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Abstract: Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin
structures for genome protection and replication. Telomere length maintenance has been attributed
to several functional modulators, including telomerase, the shelterin complex, and the CST complex,
synergizing with DNA replication, repair, and the RNA metabolism pathway components. As
dysfunctional telomere maintenance and telomerase activation are associated with several human
diseases, including cancer, the molecular mechanisms behind telomere length regulation and pro-
tection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative
immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development
through diverse activities other than mediating telomere elongation. This review describes the
telomere functions, the role of functional modulators, the implications in cancer development, and
the future therapeutic opportunities.

Keywords: telomerase; telomerase reverse transcriptase; shelterin; CST; promoter mutations

1. Introduction

Cancer is notorious as it can attack any part of the body, rapidly grow beyond its usual
boundaries, invade adjoining tissues, and spread to other organs, resulting in uncontrolled
proliferation and eventually death. Nearly 10 million deaths were reported in 2020 from
cancer, and the risk of getting cancer in a lifetime (before the age of 75 years) is 20% [1]. The
most common newly-diagnosed cancers reported worldwide include breast (2.26 million),
lung (2.21 million), and colorectal (1.98 million) cancers [1]. Approximately half of the
newly diagnosed lung (57%) and pancreatic (52%) cancer cases in the United States are at
an advanced or metastatic stage, and the majority of these patients with an early diagnosis
of the disease eventually develop tumor progression [2]. The 5-year relative survival rates
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for advanced-stage cancers, such as lung, colorectal, liver, and pancreatic, remain low,
ranging from 3% to 14% even after maximal surgical excision, radiation, chemotherapy,
and hormone, immune, and targeted therapies [2]. Thus, none of the standard cancer
treatments can completely cure patients at an advanced stage of the disease. Knowledge of
the molecular mechanisms influencing tumor growth and invasiveness may lead to novel
and effective therapies for the poor prognosis of late-stage cancers.

Cancer formation and progression is a genetic phenomenon with normal cells accruing
genomic instability and thereby acquiring the ability to replicate indefinitely, which is the
phenotype of immortality [3]. Telomerase, the immortality enzyme, is ubiquitous in all
mammalian embryonic tissue and remains active in germs cells but is down-regulated in
most somatic tissues [4]. As telomerase activity determines cellular proliferation, it must
be tightly regulated to prevent the induction of carcinogenesis [5]. Telomerase reverse
transcriptase (TERT), the catalytic subunit responsible for enzyme activity in telomerase,
is the rate-limiting factor of human telomerase enzyme activity [5]. Two of the critical
telomere-specific proteins involved in the regulation and maintenance of the telomere
length are the shelterin and CST complexes [6]. Mutations in the genes encoding these
complexes can result in cancers. Thus, understanding the molecular mechanisms of these
proteins is fundamental given the therapeutic strategies to manage such diseases.

2. Telomeres, a Genetic Time Bomb or a Biological Clock

Human telomeres comprise a hexameric nucleotide repeat sequence (TTAGGG) that
is initially double-stranded DNA (dsDNA) but ends with a single-stranded DNA (ssDNA)
overhang (G’-overhang). The extended 5′ to 3′ strand contains the G-rich telomeric repeats
and is referred to as the G-strand, while the 3′ to 5′ strand is defined as the C-strand [7,8].
During the cell division cycle, the eukaryotic DNA polymerase is unable to completely
replicate the sequences at the chromosomal ends. This is because RNA primers attach at
the lagging strand during the synthesis of Okazaki fragments, and the resulting shedding
RNA leads to telomere shortening [9]. The so-called “end replication problem” results
in eventual apoptosis, cellular senescence, and cell cycle arrest [10,11]. Additionally,
chromosomes lacking the “capping structure” tend to get truncated and fused with other
chromosomes [12]. As such, telomeres are also considered a genetic time bomb or a
biological clock for cellular aging [13].

As approximately 50–200 bases are lost from the terminal sequence of chromosomes
each time a cell divides [14], and more than a couple of trillion telomere sequences are in
the human genome, the spatiotemporal expression of telomerase must be tightly regulated
in humans. Apart from the shedding RNA and the generation of the 3′ overhang by the
sequence-specific exonuclease activity to resect back the 5′end of telomeres [15], telom-
ere shortenings can occur, irrespective of cell replication, due to accumulative oxidative
stress [16], host age [17], gender [18], sex hormones [19], and lifestyle factors, such as the
lack or presence of exercise [20], obesity and weight loss [21], smoking [22], and unhealthy
diets [23]. However, short telomeres not only result in genomic loss [24,25], shorter lifes-
pan [26,27] and contribute to diseases such as coronary heart disease [28], heart failure [29],
osteoporosis [30], diabetes [31], but can also result in genomic instability and elevated
telomerase activity, leading to a potential cancer predisposition factor [32]. Hence, proper
telomere maintenance is critical for human life.

