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Abstract: (1) Background: Enterococcus faecium DO is an environmental microbe, which is a mesophilic,
facultative, Gram-positive, and multiple habitat microorganism. Enterococcus faecium DO is respon-
sible for many diseases in human. The fight against infectious diseases is confronted by the devel-
opment of multiple drug resistance in E. faecium. The focus of this research work is to identify a
novel compound against this pathogen by using bioinformatics tools and technology. (2) Methods:
We screened the proteome (accession No. PRJNA55353) information from the genome database of
the National Centre for Biotechnology Information (NCBI) and suggested a potential drug target.
I-TASSER was used to predict the three-dimensional structure of the protein, and the structure
was optimized and minimized by different tools. PubChem and ChEBI were used to retrieve the
inhibitors. Pharmacophore modeling and virtual screening were performed to identify novel com-
pounds. Binding interactions of compounds with target protein were checked using LigPlot. pkCSM,
SwissADME, and ProTox-II were used for adsorption, distribution, metabolism, excretion, and toxi-
city (ADMET) properties. (3) Results: Novel selected compounds have improved absorption and
have better ADMET properties. Based on our results, the chemically identified inhibitor ZINC48942
targeted the receptor that can inhibit the activity of infection in E. faecium. This research work will be
beneficial for the scientific community and could aid in the design of a new drug against E. faecium
infections. (4) Conclusions: It was observed that novel compounds are potential inhibitors with more
efficacy and fewer side effects. This research work will help researchers in testing and identification
of these chemicals useful against E. faecium.

Keywords: Enterococcus faecium DO; drug designing; virtual screening; bioinformatics

1. Introduction

In the early 1900s, Enterococcus faecalis and faecium were identified and isolated. In
human beings, these are the most abundant species comprising up to one percent of
microbiota in the intestine [1]. To treat diseases (neonatal meningitis, urinary tract in-
fections, surgical wound infections, nosocomial bacteremia, and catheter-related) caused
by E. faecium, billions of dollars are spent, and this pathogen kills roughly two million
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people every year. Some strains may additionally cause endocarditis, intra-abdominal, and
pelvic infections.

Organisms are transmitted via direct contact. The use of broad-spectrum antibiotics
and devices are the major aspects contributing to the emergence of E. faecium as a significant
pathogen. The pathogenic strains can cause sickness in even the healthiest host [1,2].

In nature, E. faecium is basically part of the normal intestinal flora, but it also occurs
in food. The intestine of animals, including human beings, are perfect places for gene
transfer. E. faecium show the capability to take up and transfer antibiotic resistance genes,
both vertically and horizontally [3]. The urinary tract infection is caused by Enterococcus,
a Gram-positive cocci. Males (33.96%) are less prone to enterococcal infection as compared
to females (66.04%), and the most affected age group by this pathogen is 21–30 years [4].
The most common enterococcal species present various virulence factors, such as colla-
gen binding protein, cytolysin, enterococcal surface protein, gelatinase, and aggregation
substance [5].

The resistance of bacteria to antibiotics is a common phenomenon, but for human
beings, it is becoming a serious threat. Because of antibiotic-resistant microorganisms, at
least 23,000 people died every year in the United States of America. By 2050, antibiotic-
resistant will cause around 300 million premature deaths and the global economy may
suffer a loss of up to $100 trillion [6]. Thirty-three percent of enterococcal infections are drug-
resistant, and there are 20,000 cases of antibiotic resistance yearly. Many Enterococcus faecium
strains show resistance to penicillin, ampicillin, daptomycin, gentamicin, tetracycline, and
vancomycin. The treatment of infections caused by enterococcal becomes very difficult due
to antibiotic resistance [1].

The antibiotic resistance genes of Enterococci in human beings may be spread through
the consumption of vegetables and animals. Moreover, Enterococci could spread antibiotic
resistance genes to their own or other species, with the possibility of causing endogenous
infections. Consequently, transferring microbes containing antibiotic resistance genes
between humans and animals is mostly done by the food chain [7].

