
life

Article

Male Deep-Sea Shrimps Aristeus antennatus at Fishing
Grounds: Growth and First Evaluation of Recruitment by
Multilocus Genotyping

Alba Abras 1 , Jose-Luis García-Marín 1,* , Sandra Heras 1 , Manuel Vera 2 , Melania Agulló 1 , Laia Planella 1

and María Inés Roldán 1

����������
�������

Citation: Abras, A.; García-Marín,

J.-L.; Heras, S.; Vera, M.; Agulló, M.;

Planella, L.; Roldán, M.I. Male

Deep-Sea Shrimps Aristeus antennatus

at Fishing Grounds: Growth and First

Evaluation of Recruitment by

Multilocus Genotyping. Life 2021, 11,

116. https://doi.org/10.3390/life

11020116

Academic Editor: Daria Sanna

Received: 28 December 2020

Accepted: 1 February 2021

Published: 4 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratori d’Ictiologia Genètica, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain;
alba.abras@udg.edu (A.A.); sandra.heras@udg.edu (S.H.); melania.agullo@udg.edu (M.A.);
laia.planella@udg.edu (L.P.); marina.roldan@udg.edu (M.I.R.)

2 Departamento de Zooloxía, Xenética e Antropoloxía Física, Campus Lugo, Universidade de Santiago de
Compostela, 27002 Lugo, Spain; manuel.vera@usc.es

* Correspondence: joseluis.garcia@udg.edu; Tel.: +34-616-603-335

Abstract: The population biology of the deep-sea shrimp Aristeus antennatus, as with other exploited
demersal species, is usually studied using data from fishery statistics. Such statistical analyses
have shown female-biased sex ratios during the spawning season in this species. Because the
abundance of males increases at greater depths that are not exploited by fisheries (virgin grounds),
knowledge on their recruitment is limited. Here, the growth and recruitment of A. antennatus males
at fishing grounds was evaluated. This was achieved by integrating information on previously
identified breeding behaviours and by tracing the young-of-year cohort through genotyping at
10 microsatellite loci. Using a codend and a codend cover with distinct meshed windows, four
groups of males were collected in winter and in a subsequent spawning summer season. Summer
collections were mostly composed of pre-adult males, reaching sizes that are to be expected from the
growth of winter juveniles; however, many specimens also originated from nearby grounds. This
result indicates the horizontal dispersal of male juveniles via intermediate and deep oceanographic
currents. Such dispersal complements passive larval dispersal in surface waters, and contributes to
the weak genetic divergence among regional fishing grounds. These features could be shared by
other deep-sea crustacean and fish species, and should be considered for the sustainable exploitation
of demersal fisheries.

Keywords: Aristeus antennatus; microsatellite loci; male recruitment; fishing grounds; deep-sea species

1. Introduction

Demersal fisheries target many species of fish and crustaceans. While not representing
the largest proportion of landings in Mediterranean countries, demersal species are highly
sought after by fishermen, due to their high commercial value [1]. For instance, in the
western Mediterranean, demersal stocks are subjected to high capture rates that are often
above sustainable levels [2]. The blue and red shrimp, Aristeus antennatus (Risso, 1816)
(Crustacea, Decapoda), is a typical target fish species of the demersal fisheries of northern
Spain [3,4]. The commercial fishing of this species takes place by bottom trawling in subma-
rine canyons, and near shallower waters, at depths of between 400 and 800 m [5]. However,
in the western Mediterranean, this species is widely and heterogeneously distributed in the
water column at depths ranging from 80 to 3300 m [6]. Peaks in abundance occur between
600 and 1000 m depth and then noticeably decline below 1500 m in depth [7]. Mature
females are highly abundant at depths of less than 1000 m, whereas males and juveniles
are more abundant in deeper layers (below the 1000 m) [7,8]. During the spawning season,
from late spring to summer, aggregations of adult males and females occur at depths
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between 400 and 900 m [9]. Nevertheless, the genetic identification of spermatophores indi-
cates that many mating males during the spawning season are not captured with females
at these depths [10]. Males are more abundant at greater depths, where currently deep-sea
fisheries are prohibited (below 1000 m; virgin areas) [7,11]. Consequently, as for other dem-
ersal exploited species, knowledge remains limited in terms of the growth and recruitment
(either for reproduction or fishing) of male A. antennatus, as research on the population
biology is primarily focused on specimens captured in fishing grounds [9,12–15].

