor necrosis factor receptor; JNK, c-Jun N-terminal kinase.
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A pathologically reduced tyrosine phosphorylation of IRβ, which reflects diminished
activity of IR tyrosine kinase, is another common, while much less highlighted, mechanism
of insulin resistance [20,28,29]. In particular, it has been reported that insulin-induced
tyrosine phosphorylation of IRβ was 26–29% lower in the kinase domain (Y1146, Y1150, and
Y1151) and 34–58% lower at the IRS1 docking site (Y960) in AD brains compared to age
matched controls, even at the same levels of IR and the IR phosphatase PTP1B proteins [20].

This review aims to discuss causes behind the diminished activation of IR in neurons
and approaches to treat this kind of insulin resistance.

2. Insulin Receptor in the Brain

IRs are widely distributed throughout the brain and are at their highest density in the
olfactory bulb, hypothalamus, hippocampus, cerebral cortex, and cerebellum [30,31]. The
vast majority of IRs are localized on neurons [32], where they are concentrated at synapses
as a component of post-synaptic density (PSD), indicating that the synapse is an important
site of specialized insulin signaling in the brain [33].

In contrast to adult peripheral tissues, where long receptor isoform B (IR-B) prevails,
neurons almost exclusively express the short isoform A (IR-A), lacking 12 amino acids
within the C-terminus of the α-subunit [34–36]. The most significant difference between the
isoforms is that IR-A binds insulin-like growth factor 2 (IGF2) at physiologically relevant
affinity, while IR-B does not [37,38]. In addition, IR-A displays a two-fold higher affinity
for insulin than IR-B and shows no negative cooperativity in the insulin binding [39–41]. A
specific function of IGF2 signaling via IR-A in the brain is the promotion of self-renewal
and expansion of neural stem cells [41,42]. Insulin signaling in neurons occurs through
two canonic signaling pathways known as the PI3K/Akt and mitogen-activated protein
kinase (MAPK) pathways [43,44].

IRs in the brain are involved in the regulation of synaptic plasticity [45]. Insulin facili-
tates excitatory neurotransmission, mediated by the N-methyl-D-aspartate (NMDA) recep-
tor, by stimulating translocation of functional NMDA receptors to the cell membrane [46]
and potentiating NMDA receptor currents in a dose-, time-, and NMDA subunit-specific
manner [47–51]. Insulin also facilitates inhibitory neurotransmission through stimulation
of the trafficking of the type A γ-aminobutyric acid (GABAA) receptor subunits from an
intracellular compartment to the membrane surface, thereby increasing the number of
functional inhibitory GABAA receptors in the cell membrane [52,53]. The IR is implicated
in the modulation of long-term potentiation (LTD) and long-term depression (LTD) [54],
learning and memory [55], and regulation of feeding behavior [23]. Although understand-
ing the net functional outcome of insulin on neurotransmission is challenging, the above
data suggest a direct link between insulin signaling and synaptic function. In line with this,
both synaptic failure and dysfunctional insulin signaling were observed in AD prior to
frank neuronal degeneration [20,56,57].

Emerging evidence suggests that insulin signaling also plays a role in glucose metabol
ism in the brain. The insulin-regulated glucose transporter GLUT4 has been found to be co-
expressed with the major neuronal transporter GLUT3 in brain regions related to cognitive
behavior, such as the basal forebrain, hippocampus, amygdala, cerebral cortex, and cerebel-
lum [58], and in the hypothalamus that controls food intake and body weight [59]. Insulin
stimulates translocation of GLUT4 to the plasma membrane in rat hippocampus [60], in-
creases local glycolytic metabolism, and enhances spatial memory [61]. An inhibition of
GLUT4 alone did not impair the spatial memory performance but prevented the insulin’s
cognition enhancing effect [62]. Insulin-induced GLUT4 translocation to the neuronal
membrane in the hippocampus occurs during periods of high energy demand, such as
during learning, suggesting that deregulation of insulin-dependent glucose transport in
several brain regions may be a cause of cognitive impairment [63]. For subjects with predi-
abetes and type 2 diabetes, an association between reduced cerebral glucose metabolic rate
and peripheral insulin resistance has been shown even before the onset of mild cognitive
impairment [64]. Given such a variety of functions of insulin in the brain, the development
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of brain insulin resistance can lead to numerous pathological manifestations, especially to
those associated with synapse failure and energy metabolism.