During growth, vertical transmission of chromosomal mutations is the reason for
the spread of antibacterial resistance. Genetic recombination of DNA and the food chain
is the main cause of horizontal genetic exchange of resistance genes. The occurrence of
antimicrobial resistance mostly depends on host species and country of origin. When a
resistance mechanism encoded by a single gene carries resistance to multiple antibacterial
compounds, then cross-resistance to several antibacterial may additionally arise [8]. Al-
ready present antibiotics show resistance, so there is a need to introduce new antimicrobial
compounds to overcome diseases caused by Enterococcus faecium.

Recently it has been proved that E. faecium show high-level resistance to most beneficial
anti-enterococcal antibiotics, ampicillin, vancomycin, and aminoglycosides. Because of
the low success rate, some new antibiotics, such as linezolid, daptomycin, and tigecycline,
have limited clinical use. However, these antibiotics show a good success rate in laboratory
experiments against enterococcal isolates. So, treatment of infections caused by enterococcal
multidrug-resistance is based on unprejudiced observations and deductions from wet-lab
experiments. We need urgent strategies to develop more efficient therapies to deal with
intense multidrug-resistant E. faecium infections [9].

Infections, spread through different microbes, are the main threat to human existence.
To cope with this enormously increasing danger of multidrug resistance, we must develop
new strategies to find novel potential drug candidates. Traditional techniques of drug
discovery are monotonous, extremely time-consuming, and uneconomical. These tech-
niques are also a threat to the principles of green chemistry. Subsequently, the tools and
techniques of bioinformatics have gained research attention to lessen the time and cost by
computer-aided drug design [10].

The capacity of E. faecium to cause persistent disease is an essential property of the
organism. Hospital-associated infections are amplified by the spread of drug-resistant
Enterococci in the hospital setting. [11]. In this context, the aim of our study is to propose
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new antimicrobial compounds against E. faecium, to inhibit the pathogen’s functionality
by targeting a bacterial protein and to predict lead compounds against scm (fms10) of
E. faecium.

2. Materials and Methods

The flowchart of the adopted computer-aided drug design (CADD) is given in Figure 1.
The details of the methodology are as follows.
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Figure 1. Flowchart of Adopted computer-aided drug design (CADD) Methodology.

2.1. Target Identification

E. faecium contains one chromosome and three plasmids, 3209 genes, which translate
into 3114 proteins, and the Gas Chromatography (GC) content is 37.8% [12]. Four out of
22 surface proteins of E. faecium show a virulence factor. Against infectious diseases caused
by Enterococcus faecium potential drug targets, recombinant Scm65 (A- and B-domains)
and Scm36 (A-domain) are identified, as revealed by functional annotation using various
computational tools and techniques [13], were used. For virulence factor analysis, the
Virulence Factor Database (VFDB) was used [14].

2.2. Protein Selection and Structural Refinement

To retrieve protein sequences in FASTA format, UniProt (Universal Protein Resource)
database (http:/www.uniprot.org/) was used [15]. Expasy ProtParam and CFSSP (http:
//www.biogem.org/tool/chou-fasman/) was used to calculate physiochemical properties
of protein and prediction of secondary structure, respectively [16]. This also helps in the
prediction of protein functFns [17]. The target protein structure was not present in PDB, and
the sequence of the target protein did not fulfill the requirements of homology modeling,
therefore, we moved toward threading based modeling, and for this purpose, we used the
online server I TASSER [18]. We used UCSF Chimera for protein visualization [19].

For structure refinement, we used two online servers, named GalaxyWeb and
3Drefine [20,21]. For generating the Ramachandran plot, Rampage was used, The plot also
provides information about the residues lying in favored, allowed, or outlier regions [22].
To evaluate theoretical protein models, QMEAN Z-score was used [23]. PROVE (PROtein

http:/www.uniprot.org/
http://www.biogem.org/tool/chou-fasman/
http://www.biogem.org/tool/chou-fasman/


Life 2021, 11, 77 4 of 15

Volume Evaluation) was used for structure validation procedures [24]. VERIFY3D was
used to verify the final model of the predicted protein [25].

2.3. Protein Properties

InterPro and PRED-LIPO, a Hidden Markov Model, was used to classify the protein
domain and lipoprotein signals, respectively [26,27]. Trans-membrane helixes were pre-
dicted by using the TMHMM server v.2.0 [28]. PSORTb was used for the prediction of
prokaryotic localization sites [29]. Binding and active sites were predicted using COFAC-
TOR and CASTp [30,31].