The reproduction of A. antennatus was first described by Demestre and Fortuño in the
fishing grounds of the western Mediterranean [16], with similar results being reported in
other Mediterranean regions [13,17]. In brief, this species is sexually dimorphic, with an ex-
ternal mating system in which a sperm mass (spermatophore) attaches to the female’s open
thelycum via the petasma of the male. Males are considered adults when they have fused
hemipetasmas, and the rostrum measures less than 12 mm, otherwise they are classified as
juveniles [16,18]. The carapace length (CL) of females has a wider range (CL = 18–68 mm)
compared to males (CL = 18–36 mm). Females also have slightly greater longevity com-
pared to males, reaching 5 and 4 years old, respectively [5]. The main reproductive period
in the Catalan Sea, Spain (north-west Mediterranean) is highly seasonal, extending from
late spring to summer, and peaking during summer [12]. A similar mating pattern was
documented in the Balearic Islands (western Mediterranean) [19]. In comparison, longer
periods were reported in the eastern Mediterranean, lasting almost seven months around
Greece [17]. During the spawning season, the larvae of A. antennatus appear in surface
waters (0.5 to 1 m depth) at areas where mature adults are fished at deeper layers [20]. After
hatching on the bottom substrate, the first larval stages perform an ontogenic migration
through the water column to the surface to optimize feeding and enhance development
of the late larval stages [21]. Surface currents disperse these protozoea and zoea larval
stages [22]. Finally, the decapodid stage organisms exhibit a downward vertical migra-
tion to deep waters, where they settle [7,23]. Small juveniles of 6–7 mm CL have been
detected at 1300–1500 m depths after the spawning season [24]. A few months later, during
winter, deep-sea A. antennatus juveniles recruit to wider depth ranges below 1000 m in
the Catalan, Balearic, and Ionian Seas [11,24]. An abundance of juveniles of up to 15 mm
CL has been reported at 2800 m depth [8]. In the north-western Mediterranean, juvenile
numbers peak at the end of winter, in March [25,26]. Similar results were obtained in the
eastern Mediterranean Sea, with juvenile shrimps mainly being reported from January to
April [27].

The present study investigated the growth and recruitment of the juvenile and adult
male A. antennatus, after the spawning season. This was accomplished by using multilocus
genotype data to trace the young-of-year male cohort in the fishing ground of Palamós
(Spain) as a case study, because of the available description of the breeding behaviour of the
species during the spawning season in this area reported by Planella et al. [10]. This study
aims to fill the knowledge gaps related to the growth and recruitment of A. antennatus
males to fishing grounds and spawning aggregations. The present work is expected to
provide baseline of information facilitating the sustainable exploitation of this marine
resource, with potential application to other demersal species.

2. Materials and Methods
2.1. Sampling and Biological Material

Planella et al. [10] delineated the mating structure of A. antennatus in the fishing
ground of Palamós Canyon (hereafter “Palamós fishing ground”), Spain, in the summer
of 2015. In the present study, A. antennatus males were captured on board the same
trawling vessel (Nova Gasela) at Palamós fishing ground (500 m depth, 41◦54′04′ ′ N,
3◦16′08′ ′ E) during March (winter) and July (summer) of 2016 to determine the growth and
recruitment of males in the area. The winter sampling period (3 March) corresponded to
the period when peak numbers of juveniles are detected in the coastal areas of the western
Mediterranean [26]. The summer sampling period (7 July) corresponded to the peak of
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the spawning season, when almost all captured females have at least one spermatophore
adhering to the thelycum [10]. The codend had square meshed windows with an aperture
of 40 mm (minimum commercial mesh size allowed at the time of this study), and was
surrounded by a smaller meshed cover (hereafter “codend cover”), with an aperture
of 12 mm usually intended for smaller individuals. Thus, the codend cover captures
organisms escaping from the codend (Figure 1). The codend cover was directly attached to
the funnel end of the net which was 1.5 m wider and longer than the codend to maintain a
good flow of water and avoid masking the codend mesh (see [3]). The codend in this study
is commonly used for commercial purposes in the Palamós fishing ground, whereas the
codend cover was legally authorised for this scientific sampling procedure. Winter and
summer samplings were conducted in the same way. A single haul with the same fishing
gear was conducted per sampling period (winter and summer). The towing speed was
around two knots and the effective towing duration was two hours. Specimens from the
codend and codend cover were independently sexed on board, and a random sample of
around 100 males of each group (codend and codend cover) were kept for this study. Each
male was classified as juvenile or adult based on the criteria established by Demestre and
Fortuño [16] and Sardà and Demestre [18]. All males captured in the codend during March
had a fused petasma, and were considered adults. In total, 101 individuals were retained
for genotype analyses. Despite some specimens in the codend cover having adult petasma
morphology (fused hemipetasmas), most males had two separate hemipetasmas, and were
considered as juveniles. In total, 105 of these juveniles were retained for the analysis. In
July, all males collected in the codend were adults, and 100 were retained for the analysis.
In contrast to the winter collection, all males (except one) captured in the codend cover
had fused petasma, and were not considered as juveniles. Ninety-eight of these males
were genotyped. All captured specimens were stored on ice on board, and were quickly
transported to our laboratory on landing. At the laboratory CL was measured using a
digital vernier calliper. A piece of muscle tissue was preserved in 95% ethanol and stored
at room temperature until subsequent DNA extraction.