3. Insulin Receptor Activation: A Role of Redox Priming

It has been long known that autophosphorylation of the trio of tyrosines 1146, 1150,
and 1151 (IR-A numbering) within the activation loop (A-loop) of the IRβ kinase domain
is critical for stimulation of catalytic activity and biological function of the IR [65,66].
In the unphosphorylated form, IR tyrosine kinase is autoinhibited by interaction of A-
loop residues with the active site [67]. However, upon autophosphorylation, the A-loop
undergoes a major conformational change, resulting in unrestricted access of IRS proteins
and a phosphate donor adenosine triphosphate (ATP) to the active site [68], thereby
resulting in a 200-fold increase in the receptor kinase activity [65]. However, it was
questionable how insulin binding can induce the autophosphorylation of A-loop tyrosines
if both active sites of the IR are locked in the inactive conformation, blocking ATP access
to the active site. With these considerations, Schmid et al. suggested that there is a yet
unknown intermediate stage in the IR activation process, so called redox priming, where
oxidants like hydrogen peroxide (H2O2) facilitate, while antioxidants inhibit, the insulin-
induced IRβ autophosphorylation [69]. An oxidative modification of cysteine residues
within IRβ was proposed as the structural basis of the “redox priming”, with Cys1138

in the proximity of catalytic aspartate 1132 being the most prominent candidate for the
priming, since the non-oxidizable IR mutant Cys1138Ala was the only IR cysteine mutant
that showed defective kinase activity in functional experiments [70]. The idea of redox
priming was supported by the fact that insulin stimulation itself leads to generation of
endogenous H2O2 in fat cells [71,72]. Therefore, the insulin-induced H2O2 could be the
priming factor facilitating IR autophosphorylation in vivo. It was later found that the
role of H2O2 is not restricted by the redox priming of IR and also includes inhibition of
protein tyrosine phosphatase PTP1B, which inactivates the IR by dephosphorylating A-loop
phosphotyrosines [73]. Collectively, the insulin-induced H2O2 plays a role of net positive
regulator of IR activation through its concerted actions on the opposite activities of IR
kinase and PTP1B phosphatase.

Evidence from experiments in transgenic animals supported the significance of en-
dogenous H2O2 generation for proper insulin actions. Glutathione peroxidase (Gpx1)
is a highly effective scavenger for H2O2, with a second-order rate constant of about
107 M−1 s−1 [74]. It has been reported that mice overexpressing Gpx1 were hyperinsu-
linemic, insulin resistant, and obese and had a 70% reduction in the insulin-stimulated
tyrosine phosphorylation of IRβ compared to the wild-type control [75]. On the contrary,
mice lacking Gpx1 were protected from insulin resistance induced by a high-fat diet,
while administration of N-acetylcysteine (NAC), the Gpx1 substrate [76], rendered them
insulin-resistant and increased fasting glucose levels [77].

At least two insulin-sensitive sources of H2O2 have been found in peripheral tis-
sues, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) in fat
cells [78–80] and mitochondria in liver and heart preparations [81,82]. A transient insulin-
induced NADPH-dependent generation of reactive oxygen species (ROS) has been reported
in the hypothalamus, with peak ROS release not earlier than 15 min post-stimulation [83],
with these ROS being involved in the regulation of energy metabolism and food in-
take [83,84].