3. The Shelterin Complex

Telomeres are protected by a highly conserved mammalian nucleoprotein complex
called shelterin (telosome). This nucleoprotein complex can minimize telomere fragility
by enabling DNA replication at the telomeric repeats [33,34]. The shelterin complex can
allow DNA to form a lasso-like structure with a telomeric loop (T-loop) and a displacement
loop (D-loop) that then shields the 3′-end from DNA damage and blocks the activation of
the DNA repair mechanisms, such as ataxia-telangiectasia Rad3-related (ATR)-mediated
DNA damage kinase signaling and ataxia-telangiectasia mutation (ATM) kinase cascades,
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as well as unwanted repair reactions [35]. The shelterin complex anchors to both ssDNA
and dsDNA [33,36–38]. The shelterin complex and other protein complexes specific to the
telomere can detect and react to changes in telomere length in order to maintain the proper
length of telomeres [39,40] (Figure 1). However, in cancers, mutations in the shelterin
complex that cause telomere dysfunction and dysregulation are very common [41].
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Figure 1. A graphic presentation of telomeric DNA and the proteins that form the shelterin complex.
Telomeres are capping structures and are situated at the ends of linear chromosomes. Telomeric
DNA, TTAGGG at the chromosome ends, and the complementary DNA strand sequence AATCCC
form an extended region of dsDNA ending with a ssDNA G-rich overhang. The 3′ G-rich overhang
enables telomeric DNA to form a secondary structure in which the 3′ single-stranded overhang folds
back and displaces a strand in the homologous dsDNA TTAGGG region, to create a D-loop that
protects the 3′-end from being identified as damaged DNA, thereby preventing the activation of
the ataxia-telangiectasia mutation and Rad3-related (ATM/ATR) damage response pathways. The
shelterin complex comprises six telomeric proteins: TRF1, TRF2, RAP1, TIN2, POT1, and TPP1. The
complex enables the telomeric 3′-overhang/G-tail to fold into a lasso-like structure with a telomeric
loop (T-loop) that protects the 3′-end from being recognized for DNA damage and blocks the DNA
damage response.

The shelterin complex is composed of six subunits, namely the telomere repeat-binding
factor 1(TRF1), telomere repeat-binding factor 2 (TRF2), repressor activator protein 1(RAP1),
TRF1-interacting nuclear factor 2(TIN2), TINT1/PTOP/PIP1(TPP1), and the protection of
telomeres-1(POT1) [42,43].

3.1. TRF1

TRF1 is responsible for controlling telomeric DNA extension (Figure 1) [44]. While the
over-expression of TRF1 decreases telomere length, dominant-negative TRF1 increases its
length, thus suggesting that TRF1 negatively regulates the length of telomeric repeats [45].
In contrast, Karlseder et al. [46] disputed the role of TRF1 in regulating telomere length
because they found that complete TRF1 deletion in mice showed no defects in the telomere
length or telomere capping.TRF1 is overexpressed in several cancer types, such as renal
cell carcinoma [47] and gastrointestinal tumors [48], and is upregulated in glioblastoma
multiforme (GBM) [49]. Brain-specific TRF1 genetic deletion in GBM mouse models
inhibited tumor initiation and progression and increased survival. In addition, deleted
TRF1 increased telomeric DNA damage and reduced proliferation and stemness. TRF1
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chemical inhibitors mimicked these effects in human GBM cells and also blocked tumor
sphere formation [49], suggesting that TRF1 may be a promising target for developing an
effective anti-cancer therapeutic strategy.