Life 2021, 11, x FOR PEER REVIEW 3 of 13 
 

 

E) during March (winter) and July (summer) of 2016 to determine the growth and recruit-
ment of males in the area. The winter sampling period (March 3) corresponded to the 
period when peak numbers of juveniles are detected in the coastal areas of the western 
Mediterranean [26]. The summer sampling period (July 7) corresponded to the peak of the 
spawning season, when almost all captured females have at least one spermatophore ad-
hering to the thelycum [10]. The codend had square meshed windows with an aperture of 
40 mm (minimum commercial mesh size allowed at the time of this study), and was sur-
rounded by a smaller meshed cover (hereafter “codend cover”), with an aperture of 12 
mm usually intended for smaller individuals. Thus, the codend cover captures organ-
isms escaping from the codend (Figure 1). The codend cover was directly attached to the 
funnel end of the net which was 1.5 m wider and longer than the codend to maintain a 
good flow of water and avoid masking the codend mesh (see [3]). The codend in this study 
is commonly used for commercial purposes in the Palamós fishing ground, whereas the 
codend cover was legally authorised for this scientific sampling procedure. Winter and 
summer samplings were conducted in the same way. A single haul with the same fishing 
gear was conducted per sampling period (winter and summer). The towing speed was 
around two knots and the effective towing duration was two hours. Specimens from the 
codend and codend cover were independently sexed on board, and a random sample of 
around 100 males of each group (codend and codend cover) were kept for this study. Each 
male was classified as juvenile or adult based on the criteria established by Demestre and 
Fortuño [16] and Sardà and Demestre [18]. All males captured in the codend during March 
had a fused petasma, and were considered adults. In total, 101 individuals were retained 
for genotype analyses. Despite some specimens in the codend cover having adult petasma 
morphology (fused hemipetasmas), most males had two separate hemipetasmas, and 
were considered as juveniles. In total, 105 of these juveniles were retained for the analysis. 
In July, all males collected in the codend were adults, and 100 were retained for the anal-
ysis. In contrast to the winter collection, all males (except one) captured in the codend 
cover had fused petasma, and were not considered as juveniles. Ninety-eight of these 
males were genotyped. All captured specimens were stored on ice on board, and were 
quickly transported to our laboratory on landing. At the laboratory CL was measured 
using a digital vernier calliper. A piece of muscle tissue was preserved in 95% ethanol and 
stored at room temperature until subsequent DNA extraction. 

 
Figure 1. Sampling scheme to collect large and small specimens of A. antennatus. 

2.2. DNA Extraction and Microsatellite Loci Genotyping 

Figure 1. Sampling scheme to collect large and small specimens of A. antennatus.

2.2. DNA Extraction and Microsatellite Loci Genotyping

From each specimen, DNA was extracted from the muscle tissue using the adjusted
phenol-chloroform method proposed by Fernández et al. [28]. Genetic diversity was
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analysed at 10 microsatellite loci previously described for A. antennatus (Aa123, Aa138,
Aa1444, Aa667, Aa681, Aa751, Aa956, Aa1061, Aa1195, and Aa818) [29], and amplified with
three multiplex PCRs [10]. Resulting amplicons were analysed in an ABI PRISM 3730xl
DNA analyser (Applied Biosystems, Foster City, CA, USA) at the Sequencing Unit of the
University of Santiago de Compostela (Campus Lugo, Lugo, Spain), and were genotyped
using GeneMapper software version 4.0 with GeneScan 500LIZ dye Size Standard (Applied
Biosystems) as the internal standard. Genotype data will be available on request.