4. Critical Role of Redox Signaling in the Activation of the Neuronal Insulin Receptor

In 2007, we showed for the first time that insulin stimulation generates a spike of H2O2
in neurons and that NAC, the Gpx1-dependent H2O2 scavenger, completely abrogated
both the insulin-induced H2O2 and autophosphorylation of IRβ at Y1150/1151, thereby
suggesting that the H2O2 signal is a critical requirement for the activation of the IR in the
neurons [85]. Further kinetic studies have demonstrated that the insulin-induced H2O2
signal has a duration of about 15–30 s and a peak at 5 s post-stimulation [86]. Comparison of
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timings of the insulin-induced H2O2 signal and IR autophosphorylation has demonstrated
that they peaked at 5 s and at 10 min, respectively, indicating that the H2O2 signal precedes
the activation of the IR in the neurons [86]. The insulin-induced autophosphorylation
of the IR was extremely ultrasensitive to H2O2 scavenging (a sigmoidal dose-response
with Hill’s slope of about 8), indicating the presence of a certain threshold level of the
H2O2 signal, below which IR autophosphorylation does not occur, even in the presence
of the highest insulin concentrations [86]. Conversely, IR autophosphorylation occurs
only when the H2O2 signal has surpassed the threshold. The insulin dose-response on
IR autophosphorylation in neurons was found to be gradual, with a Hill’s slope of about
1 [86]. So, the activation of the IR in the neurons depends on two variables, gradually on
the concentration of extracellular insulin and stepwise on the magnitude of intracellular
insulin-induced H2O2 signal. The latter type of dependence is known as “all-or-nothing”,
i.e., the IR activation performing either completely or not at all, depending on whether the
H2O2 signal can or cannot exceed a certain threshold.

In view of the high significance of H2O2 signal for the activation of the IR in the
neurons, a pathological increase in the activity of antioxidant enzyme scavenging H2O2 in
cells may be the factor contributing to insulin resistance. A marked increase of expression of
antioxidant enzymes in a region- and cell type-specific manner has been shown in the brains
of patients with AD and other neurodegenerative disorders, presumably as a compensatory
defense response to oxidative stress [87,88]. Levels of mRNA for Gpx, catalase (CAT), and
glutathione reductase (GSSG-R) were elevated in the hippocampus of AD patients [89].
Protein levels of peroxiredoxins PRDX1 and PRDX2 were significantly increased in the
brains of AD and Down Syndrome (DS) patients [90]. PRDX2 was significantly increased in
the frontal cortex of DS, AD, and PD patients [91], the hippocampus of AD patients [92], and
the striatum of Huntington’s disease (HD) patients [93]. Among others, the overexpressed
Gpx [89] and peroxiredoxins PRDX1, PRDX2, and PRDX4 [94], the most fast and effective
antioxidant systems for H2O2 elimination, may represent a barrier for the insulin-induced
H2O2 signal, thereby contributing to reduced activation of the IR in the neurons in response
to insulin.

5. G Protein Activity in the Activation of the Neuronal Insulin Receptor

The inhibitory G protein activity is involved in the generation of the insulin-induced
H2O2 signal in neurons [86]. Both the insulin-induced H2O2 signal and IR phosphorylation
were completely abrogated by pertussis toxin (PTX), a classic inhibitor of Gi/o protein-
receptor coupling, during insulin stimulation [86]. It has long been known that the Gαi2
isoform is the specific G protein that is recruited by IRs in peripheral tissues and affects
IR autophosphorylation proportionally to the extent of such an association [95]. Mice
expressing constitutively active Gαi2 had enhanced insulin signaling to GLUT4 [96,97]
and markedly amplified tyrosine phosphorylation of the IR in fat and skeletal muscle
in vivo [98]; on the contrary, mice deficient in Gαi2 expression had reduced insulin sensitiv-
ity in peripheral tissues [99]. However, much less is known about IR and Gαi2 relationships
in the brain. No significant differences were found between Gαi2 levels in the brains of
young and aged controls and patients with AD [20,100,101], indicating no role for Gαi2 in
the development of brain insulin resistance in AD.