2.4. Selection and Retrieval of Ligands

Overall, 211 Chemical compounds from PubChem, ChEBI, and Literature Survey were
considered as ligands considering their biological activities. The 2D chemical structure was
retrieved and converted into 3D by using Discovery Studio.

2.5. Docking Analysis

Docking results were obtained according to their binding affinities by using AutoDock
Vina. PyMOL and Discovery Studio were used for the analysis of the protein–ligand
complex to understand the interactions between receptor and inhibitor along with the
binding sites of target Protein.

2.6. Pharmacophore Generation

The selected compounds with a wide range of structural diversity and activity were
aligned. A pharmacophore model was generated to merge all the features of selected
compounds. The pharmacophore of the top 10 inhibitors against targeted Scm (Fms10) was
generated using LigandScout. Virtual screening was performed against the ZINC database
to find the inhibitors which can inhibit adherence activity [32,33].

2.7. Docking of Novel Compounds

All identified hits of pharmacophore-based virtual screening were sorted according to
their pharmacophore-fit score, and 100 compounds were selected and filter on the basis of
two rules, named rule of five and the Veber rule. Then the top 15 compounds were selected.
These compounds were docked with the receptor and evaluated for binding energies and
protein–ligand interactions by using AutoDock Vina. Pymol was used for making complex
files of receptor and ligand, and for finding interactions, LigPlot was used, respectively.

2.8. Toxicity Analysis

After a thorough analysis of docking results, drug likeness and toxicity characteristics
were identified through pkCSM [34], ProTox-II [35], and SwissADME [36], which are
reported as useful tools in calculating important drug-like descriptors, such as adsorption,
distribution, metabolism, excretion, and toxicity (ADMET), as well as use for predicting
lead likeness with respect to mutagenicity and carcinogenicity.

2.9. Lead Identification

The most active inhibitors were identified based on docking score, ligand–protein
interactions, and toxicity analysis studies including Molecular Weight (MW), Hydrogen
Bond Donner (HBD), Hydrogen Bond Acceptor (HBA), partial coefficient logP, Polar
Surface Area (PSA), rotatable bonds, rings, Blood–Brain Barrier and Ames Toxicity etc. The
compounds showing the least binding affinity, high lead likenesses, and best interactions
were selected as potential inhibitors of Scm (Fms10).

2.10. Molecular Dynamics Simulation

Molecular dynamics simulations were performed for 50 nanoseconds using Desmond,
a Package of Schrödinger LLC [37]. The initial stage of protein and ligand complexes for



Life 2021, 11, 77 5 of 15

molecular dynamics simulation were obtained from docking studies. Molecular Docking
Studies provide a prediction of ligand binding status in static conditions. Simulations
were carried out to predict the ligand binding status in the physiological environment.
The protein–ligand complexes were preprocessed using Protein Preparation Wizard or
Maestro, which also included optimization and minimization of complexes. All systems
were prepared by the System Builder tool. Solvent Model with an orthorhombic box
was selected as TIP3P (Transferable Intermolecular Interaction Potential 3 Points). The
OPLS_2005 force field was used in the simulation [38]. The models were made neutral by
adding counter ions where needed. To mimic the physiological conditions, 0.15 M salt
(NaCl) was added. The NPT ensemble (Isothermal-Isobaric: moles (N), pressure (P), and
temperature (T) are conserved) with 300 K temperature and 1 atm pressure was select
for complete simulation. The models were relaxed before the simulation. The trajectories
were saved after every 50 ps for analysis, and the stability of simulations was evaluated by
calculating the root mean square deviation (RMSD) of the protein and ligand over time.

3. Results and Discussion

The amino acid sequence of target proteins of Enterococcus faecium was retrieved from
the UniProt database (I3U5K9). The structure of the protein was generated by I-TASSER,
shown in Figure 2.
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Figure 2. 3D structure of the target protein predicted by I-TASSER using homology modeling
(UniProt ID: 13U5K9).