2.3. Statistical and Genetic Analysis

One-way analysis of variance (one-way ANOVA) included in the IBM SPSS statistics
version 25 package (Armonk, NY, USA) was used to compare average CL among the four
groups of males: (i) adult males captured during winter, (ii) juvenile males captured during
winter, (iii) adult males captured in the codend during summer, and (iv) males captured in
the codend cover during summer. Subsequently, a post-hoc Scheffe test implemented in
the same software was used to identify groups that differed significantly.

Levels of genetic diversity for each of the four male groups were estimated at the
10 loci based on the number of alleles per locus (NA), allelic richness (AR), and observed
(HO) and expected (HE) heterozygosities. Calculations were performed using FSTAT
2.9.3 [30]. Conformance of the observed genotype distributions to their expectations
under Hardy–Weinberg equilibrium (HWE) was tested for each sample using the exact
probability test of Guo and Thompson [31], which was included in the GENEPOP 4.7.0
software [32]. Deviations from HWE genotype proportions were summarised using the
inbreeding coefficient FIS [33]. Significance levels were adjusted using Bonferroni correction.
Null alleles are commonly observed in decapods [29,34], including the A. antennatus loci
used in this study [35]. For each locus and each male group, null allele frequency was
estimated using the Brookfield 1 equation [36], as implemented in Micro-Checker 2.2.3
software [37]. Genetic distinctions between male groups were evaluated by pairwise
FST estimates using the Weir and Cockerham method [33] in GENEPOP 4.7.0 and their
significance from contingency tables of male-group x allele as implemented in the genic
differentiation option in GENEPOP 4.7.0 software.

To study the parental contribution of the 2015 local spawners reported by Planella
et al. [10] to the male groups analysed here, we simulated several independent F1 offsprings
using HYBRIDLAB 1.0 program [38] from the genotypes of these 2015 adults. We first
generated 10 independent simulated sets of paired baselines. Each set included a baseline
of 100 specimens from the admixture of the adult females (average CL = 38.27 ± 3.76 mm)
captured in 2015 and the spermatophores on their thelycum (hereafter “F × S F1”) and
another simulated offspring baseline of 100 specimens from females and males (average
CL = 22.78 ± 2.59 mm) that were simultaneously caught in 2015 (hereafter “F ×M F1”).
We used these paired sets of F ×M F1 baselines because of the genetic distinction observed
between these males and the female spermatophores [10]. Then, we assigned 25 sets of
100 specimens of F × S F1 obtained from independent HYBRIDLAB simulations to each
of the 10 baselines sets to obtain 250 replicates (25 × 10) to estimate the accuracy of the
assignment of the expected offspring from putative local mates (F × S) in 2015. The size of
each set (100 simulated individuals) was comparable to the roughly 100 males in each of
the four samples collected in 2016. The Bayesian Rannala and Mountain method [39], as
implemented in GENECLASS 2 [40], was used in all performed assignments. Individuals
with an assignment probability to each of the two baselines <0.01 were considered as
having another source. Similarly, we assigned 25 sets of F ×M F1 simulated offspring to
the 10 sets of baselines to estimate the accuracy of assignment of the expected offspring
from local adults (F ×M) caught during the 2015 spawning season. Finally, we assigned
our 2016 samples (winter codend cover, winter codend, summer codend cover, and summer
codend) to each of the 10 baseline sets to compare outcomes with those obtained above
for the expected offspring from local 2015 shrimps. These comparisons were done using
ANOVA and post-hoc Scheffe test as indicated for CL analysis.
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Assignment tests were also used to determine the relationships between the males
collected in summer versus winter. This approach was addressed to detect the most likely
origin of summer males using the winter males as a baseline. Two additional sets of
samples of adult male A. antennatus captured during the winter of 2016 at nearby grounds
were incorporated as a potential source of migratory specimens. One set was from Cap de
Creus Canyon (Roses fishing ground, 42◦21′17′ ′ N, 3◦24′22′ ′ E) (n = 55), and the other set
was from Blanes Canyon (Blanes fishing ground, 41◦35′85′ ′ N, 2◦50′56′ ′ E) (n = 54), which
were situated at approximately 60 km northward and southward of the Palamós fishing
ground, respectively. Exact probability tests were used to compare the assignment pattern
of the summer collections to the results obtained from the Palamós winter baselines.