6. Mitochondrial Signaling Is an Integral Part of the Insulin Receptor Activation
Process in Neurons

We found that the insulin-induced H2O2 signal in neurons was inhibited with mal-
onate, an inhibitor of mitochondrial complex II at the flavin site (IIF), indicating the involve-
ment of mitochondria in the generation of the insulin-induced H2O2 signal [85,86]. In full
agreement with this, succinate enhanced and malonate dose-dependently inhibited, com-
pletely inhibiting at the highest concentrations, the insulin-induced autophosphorylation of
IRβ (i.e., the receptor activation) in neurons [85,86,102]. The malonate dose-response on IR
autophosphorylation was sigmoidal, with a Hill’s slope of more than 3. So, the activation of
IR is ultrasensitive to the activity of mitochondrial complex II, and even a small change in
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the rate of succinate oxidation at the IIF site around a certain threshold can have a dramatic
effect on the IR autophosphorylation [86]. This suggests that mitochondrial complex II is a
critical regulatory point in the activation of the neuronal IR, with the activation occurring
either completely or not at all, depending on whether the rate of succinate oxidation at the
flavin site IIF can or cannot exceed a certain threshold.

At malonate concentrations that completely inhibited the IR autophosphorylation,
the insulin-induced H2O2 signal was also completely abolished, suggesting that succinate
oxidation at complex II is the only source of the insulin-induced H2O2 in neurons. The
reverse electron transport from complex II to complex I, a previously reported major
mechanism of H2O2 generation in brain mitochondria respiring on supra-physiological
millimolar succinate concentrations [103–105], appears to have no important role in the
production of the insulin-induced H2O2, since rotenone, an inhibitor of complex I, hardly
influenced this process as well as on IR autophosphorylation during insulin stimulation [86].
Quinlan et al. have shown recently that mitochondrial complex II itself can generate H2O2
at high rates in the presence of physiological micromolar succinate concentrations, with a
malonate-sensitive flavin site IIF within complex II being the source of the H2O2 [106]. In
this context, the site IIF within the mitochondrial complex II appears to be the direct source
of the insulin-induced H2O2 signal, with H2O2 being producing by succinate oxidation
with molecular oxygen by the reaction: succinate + O2 → fumarate + H2O2.

It should be noted that the insulin effect on mitochondrial complex II activity has
long been known. Experiments with 14C-labeled succinate have demonstrated that an
increase in succinate oxidation at complex II occurs almost immediately upon stimulation
of cells with insulin, representing one of the fastest metabolic effects of insulin [107,108].
In line with this, the pre-treatment of liver and heart preparations with insulin markedly
increased rates of H2O2 production in mitochondria respiring at micromolar succinate
concentrations [91]. The findings that mitochondrial complex II is involved in the insulin-
induced H2O2 signaling and IR autophosphorylation extends this picture by showing that
the relationship between IR and complex II is bidirectional and has a control function in
IR activation.

In line with the above background, in theory, any disturbance in the generation of the
insulin-induced H2O2 signal may result in less tyrosine phosphorylation of IRβ, with low
activity of mitochondrial complex II during insulin stimulation being one of the prominent
causes for insulin resistance in the brain (Figure 2).
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H2O2 signal, which generation requires succinate oxidation at SDH [85,86]. IR autophosphorylation (pY) occurs only if
the H2O2 signal exceeds a certain threshold [85,86]. Upon the autophosphorylation, IR becomes fully active and elicits
its cellular actions through signaling via two canonical PI3K/Akt/mTOR and Ras/Raf/Erk pathways [43,44]. Given that
generation of the insulin-induced H2O2 signal requires high SDH activity [85,86], factors affecting this activity may play a
role of positive (in blue) or negative (in red) regulators of IR activation. SDH activity is enhanced by insulin [81,107,108],
succinate [109], high ∆Ψm [110], and high NADH/NAD, ATP/ADP, and CoQH2/CoQ ratios [111,112]. SDH activity
is downregulated by malonate, H2O2 [113,114], mitochondrial depolarization [110], and low NADH/NAD, ATP/ADP,
and CoQH2/CoQ ratios [111,112], thereby predisposing to the development of insulin resistance. Abbreviations: H2O2,
hydrogen peroxide; SDH, succinate dehydrogenase; IR, insulin receptor; PI3K, phosphatidylinositol 3-kinase; Akt, protein
kinase B; mTOR, mammalian target of rapamycin; Ras, rat sarcoma small GTPase; Raf, rapidly accelerated fibrosarcoma
kinase; Erk, extracellular signal-regulated kinase; ∆Ψm, mitochondrial inner membrane potential; NADH/NAD, reduced-
to-oxidized nicotinamide adenine dinucleotide ratio; ATP/ADP, adenosine triphosphate-to-adenosine diphosphate ratio;
CoQH2/CoQ, reduced-to-oxidized coenzyme Q ratio.