3.2. TRF2

Although TRF2 and TRF1 have similar features, they exhibit distinct functions. The
binding affinity of TRF1 to TIN2 is 20-fold greater than that ofTRF2 [50]. TRF2 and TRF1
are both homodimers that can attach to telomeric dsDNA (Figure 1) [51–53]. TRF2 acts as a
protein hub interacting with many DNA repair proteins. These proteins do contribute to
human chromosomal instability syndromes typified by increased cancer and premature
aging [33,54]. As a hub protein, TRF2 interacts with multiple proteins, including a specific
endonuclease, the Mre11/Nbs1/Rad50 (MNR) complex, poly(ADP-ribose) polymerase 1
(PARP1) and poly(ADP-ribose) polymerase 2 (PARP2), the DNA-protein kinase complex,
RAP1, the Bloom syndrome protein (BLM), and the Werner syndrome protein(WRN) heli-
cases [55–58]. Bloom syndrome (BS) is an autosomal recessive disorder characterized by
short stature, a skin rash that develops after exposure to the sun, intellectual disability,
microcephaly, and increased chromosome breakage and an increased risk for cancer [59].
Hand and German [60], using diploid fibroblast cell lines derived from skin biopsies taken
from five BS patients, observed a slower rate of replication fork movement compared
to the normal adult controls. It is now clear that this aberration results from defective
RecQ helicase function during DNA replication [61]. Loss-of-function mutations of BLM,
which codes for a RecQ helicase, cause BS [62]. Patients with Werner syndrome (WS)
manifest growth retardation, short stature, premature graying of hair, alopecia, wrinkling,
prematurely aged faces with beaked noses, premature brain atrophy, lipodystrophy, gonad
atrophy, bilateral cataracts, premature arteriosclerosis, calcinosis, type 2 diabetes, osteo-
porosis, telangiectasia, and malignancies [63,64]. WS is caused by mutations in the WRN
gene [65]. WRN, which is coded by the WRN gene, is a DNA helicase which maintains
genomic stability by participating in double-strand break (DSB) repair and inter-strand
crosslink repair, as well as other DNA processing events [66].

TRF2 is also associated with the integrity of the G-strand overhang and the pro-
tection of telomeres, as it has been demonstrated that the over-expression of dominant-
negative TRF2 in cells results in the loss of both the TRF2 bound at the telomeres and
the G-strand overhang, the activation of the p53 damage pathway, and chromosome
end fusions [53,67,68]. In addition, TRF2 is essential for T-loop assembly and mainte-
nance of the ATM-mediated DNA damage response (DDR) suppression and repression
from non-homologous end joining (NHEJ) [69]. As with the TRF1-knockout mice, TRF2-
knockout mice are embryonically lethal [70]. Whereas TRF2 over-expressing mice under the
5′-regulatory region of the keratin 5 (K5) gene have increased vulnerability to spontaneous
skin tumors and are sensitive to UV-induced carcinogenesis [71–73]. TRF2 production is
often raised in human skin carcinomas [71]. Patients with xeroderma pigmentosum who
have XPF, a nuclease associated with UV-damage repair, specific mutations are susceptible
to TRF2-associated telomere shortening and chromosomal instability [71]. Furthermore, a
lack of telomerase significantly accelerates TRF2-induced epithelial carcinogenesis, sug-
gesting a greater chromosomal instability and an increased burden of DNA damage [74],
thereby alluding to a role of TRF2 in directing telomere recombination. Similar to TRF1,
some studies have reported that TRF2 is up-regulated in some human cancers, such as
skin cancers, and increased TRF2 expression can promote skin tumorigenesis [54,74,75].
Bejarano et al. [76] identified a direct link between TRF1 phosphorylation by common
cancer signaling pathways, telomere protection, and cancer treatment. Interestingly, the
link is not only restricted to TRF1, but also to TRF2 because TRF2 is reported to be phos-
phorylated by the ERK1/2 kinases and interacts with Ras signaling to bypass DDR in
cancer cells [77,78]. Taken together, these findings indicate that targeting common cancer
signaling pathways through down-regulating the shelterin complex may be a potential
anti-cancer therapeutic strategy.
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3.3. RAP1

In humans, RAP1 associates with TRF2 and is enlisted to telomeres to control telomere
length (Figure 1) [79]. RAP1 improves the selective binding of TRF2 to telomeric DNA [80].
Mammalian RAP1 can shield telomeres from NHEJ activities in vitro and the context of
severe telomere uncapping induced by TRF2 dysfunction [81]. Loss of RAP1 function in
human cells does not result in NHEJ, homology-directed repair (HDR), or a DNA damage
response [82]. At the same time, mouse RAP1 has been shown to shield telomere ends
by repressing HDR and preventing sister telomere recombinations [82]. RAP1 binds to
extra-telomeric DNA and acts as a transcriptional regulator [82,83]. RAP1 has also been
reported to associate with I kappa B (IκB) kinases and activate nuclear factor kappa B
(NF-κB) [84]. The expression of RAP1 has been shown to be significantly higher in breast
tumor tissues than in the adjacent non-tumor tissues [84], suggesting that RAP1 could be
involved in cancer progression. Moreover, RAP1 is reported to be highly expressed in
colorectal cancer tissues, and the expression levels of RAP1 are significantly correlated
with poor prognosis and metastasis [85].