3. Results
3.1. Comparison of Carapace Length among Male Groups

The A. antennatus juveniles captured in the codend cover during winter had the
lowest mean CL (16.79 ± 1.15 mm), which significantly differed to all other analysed
groups (Figure 2). Males captured in the codend cover during summer were significantly
larger than winter juveniles, with a mean CL of 19.82 ± 1.10 mm; however, these males
were smaller than adults collected in the codend during winter or summer. Adult males
captured in the codend during summer had a mean CL of 21.43 ± 2.06 mm, which was
not significantly different to the mean size of winter adults (22.39 ± 3.34 mm). The largest
adult male specimens were among those captured in winter.
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3.2. Genetic Diversity

The 10 loci were polymorphic in all analysed male groups, with the number of alleles
per locus (NA) ranging from three (locus Aa751 in all groups) to 25 (locus Aa138 in the
summer codend group) (Table 1). The mean allelic richness (AR) ranged from 8.8 (summer
codend cover group) to 9.7 (summer codend group). The average observed heterozygosity
(HO) among loci in the male groups reached 0.495 in winter juveniles to 0.517 in summer
adults from the codend, and was consistently below the average expected heterozygosity
(HE). After Bonferroni correction, analysis of locus by locus deviations from genotype HWE
expectations showed significant departures in five loci of the winter codend cover group
(Aa1444, Aa667, Aa751, Aa1061, and Aa818), six loci of the winter codend group (Aa1444,
Aa667, Aa681, Aa751, Aa1061, and Aa818), six loci in the summer codend cover group
(Aa123, Aa1444, Aa667, Aa681, Aa1061, and Aa818), and five loci in summer codend group
(Aa1444, Aa681, Aa751, Aa1061, and Aa818). Positive FIS indicated that a heterozygote
deficit was obtained in all groups. However, after Bonferroni correction, only males
captured in the codend cover during summer showed an overall significant departure from
HWE. A maximum null allele frequency of 0.195 was estimated by Micro-Checker software
at locus Aa818 in the summer codend cover male group.

Table 1. Genetic diversity within male Aristeus antennatus groups captured at Palamós fishing ground, Spain.

Cohort Aa123 Aa138 Aa1444 Aa667 Aa681 Aa751 Aa956 Aa1061 Aa1195 Aa818 Average

Winter
codend
cover

NA 4 19 13 9 20 3 6 8 4 4 9.0
AR 3.913 18.777 12.752 8.842 19.567 3.000 5.988 7.884 3.895 4.000 8.862
HO 0.485 0.829 0.490 0.392 0.637 0.144 0.571 0.429 0.591 0.352 0.495
HE 0.614 0.880 0.754 0.702 0.795 0.302 0.666 0.682 0.608 0.582 0.660
FIS 0.210 0.059 0.350 * 0.442 * 0.199 0.521 * 0.142 0.371 * 0.028 0.394 * 0.251
Nu 0.091 0.043 0.155 0.181 0.071 0.122 0.054 0.173 0.147

Winter
codend

NA 5 20 12 7 22 3 6 8 5 6 9.4
AR 4.930 19.904 11.937 6.918 21.436 3.000 6.000 7.792 4.991 5.995 9.290
HO 0.485 0.812 0.490 0.449 0.545 0.126 0.644 0.475 0.654 0.356 0.506
HE 0.610 0.896 0.715 0.699 0.856 0.271 0.665 0.697 0.596 0.625 0.665
FIS 0.205 0.094 0.316 * 0.358 * 0.364 * 0.534 * 0.032 0.318 * −0.097 0.430 * 0.239
Nu 0.075 0.048 0.135 0.152 0.186 0.128 0.129 0.153

Summer
codend
cover

NA 5 19 13 6 19 3 6 6 5 6 8.8
AR 4.959 18.915 12.937 5.979 18.875 3.000 5.999 6.000 4.918 5.998 8.758
HO 0.418 0.837 0.500 0.479 0.541 0.188 0.561 0.459 0.622 0.347 0.496
HE 0.625 0.911 0.762 0.694 0.828 0.287 0.682 0.696 0.628 0.689 0.681
FIS 0.330 * 0.082 0.344 * 0.310 * 0.347 * 0.347 0.177 0.340 * 0.008 0.497 * 0.272 *
Nu 0.116 0.040 0.152 0.131 0.166 0.080 0.057 0.136 0.195