Mitochondrial complex II, also known as succinate-ubiquinone oxidoreductase or
succinate dehydrogenase (SDH), oxidizes succinate to fumarate in the tricarboxylic acid
cycle (TCA) and reduces coenzyme Q (CoQ) in the respiratory chain. During succinate
oxidation, two electrons are transferred from succinate to the flavin at site IIF and then
to CoQ at site IIQ, to supply the respiratory chain with reducing equivalents. SDH exists
in two forms, either in the active form stabilized by binding with succinate or in the non-
active form stabilized as a 1:1 complex with oxaloacetate [115]. As the oxaloacetate binding
affinity to the reduced form of the enzyme is at least one order of magnitude less than that
to the oxidized form, SDH represents a redox-regulated switch, activated upon reduction,
when it liberates oxaloacetate, and inhibited upon oxidation [116]. Physiological activators
of SDH are succinate [109] and the reduced form of coenzyme Q (CoQH2) [112]. SDH
activity depends on the electron flux from complex I [111], since CoQH2 is largely produced
at complex I by the reduction of CoQ with reduced nicotinamide dinucleotide (NADH).
The rapid deactivation of SDH occurs during extensive oxidation of CoQH2, occurring
at low ATP/ADP ratio, e.g., in the presence of protonophores inducing mitochondrial
depolarization [110]. H2O2 exposure also decreases SDH activity through the enhancement
of oxaloacetate binding [113,114]. The last fact indicates an exact molecular link between
oxidative stress and low SDH activity, which may lead to less activation of the IR during
insulin stimulation. In summary, mitochondrial hypometabolism and oxidative stress are
the factors that reduce SDH activity, thereby predisposing to less activation of the IR during
insulin stimulation and resulting in the development of insulin resistance.

Mitochondrial depolarization has been found to be one other cause for low activity of
the IR in neurons during insulin stimulation [85,86]. The mitochondrial inner membrane
potential (∆Ψm) is an essential component in the process of energy storage during oxidative
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phosphorylation. It is generated by proton transfers at complexes I, III and IV and, together
with the proton gradient, forms the transmembrane potential of hydrogen ions which is
used to make ATP. Protonophore carbonyl cyanide p-trifluoro-methoxyphenyl hydrazone
(FCCP)-induced inhibition of the insulin-induced IR autophosphorylation occurs in parallel
with a decrease in the ∆Ψm. At highest FCCP concentration, resulting in ∆Ψm collapse, both
the insulin-induced IR autophosphorylation and H2O2 signal were completely abrogated.

The signs of mitochondrial dysfunction, such as reduced ATP levels and decreased
∆Ψm, have been demonstrated in AD [117,118] and TBI [119], for which brain insulin
resistance is a concomitant condition.

It still remains to be explored whether the mitochondrial control of IR activation is
a neuron-specific mechanism. It should be noted that neuronal IR are localized predomi-
nantly in the PSD of dendritic spines, which are poor in mitochondria at rest, but become
enriched with mitochondria during repetitive depolarization due to activity-regulated
mitochondrial fusion/fission and mitochondria trafficking [120]. In this context, the mi-
tochondrial H2O2 signaling in neurons may be a control mechanism for the selective
activation of IRs only in active synapses.