3.4. TIN2

TIN2 directly connects TRF1, TRF2, and TPP1 without binding POT1 or RAP1
(Figure 1) [37,86]. TIN2 regulates the telomere length [38], maintains T-loop [87], and
complexes with Rap1 and TPP1 to allow cells to distinguish telomeres from sites of DNA
damage [33]. The over-expression of TIN2 has been shown to prevent telomere elonga-
tion in several human cell lines, such asHT1080 (human fibrosarcoma cell line), WI-38
(fibroblast-like fetal lung cell line), U2OS (bone osteosarcoma epithelial cell line), HTB9
(bladder carcinoma cell line), C33A (cervical carcinoma cell line), MDA-452 (breast cancer
cell line), and HMT-3522 (non-tumorigenic human breast epithelial cell line). In contrast, the
expression of a dominant-negative TIN2 results in uncontrolled telomere elongation [88].
Chiang et al. [89] have observed that early embryonic lethality occurs in mice with TIN2
deletion, similar to the findings of TRF1- and TRF2-deficient mice [46,70]. Expression of
TRF1, TRF2, and TIN2 have been detected in human gastric carcinoma [48], and down-
regulation of TRF1, TRF2, and TIN2 gene expression may be vital to maintain telomeres in
gastric cancers [90]. Expressions of TRF1, TRF2, and TIN2 have also been found in patients
with adult T-cell leukemia [91]. Increased expression of TRF1, TRF2, and TIN2 is linked to
telomere shortening during multi-step hepatocarcinogenesis [92].

3.5. TPP1

TPP1 is a protein associated with POT1 and TPP1-POT1 heterodimer binds and caps
the telomeric 3′ tail to protect telomeres (Figure 2A) [93,94]. TPP1-POT1 also binds to
internal sites of telomeric ssDNA [95]. TPP1 deletion results in a strong ATR-dependent
DDR at telomeres, causing excess telomeric ssDNA [95–97]. In addition to telomere
protection and maintenance of telomere integrity, TPP1 can recruit telomerase, stabilize its
association with the overhang, and stimulate enzyme activity to lengthen the telomeres
(Figure 2A) [98]. Furthermore, TPP1 has been reported to promote telomerase processivity
in the presence of POT1 [99]. TPP1 loss causes decreased expressionof POT1 at the telomeres
and reduced telomerase processing [97,100]. TPP1 interacts with the CST complex and
regulates telomere elongation by telomerase [99]. Tejera et al. have found that TPP1 deletion
can decrease TERT binding to the telomeres [101]. Interestingly, they have also showed
that abrogation of TPP1 abolishe snet telomere elongation in the context of the nuclear
reprogramming of TRF1-deficient mouse embryonic fibroblasts into induced pluripotent
stem cells (iPSCs), suggesting that TPP1 has a dual role in telomere protection as well as
elongation. Another report shows that the complete TPP1 abrogation results in embryonic
lethality [102]. Together, TPP1 deficiency can cause telomere dysfunction phenotypes,
including widespread epithelial dysplasia, defective hair follicle morphogenesis, growth,
severe skin hyperpigmentation, and peri-natal death [103–105].
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Figure 2. Interaction of the shelterin complex, CST complex and telomerase to maintain telomere length. (A) The shelterin
complex is essential for telomere protection and for regulating telomere elongation. TIN2, RAP1, and TRF1/2 subunits of
the shelterin complex associate with telomeric dsDNA, while POT1 and TPP1 bind telomeric ssDNA and are responsible for
recruiting telomerase to the telomeres. The shelterin complex also stimulates extension of the G-overhang by telomerase.
(B) The CST complex prevents telomerase from engaging the G-overhang and facilitates the C-strand fill-in. The CST
complex has three components—conserved telomere protection component 1 (CTC1), suppressor of cdc thirteen 1 (STN1)
and telomeric pathway with STN1 (TEN1)—which are thought to function in part in telomere lagging-strand synthesis. The
human telomerase consists of the hTERT, the TERC, and accessory proteins. The hTERT can wrap the chromosome to add
single-stranded telomere repeats. The TERC contains the template for telomere replication. When an ongoing extension
of a stranded DNA is finished, telomerase activity is terminated at the ssDNA overhang by the CST complex, which also
activates the C-strand fill-in: the CST complex recruits DNA polymerase alpha (Polα) for lagging strand synthesis of the
telomeric C-strand to convert the newly synthesized G-overhang into double-stranded DNA.