Summer
codend

NA 6 25 12 7 20 3 6 7 6 6 9.8
AR 5.933 24.513 11.955 6.958 19.806 3.000 6.000 6.998 5.877 5.999 9.704
HO 0.520 0.800 0.531 0.542 0.640 0.096 0.610 0.485 0.610 0.306 0.517
HE 0.647 0.910 0.735 0.690 0.809 0.281 0.684 0.747 0.612 0.618 0.675
FIS 0.196 0.120 0.278 * 0.215 0.209 * 0.660 * 0.108 0.351 * 0.004 0.504 * 0.235
Nu 0.069 0.060 0.120 0.083 0.091 0.155 0.151 0.185

NA, Number of alleles; AR, allelic richness; HO, observed heterozygosity; HE, expected heterozygosity; FIS, inbreeding coefficient; Nu, null
allele frequency; *, Significant departure from Hardy–Weinberg equilibrium after Bonferroni correction.

3.3. Genetic Divergence

Pairwise FST values were low among all male groups (range: 0.0000–0.0010) (Table 2).
After Bonferroni correction, significant differences were documented between juvenile and
adult males collected during winter (FST = 0.0010, P = 0.0004), and also between winter
and summer groups in the codend cover (FST = 0.0008, P = 0.0003).
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Table 2. Genetic divergence (FST) between male Aristeus antennatus groups.

Winter Codend Cover Summer Codend Cover Winter Codend

Summer codend cover 0.0008 1

Winter codend 0.0010 1 0.0000
Summer codend 0.0004 0.0004 0.0000

1 Significant FST values after Bonferroni correction.

A limited accuracy of the baselines was indicated in the assignment of the simulated
datasets (Table 3). In particular, a large portion of simulated F ×M F1 individuals were
assigned to F × S F1 baselines, likely reflecting the genetic similarity between the males
and spermatophores sampled in 2015 and a limited contribution of the males to the sper-
matophores reported by Planella et al. [10]. Nevertheless, the assignment of all groups
of males captured in 2016 significantly differed from simulated individuals. In all cases,
the largest assignment was at the F × S F1 baseline. In addition, all male groups in 2016
significantly incorporated specimens from other sources (from 10.19 to 26.33%, Table 3),
when compared to the reference simulated F1 individuals from local spawners. The largest
assignment to other sources was detected for small sized males collected in the codend
cover during the 2016 summer. The assignment pattern of this group also differed to that
of winter juveniles (Figure 3).

Table 3. Assignment distribution (%) of male Aristeus antennatus groups to simulated offspring from
2015 spawner genotypes (see text).

Replicates F × S F1
Baseline 1

F ×M F1
Baseline 1 Other Sources

F × S F1 250 69.7 (16.3) 28.1 (15.9) 2.2 (1.8)
F ×M F1 250 47.2 (16.9) 50.2 (16.8) 2.6 (1.8)

Winter codend cover 10 56.6 (16.4) 33.2 (15.7) 10.2 (1.3)
Summer codend cover 10 44.4 (13.9) 29.3 (13.4) 26.3 (2.2)

Winter codend 10 54.5 (13.3) 30.0 (13.3) 15.5 (0.6)
Summer codend 10 49.10 (12.5) 31.3 (12.3) 19.6 (1.0)

1 F, females; S, spermatophores; M, males.Life 2021, 11, x FOR PEER REVIEW 8 of 13 
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The geographical assignment of captured males (Table 4) showed that the winter
codend and codend cover group from the Palamós fishing ground were weakly assigned
to the origin (67.3 and 43.8%, respectively). The assignment of these two groups confirmed
that recruitment from other grounds occurs. This recruitment was mostly from Blanes
Canyon, based on juveniles from the codend cover group and adults from the codend
group. The assignment pattern of the two summer groups statistically differed to that
recorded for the winter group (P < 0.01 in all comparisons). The summer codend and
codend cover groups were more closely correlated to winter adults collected in the codend
compared to winter juveniles collected in the codend cover. Only 18.4% of summer codend
cover males were assigned to winter juveniles, with this percentage being slightly lower
in the summer codend specimens (13.0%). In fact, the two summer groups had similar
assignment patterns (exact test P = 0.1686), with more than 40% of specimens originating
from outside of the Palamós ground.

Table 4. Assignment results (%) of male Aristeus antennatus groups captured during the summer at
Palamós fishing ground, Spain.