7. Glutamate Excitotoxicity Impairs Activation of the Neuronal Insulin Receptor

Glutamate excitotoxicity is a common pathological condition that affects mitochondrial
metabolism and complex II activity in the brain, thereby being a prominent candidate
for the role of inducer of brain insulin resistance. Glutamate is the major excitatory
neurotransmitter that is involved in most normal brain function, such as cognition, memory,
and learning, through binding to several types of glutamate receptors [121]. However, an
excessive glutamate release to the synaptic cleft may induce a specific pathophysiological
process called excitotoxicity. The glutamate-induced activation of the ionotropic NMDA
receptors, followed by a Ca2+ influx into the cell, is generally considered to be central
to the development of excitotoxicity [122–124]. The Ca2+ influx is biphasic and an initial
rapid increase in the intracellular free Ca2+ concentration ([Ca2+]i) is followed by a larger
secondary [Ca2+]i increase, along with a marked decrease in ∆Ψm, SDH activity, and
ATP production [125–129]. The irreversible secondary [Ca2+]i increase, known as delayed
calcium deregulation, is postulated to be a point-of-no-return in excitotoxicity, i.e., events
occurring downstream of this point are considered to influence the timing of cell death
without altering its inevitability [130].

Emerging evidence suggests that there is a functional relationship between IR and
NMDA receptors in health and disease. Both types of receptors are co-localized in the
PSD of the synapses [33]. The IR is involved in the regulation of NMDA receptor traffick-
ing [46] and the potentiation of NMDA receptor currents in a dose-, time-, and NMDA
subunit-specific manner [47–51]. The NMDA receptor is involved in the inhibition of
tyrosine phosphorylation of the IR in cortical and hippocampal cultures of neurons with
soluble β-amyloid oligomers [29]. The amyloid-like effect was achieved with glutamate
added one hour after the insulin stimulation, i.e., at times when the active IR undergoes
dephosphorylation and deactivation [29]. Glutamate also affects the activation of the IR
and downstream effectors, when being added prior to insulin exposure, thereby developing
acute neuronal insulin resistance within minutes (Figure 3) [131].

At times where significant mitochondrial depolarization has been achieved due to
glutamate-evoked massive influxes of Ca2+ into the cells, insulin induced 48% less activa-
tion of the IR kinase domain (assessed by IR tyrosine phosphorylation, pY1150/1151), 72%
less activation of Akt (assessed by Akt serine phosphorylation, pS473), 44% less activation
of mTOR (assessed by mTOR pS2448), and 38% less inhibition of glycogen synthase kinase
β (GSK3β) (assessed by GSK3β pS9) compared with respective controls [131]. Thus, the
glutamate-induced development of acute neuronal insulin resistance represents one of the
earliest pathological events in excitotoxicity, which occurs at the level of activation of the
IR in the neurons.
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Figure 3. Glutamate excitotoxicity induces acute neuronal insulin resistance. Glutamate (Glu) binding to NMDA recep-
tor evokes rapid increase in the intracellular free Ca2+ concentration ([Ca2+]i), followed by decrease in mitochondrial
∆Ψm [127,131]. Within minutes, when the glutamate-induced mitochondrial depolarization occurred, insulin evoked less
tyrosine phosphorylation of IR Y1150/1151, and less serine phosphorylation of Akt S473, mTOR S2448, and GSK3β S9 [29],
indicating the development of acute neuronal insulin resistance as an early pathological event associated with excitotox-
icity. Abbreviations: Glu, glutamate; NMDA, N-methyl-D-aspartate; [Ca2+]i, intracellular calcium concentration; ∆Ψm,
mitochondrial inner membrane potential; H2O2, hydrogen peroxide; SDH, succinate dehydrogenase; IRS, insulin receptor
substrate; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; mTOR, mammalian target of rapamycin; GSK3β,
glycogen synthase kinase 3 β; pY, phosphotyrosine; pS, phosphoserine.