The overall quality of the structure was 90.1% using Rampage, as mentioned in Table 1
and Figure 3. The predicted structure contains 24 helix, 36 sheets, and 40 coils. Scm (Fms10)
of E. faecium DO has total 14 B-repeats from which 13 beta-repeats of 19 residues in length
and 1 partial repeat of 10 residues also contain a signal peptide, and if we see subcellular
localization in Figure 4A, then a major part of protein lies in cell wall region. Domains
and functional sites and lipoprotein signal peptides of the target protein are shown in
Figure 4B,C, respectively.
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Table 1. Scores of GalaxyWEB and 3Drefine and Refinement Databases and PSORTb.

UniProt Ids I3U5K9

GalaxyWEB and 3Drefine

GDT-HA 0.9992
RMSD 0.448

MolProbity 3.054
3Drefine Score 42,972.1
Rama favored 89.7

Refinement Databases Score

Qmean −6.87
Prove 6.9

Rampage
(favored region) 90.1

Verify 3D 60.70

Subcellular Localization

Cell Wall 9.98
Cytoplasmic Membrane 0.01

Extracellular 0.001
Cytoplasmic 0.0001

Final Prediction Cell Wall
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Figure 4. Structural features. (A) Subcellular localization. (B) Domains and repeats by InterPro. (C) Lipoprotein Signal
Peptide. (D) Prediction of Transmembrane Helices.

The Hidden Markov Model method was used for the prediction of lipoprotein signal
peptides of Gram-positive bacteria. Transmembrane helices were predicted by using
TMHMM server v 2.0. According to the Exp number of amino acids in trans-membrane
helices (TMHs), the expected number of amino acids in transmembrane helices can be
determined. If this number is larger than 18, it is very likely to be a transmembrane protein
or have a signal peptide. Total prob of N-in: The total probability that the N-term is on the
cytoplasmic side of the membrane. The bacterial protein value of the expected amino acids
was more than 18, and almost all graphs had the same protruded area into and outside the
cell and the transmembrane area, see Figure 4D.

There were 211 inhibitors retrieved against Collagen-binding MSCRAMM Scm (Fms10)
from PubChem, ChEBI, and Literature. All these were selected based on their inhibitory
effect on Collagen-binding MSCRAMM Scm (Fms10) involved in multi-drug resistance.
Among 211 compounds, 161 failed during Lipinski and Veber filtering (such as Molecular
Weight > 500, logP > 5, H-Bond Donors > 5, H-Bond acceptors > 10, PSA < 140, RB < 10).

The selected inhibitors were docked with Collagen-binding MSCRAMM Scm (Fms10),
and 10 ligands with best binding affinities were chosen, Table 2. These inhibitors were
analyzed through LigPlot to determine the amino acids involved in protein–ligand bind-
ing interactions.
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Table 2. Docking results and 2D structures of top 10 inhibitors.

Ligand ID’s Binding Energies No. of H-Bonds 2D Structures

71940 −10 1
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Table 2. Cont.

Ligand ID’s Binding Energies No. of H-Bonds 2D Structures

104872 −8.2 1
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as Hydrogen Bond Donors, Hydrogen Bond Acceptors, and Aromatic Rings, is shown in
Figure 5.
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cophore model. Twenty-one thousand, three hundred and thirty-one hits (Hitrate: 70%)
were identified out of 30,737 compounds. Based on the Pharmacophore-fit score, the top
100 compounds were selected, and again the rule of five and Veber rule was applied. After
applying both rules, 15 novel compounds were selected for molecular docking with the
target protein. Molecular docking of Scm (Fms10) with selected novel compounds was
conducted using AutoDock Vina (Table 3).

Table 3. Features of Novel Compounds after Virtual Screening.