Baselines

Palamós
Winter
Codend

Palamós
Winter
Codend
Cover

Roses
Winter
Codend

Blanes
Winter
Codend

Other
Sources

Palamós
winter codend 67.3 7.9 4.0 13.9 6.9

Palamós winter
codend cover 21.9 43.8 10.5 20.0 3.8

Palamós
summer codend 41.0 13.0 14.0 25.0 7.0

Palamós summer
codend cover 39.8 18.4 5.1 24.5 12.2

4. Discussion
4.1. Growth and Recruitment of A. antennatus in Submarine Canyons

The males captured at a depth of 500 m in the codend cover during winter were classi-
fied as juveniles because they lacked fused petasma. The average CL (16.79 mm) of these
males supports observations of juvenile sizes from other Mediterranean grounds [8,11,24].
The winter juvenile group from Palamós was composed of smaller specimens compared to
the adult males captured in the codend. This latter group had an average CL of 22.39 mm,
with this size exceeding that of males at first maturity (20.81 mm) reported by Carbonell
et al. [14]. In fact, the average CL of the winter adult male group captured in the codend
was similar to that of adult males captured during the 2015 spawning season (22.78 mm).
Thus, these winter adults could be related to, or be the same as, the adult male group
analysed by Planella et al. [10], as no significant genetic differentiation (FST = −0.00022,
P = 0.4899) was recorded between these two male groups. Greater genetic divergence of
these winter males from males that released spermatophores into the female thelycum
during the spawning season was recorded (FST = 0.00318, P = 0.0812). However, analysis
of the parental contribution of 2015 summer local spawners based on simulated offspring
showed that the greatest assignment was to F × S F1 out of all male groups captured in
2016. The estimated contribution of F ×M F1 was lower (Table 3). Therefore, the winter
adult codend group might have included both adult males related to the 2015 summer
local males and offspring that hatched early during the spawning season. These latter
individuals had more time to grow compared to specimens captured in the codend cover.
The admixture of these two groups also might explain the large variance observed in CL in
this sample.
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The males captured in the codend cover during summer were larger compared to
those captured during winter. Despite these summer codend cover males having adult
morphology (fused petasma), their average size (CL = 19.82 mm) was lower than that
reported for first maturity. Certainly, this group could be composed of winter juveniles that
had grown since the last spring. A growth rate of 2 mm per month was estimated for juve-
nile A. antennatus cohorts in June–July at the fishing grounds of the Catalan Sea [41]. Sardà
and Company showed that juveniles of <16 mm CL were abundant in the bottom sea areas
of submarine canyons, where they remained for 6–9 months [8]. Later, the ontogenic migra-
tion of pre-adults to depths of less than 900 m occurred, with these individuals becoming
incorporated into the A. antennatus fishery at 400–800 m depth. Despite already showing
the adult petasma fused phenotype, pre-adult shrimps were considered to be 20–28 mm
CL. Thus, all males (except a few individuals >28 mm CL) captured during summer in the
current study could be pre-adult specimens, despite the mean CL (21.43 mm) of those cap-
tured in the codend exceeding that described for males at first maturity. Sex determination
in A. antennatus is not known; however, a ZZ/ZW sex chromosome mechanism has been
documented in Penaeid shrimps [42]. This mechanism should produce a balanced sex ratio
(1:1) in offspring. In blue and red shrimp, balanced (1:1) sex ratios in fishing grounds are
only detected in autumn and winter, after the spawning season. In contrast, during the
spawning season, and especially in summer, there is strong female bias both in biomass
and numbers [5,11], suggesting a spatial sexual segregation at that time. Planella et al. [10]
observed that males captured at fishing grounds during the spawning season had a limited
contribution to the spermatophores attached to the thelycum of females. Unlike females, A.
antennatus males have a clear size limit, being small-sized throughout their entire adult life,
which complicates attempts to distinguish the cohorts of older specimens [43]. However,
our genetic analyses correlated most males captured in summer to the offspring of 2015
spawners (Table 3). Therefore, the upward migration to shallower waters in summer mostly
involves females of all sizes and pre-adult males.