3.6. POT1

POT1, like TRF2, plays a major role in end-capping.POT1negatively regulates telom-
erase and helps in telomere maintenance. POT1 interacts with TPP1 and attaches to the
ssDNA 3′ overhang (Figure 1), thereby repressing ATR-mediated DDR by stopping the
recruitment of replication protein A (RPA) to the ssDNA [106]. A decrease in POT1 can
result in an irreparable ATR pathway with significantly elongated telomeres and cell
cycle arrest and is embryonically lethal [93,107–109]. Two POT1 orthologs, POT1a and
POT1b, are present in the mouse. POT1a is necessary to fully repress a DNA damage
signal at telomeres [108]. POT1b has a specific role in regulating the structure of the
telomere terminus, leading to deregulation of the telomeric overhang in POT1b-deficient
cells, despite the presence of POT1a [108]. POT1b regulates the amount of ssDNA at the
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telomeres in a telomerase-independent manner [108]. Double knockout cells for the POT1a
and POT1b genes have been demonstrated to result in telomere elongation, an increase
in DNA damage foci at the telomeres, endo-reduplication, and early initiation of senes-
cence [108,109]. POT1 mRNA concentrations have been significantly linked with telomere
length in colon and gastric cancer cells [108]. A known variant of POT1, with D224N
mutation, disrupts POT1 binding to ssDNA telomere oligonucleotides, leading to longer
and fragile telomeres, predisposing for chronic leukocyte leukemia, glioma, angiosarcoma,
osteosarcoma, thyroid cancer, colorectal cancer, and cutaneous melanoma [110]. Conver-
gently, the shelterin complex interacts with more than 300 proteins, including RING-finger-
or U-box-containing proteins, functioning as ubiquitin E3 ligases or stability regulators
for telomere-associated proteins, protein phosphatase catalytic and regulatory subunits
(PPM1G, PHPT1, PTPN5, SAPS3, and PPP1R2), and phosphorylation-related kinases (Akt1,
CAMK1D, CLK3, MAP2K3, MAP4K2, MAPK12, and PAK4) [111], indicating that the
complex not only stabilizes the chromosomal ends and protects hosts from diseases, but
also acts as a busy hub for the complex signaling net workflow.

4. The CST Complex

The CST complex comprises telomere-specific proteins that regulate telomere length
replication and maintenance. The CST complex was initially identified in Saccharomyces
cerevisiae and later in vertebrates [101,112,113].

4.1. Yeast CST Complex

Saccharomyces CST complexisa trimeric nucleoprotein complex composed of cell
division control protein 13(CDC13), suppressor of CDC thirteen 1 (STN1), and telomeric
pathway with STN1 (TEN1) [114]. During cell budding, the CST complex is known as the
CDC13-STN1-TEN1 complex; however, fission yeast only contains STN1 and TEN1 [115].
Deletions affecting CDC13, STN1,or TEN1 make budding yeast cells unviable [114]. There-
fore, the yeast CST complex is crucially important and may possess evolutionarily con-
served functions in DNA replication [116]. Yeast CST complex is structurally related to
the heterotrimeric replication protein A (RPA)-complex [112], which is a heterotrimeric
ssDNA-binding protein complex composed of replication factor A1 (Rfa1), Rfa2, and
Rfa3 (Figure 2A) [117].