Zinc IDs Pharma-Cophore
Score

Binding
Affinity HBA HBD Rings RBs M.W logP TPSA

zinc_5347917 43.62 −8.8 5 2 4 8 406.39 1.43 124.88
zinc_5223045 43.96 −8.2 8 2 5 8 452.49 2.08 93.06
zinc_12603547 43.66 −7.8 6 5 3 9 417.44 0.86 119.92
zinc_49590510 43.78 −7.2 5 0 4 8 433.53 1.21 82.03
zinc_77264335 43.71 −7.2 5 3 3 7 493.71 4.19 102.76
zinc_1440812 43.62 −7.1 5 2 3 9 358.35 0.93 124.88
zinc_72321048 43.62 −7.1 5 3 3 6 362.4 1.83 104.73

zinc_57855 43.67 −7 4 1 3 4 270.28 2.21 55.76
zinc_12603524 43.79 −7 7 4 3 9 420.41 0.37 107.89
zinc_35425432 43.62 −6.7 7 1 4 9 382.44 0.95 86.4

zinc_57662 43.89 −6.6 3 0 3 5 282.29 3.53 48.67
zinc_48942 43.78 −6.4 6 1 2 8 328.39 0.14 112.08

zinc_3897410 43.97 −6.1 6 4 2 7 268.24 −3.69 122.08
zinc_12603765 43.77 −5.6 6 5 2 8 350.35 −0.97 107.89
zinc_3839734 44.2 −4.7 5 3 2 8 399.49 1.07 118.8

After docking through autodock vina, the ADMET properties of novel compounds
were determined, and one compound (ZINC48942) was identified as the most active from
all molecules after toxicity analysis. Properties and interactions of the best one are shown
in Table 4 and Figure 6.

The Desmond simulation trajectories were analyzed. Root mean square deviation
(RMSD), root mean square fluctuation (RMSF), and protein–ligand contacts were calculated
from MD trajectory analysis. Figure 7 shows the evolution of RMSD values in the course of
time for the backbone atoms of the ligand bound protein. The RMSD plot of the complex
indicates that the complex reaches stability at 10 ns. From then, an average RMSD value
of 2.2 Å persists up to 50 ns. After that, changes in RMSD values remain within 2.2 Å
during the simulation period, which is quite acceptable for small, predicted proteins.
Ligand fit to protein RMSD values fluctuates within 1.0 Angstrom after being stable. These
indicate that the ligand remains stably bound to the binding site of the receptor during the
simulation period.

Table 4. Properties of Lead Compound.

Compounds ID Zinc_48942

Pharmacophore Score 43.67
Molecular Weight 270.28

H-bond Donor 4
H-bond Acceptor 1
Rotatable bonds 4

Rings 3
Toxicity Non-Toxic

Carcinogenetic Non-Carcinogen
Binding Energy −7
No. of H-Bonds 2

Interacting Residues NDI-His67:O15; N-Ala66:O15
Distance 2.99 2.89
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Figure 7. Root mean square deviation (RMSD) of the backbone atoms of protein and the ligand with time. The left Y-axis
shows the variation of protein RMSD through time. The right Y-axis shows the variation of ligand RMSD through time.

Figure 8 shows the residue wise RMSF value of the protein bound to the ligand.
The residues showing higher peaks correspond to loop regions, as identified from MD
trajectories (Figure 9), or N and C-terminal zones. Low RMSF values of binding site
residues indicate the stability of ligand binding to the protein.

Most of the important interactions of ligand–proteins determined with MD are hydro-
gen bonds and hydrophobic interactions, as depicted in Figure 10. THR_421, SER_22, and
THR_423 are the most important ones in terms of H-bonds. The stacked bar charts were
normalized over the course of the trajectory: for example, a value of 1.0 suggests that for
100% of the simulation time, the specific interaction was maintained. Values over 1.0 are
possible as some protein residue may make multiple contacts of the same subtype with
the ligand.
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4. Conclusions

Several multidisciplinary methods have gained research attention to lessen the time
and cost during the drug development process. The motivation of this research work was
to find target proteins and then select inhibitors for infectious Enterococcus faecium strains.
From the ZINC database, we selected chemical compounds that inhibit the effect of the Scm
(Fms10) protein. Pharmacophore modeling with virtual screening and docking analysis
helped to separate the compounds having the least binding energy with the target protein.
The chemically identified inhibitor ZINC48942 targeted the receptor that can inhibit the
activity of adherence and spreading of infection in E. faecium. We concluded that this
drug could be used as a lead compound to develop a drug that can selectively act against
E. faecium infections without interfering with the activities of the human proteasome. These
findings will be beneficial for the scientific community and could aid in the design of a new
drug against E. faecium infections.
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