4.2. Geographical Origin of Males Recruited into the Fishery

The blue and red shrimp is a deep-sea benthic crustacean that has a widespread
dispersal potential [44], contributing to high gene flow and low levels of spatial genetic
heterogeneity across the fishing grounds of the Mediterranean Sea [6,34,35,45–49]. The
horizontal displacement of A. antennatus might occur by passive and active dispersal
mechanisms. Orsi-Relini et al. [50] suggested that, after the major passive horizontal
displacement of A. antennatus larvae by surface currents, juveniles and adults might initiate
an active, but slow, return migration against weak deep-sea currents. Scant evidence
has been reported on adult migration, with just a single tagging study in the Ionian Sea
(Mediterranean). This study showed that most recaptured specimens (21 out of 693 tagged
shrimps) were collected in the same area shortly after release; however, two specimens
were recaptured at one and nine months after release in deeper areas several nautical miles
(6 to 10 nautical miles) from the release site [51].

Aristeus antennatus eggs and larvae do, however, disperse passively, based on their
presence in the upper water layers [20,23]. In our study region, the general oceanic circula-
tion is part of a cyclonic circuit called the Northern Current (NC). This is a well-defined
western Mediterranean current that extends to 300–400 m depth, with a general southwest
flow that follows the continental slope from Italy to Spain [52,53]. Using hydrodynamic
models to predict connectivity among A. antennatus populations by passive egg and larval
drift among submarine canyons in our study region, Clavel-Henry et al. predicted a global
pattern of southward dispersal, according to the Northern Current [22]; however, the
authors also predicted high average retention rates in submarine canyons in some models
(reaching up to 60%). Our genetic analyses support these predictions, showing assignation
rates of 50–70% for all juveniles and pre-adult males captured in 2016 at the Palamós fishing
ground to the simulated F1 between females and their spermatophores sampled in 2015
(Table 3), as well as the contribution of migrants from northern grounds (Table 4).



Life 2021, 11, 116 10 of 13

The limited contribution of winter juveniles to the summer pre-adult groups indicates
that juvenile dispersal is a continuous process through the year that contributes to recruit-
ment at the fishing grounds. The Levantine Intermediate Water (LIW) and the Western
Mediterranean Deep Water (WMDW) flow below the NC and in the same direction [54].
The abundance of adult females appeared to be correlated to LIW; however, A. antennatus
juveniles were more abundant in the fishing grounds of the study region when WMDW
was present [15,55]. Anticyclonic eddies that extend their effects to deeper waters produce
inversions of the general southwest flow, and recur along the coasts of the northwest
Mediterranean [53]. Such eddies are singularly frequent in the Blanes Canyon area [56].
Thus, an anticyclonic eddy in the Blanes Canyon area might also explain the higher es-
timated contribution of A. antennatus specimens from this region to the Palamós fishing
ground, rather than the Roses Canyon.

Larval and juvenile migration from other grounds, rather than null alleles, could
explain the observed departures from Hardy–Weinberg genotypic expectations in our
groups [57]. This phenomenon contributed towards maintaining high local diversity and
weak genetic divergence at a regional scale, similar to that observed in A. antennatus fishing
grounds elsewhere [34,35]. Certainly, very little is known about how deep-sea oceano-
graphic processes influence demersal fisheries. Despite this, Puig et al. [58] highlighted the
importance of considering how the environment and species interact to exploit deep-water
resources sustainably. The features documented in the current study could be applied by
fisheries for other deep-sea crustacean and fish species. In particular, how the juveniles
of these various groups disperse among and replenish regional grounds should be incor-
porated in the management of potential targets by future regional demersal fisheries [54].
Currently, output management measures (quotas) are not implemented in the Mediter-
ranean demersal fisheries and ongoing programs involving reductions in fishing time are
insufficient to restore and maintain fish stocks below fishing mortality levels capable of
producing maximum sustainable yields [4].

5. Conclusions

This study provides new evidence on the growth, recruitment, and geographical
origin of male A. antennatus in fishing grounds. This information could be applied to
facilitate the sustainable exploitation of this marine resource. Our results showed that
males frequenting the fishing ground were mostly recruited from local spawners, but
with contributions from other sources. Our findings indicate: (i) upward summer vertical
movement towards the fishing grounds of pre-adult males that hatched the preceding
year, and (ii) horizontal displacement of juvenile males from adjacent fishing grounds by
deep currents, complementing larval dispersal through surface waters that occurs shortly
after spawning. However, it was not possible to resolve which males were recruited for
spawning and made a major contribution to spermatophores. Certainly, a small number of
large and mature males are captured with females during the spawning season (Figure 2a
and [5]). However, male-biased sex ratios of 2:1 are detected in summer at depths below
1000 m, in unexploited regions [7,11], with such individuals being in the best biological
condition for mating and spawning [24].
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