It has already been shown that glutamate excitotoxicity is implicated in the pathogen-
esis of TBI [122] and AD [132]. However, the existence of the causal relationship between
excitotoxicity and brain insulin resistance indicates that list of disorders associated with
brain insulin resistance is much broader and may include stroke [133], PD [134], HD,
amyotrophic lateral sclerosis [135], depression, autism spectrum disorder, schizophre-
nia [136], and multiple sclerosis [137], for which glutamate excitotoxicity has already been
demonstrated as a pathogenic factor.

The relationship between IR activation and glutamate excitotoxicity appears to be
bidirectional, since insulin itself activates mitochondrial metabolism. Although hyperin-
sulinemia and a long-term insulin exposure have been shown to exacerbate glutamate
excitotoxicity through inducing insulin resistance [138], in contrast, a short-term insulin
treatment protects neurons against glutamate excitotoxicity [128]. The short-term stim-
ulation of cortical neurons with insulin prior to glutamate exposure protects them from
the NMDA receptor-mediated increase in [Ca2+], thereby preventing the mitochondrial
depolarization, decrease in ATP levels, and decrease in oxygen consumption rates due
to the preservation of spare respiratory capacity (SRC) [120]. SRC, also known as the
reserve respiratory capacity, refers to the measure of the amount of extra ATP that can be
produced by oxidative phosphorylation in case of an increase in energy demand. It has
been shown that mitochondrial complex II is a source of SRC [139]. Given that insulin
enhances succinate oxidation at complex II [107,108], the insulin protective action against
glutamate excitotoxicity seems to relate to the insulin-induced improvement of complex
II-dependent ATP production and mitochondrial metabolism.

It should be noted that the discussed above functional relationship between IR activa-
tion and glutamate excitotoxicity is part of more complex relationships between deficient
insulin signaling and Ca2+ dyshomeostasis in neurons that are associated with brain
aging [140,141]. Insulin and insulin sensitizers have been shown to target several hip-
pocampal Ca2+-related processes affected by aging, including larger Ca2+ transients and
Ca2+-dependent afterhyperpolarizations [140], with the reduction of voltage-gated calcium
currents being implicated in the mechanisms of these insulin effects [142].
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8. Conclusions and Perspectives

Brain insulin resistance leads to a variety of abnormalities, both related and unrelated
to brain glucose utilization, with deterioration of cognitive function and energy metabolism
being the most recognized. The disbalance between tyrosine and serine/threonine phos-
phorylation of IRS protein is the most common cause of insulin resistance associated with
metabolic stress, hyperinsulinemia, and inflammation. The diminished autophosphoryla-
tion (i.e., activation) of the IR during insulin stimulation is another reported cause of brain
insulin resistance.

In this review, we summarized the data on the functional relationship between activa-
tion of the IR in the neurons and mitochondrial redox signaling during insulin stimulation.
The insulin-induced mitochondrial H2O2 signal occurring from complex II is an integral
part of the IR autophosphorylation process in neurons, with the IR activation occurring
either completely or not at all, depending on whether the H2O2 signal can or cannot exceed
a certain threshold. It remains unexplored whether the mitochondrial control of IR acti-
vation is a neuron-specific mechanism or a more general phenomenon. Neuronal IRs are
localized predominantly in the PSD of dendritic spines, which are poor in mitochondria at
rest, but become enriched with mitochondria in periods of synaptic activity. In this context,
the mitochondrial H2O2 signaling in neurons may be a control mechanism for the selective
activation of the IR only in the active synapses.

Given the critical role of H2O2 signaling in IR activation, factors downregulating the
mitochondrial H2O2 signal may lead to less activation of the IRs and the development of
brain insulin resistance. The incomplete list of such factors includes oxidative stress, gluta-
mate excitotoxicity, the overexpression of antioxidant enzymes compensatory to oxidative
stress, mitochondrial depolarization, and mitochondrial hypometabolism manifested as
low ATP/ADP, NADH/NAD, and CoQH2/CoQ ratios.

In this context, the interventions aimed at improving mitochondrial metabolism
represent a reasonable approach to the treatment of brain insulin resistance at the level of
IR activation through the improvement of insulin-induced H2O2 signaling in neurons.
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