4.2. Human CST Complex

As with yeast, the human CST complex comprises the conserved telomere mainte-
nance component 1 (CTC1), STN1, and TEN1 (Figure 2B), and each subunit is present in the
stoichiometric ratio of 1:1:1 [118–120]. It localizes at the chromosomal ends, preferentially
to G-rich and repetitive elements [121], and can maintain telomere length [113,122]. Hu-
man CST is an RPA-like ssDNA-binding protein that has primarily been characterized as a
telomere replication factor [123]. RPA is crucial for replication, repair, and recombination
and is involved in multiple protein–protein interactions [124], telomere metabolism [112],
and chromosome maintenance [125]. The human RPA complex comprises RPA70, RPA32,
and RPA14 [117,126]. Structural analyses have demonstrated that each RPA subunit con-
tains multiple oligonucleotide/oligosaccharide-binding domain (OB) (four in Rfa1/RPA70,
one in Rfa2/RPA32, and one in Rfa3/RPA14) [126]. In yeast, the OB folds are DNA binding
domains (DBD) and protein-protein interaction domains [127]. Rfa1,the largest subunit,
has four OB domains: DBD-A, DBD-B, DBD-C, and DBD-F, connected by flexible linkers.
Rfa2 has one OB fold (DBD-D) followed by a winged-helix (WH) domain, which partici-
pates in protein-protein interactions [126]. Rfa3, the smallest subunit, possesses one OB
fold (DBD-E). Among these OB-fold domains, DBD-A, DBD-B, DBD-C, and DBD-D are
the key players in RPA’s ssDNA-binding activities, while DBD-F and DBD-E have weak
interactions with DNA [112,128,129]. In humans, the three RPA subunits, includingRPA70,
containing four OB-fold domains (OB-A, OB-B, OB-C, and OB-F), RPA32, containing an
OB-fold domain (OB-D) and a WH domain, and RPA14, the smallest subunit, contain-
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ing an OB-fold domain, OB-E, form a trimerization structure. Among these OB-fold
domains, the high binding affinity of RPA to ssDNA is mostly facilitated by OB-A, OB-B,
OB-C, and OB-D in RPA70 and RPA32, while the OB-F and WH domains interact with its
protein-binding partners [126,128,130] (Figure 3B). The OB-fold domains are connected
with flexible linkers [131]. Each OB-fold domain is a five-stranded β barrel structural
motif, existing in different proteins for nucleic acid recognition [132]. In addition to the
recognition of ssDNA, the functions of the OB fold include the location of the binding
surface, the polarity of the nucleic acid with respect to the OB fold, recognition of unusu-
ally structured nucleic acids, and a sensor of DNA damage [132]. Functionally, CST has
several features:1. Binding to ssDNA with G-rich sequences [119,133–137]. 2. Binding to
ssDNA-dsDNA junctions [138]. 3. Recognizing different specialized DNA structures at the
DNA replication and breakage sites [139]. 4. Acting synergistically with ATR to maintain
telomere length and genome stability [140]. 5. Stimulating the primase activity of DNA
polymerase alpha (Polα) switch from RNA to DNA synthesis [141–143]. 6. Helping in
C-strand fill-in (Figure 3B) [136,144].7. Preventing the accumulation of G4: CST can directly
engage and melt G4 DNA structures and prevent the accumulation of G4 structures during
unperturbed DNA replication [139]. 8. Preventing telomeric DNA damage: CST can speed
up telomeric DNA replication by facilitating the restart of the stalled replication forks
to prevent telomeric DNA damage [125,134]. 9. Interacting with the mini chromosome
maintenance of the 2–7(MCM) complex and disrupting the binding of CDT1 to MCM,
leading to decreased origin licensing [145]. 10. Interacting with acidic and nucleoplasmic
DNA-binding protein (AND-1), which is an important regulator governing the assembly of
the MCM complex at the replication origins during the origin licensing in human cells [146].
11. Inhibiting telomerase (Figure 2B): The CST complex interacts with shelterin or telomeric
ssDNA to terminate telomerase for telomere length homeostasis, and this reaction does not
need TEN1 [138,143,144,147,148]. In addition, CST interacts with and sequesters telomeric
3′ overhangs after their elongation by telomerase, thus preventing telomere extension by
telomerase [120]. Therefore, impaired CST’s functions may increase the possibilities of
defective telomere replication, deregulation of telomere length, and replication fork stalling,
leading to irreparable DNA damage, genome instability, and diseases [125,136] (Table 1).

Similar to CST, RPA has several functional features:1. Binding ssDNA: RPA binds
and protects ssDNA from cleavage by nucleases and recruits repair proteins to initiate
DNA damage responses [149]. 2. Activating the ATR signaling: Replication stress (RS)
is a condition when the replication fork progression and/or DNA synthesis is stalled or
slowed [150]. The RPA-coated ssDNA serves as a main activation platform for recruiting
ATR-ATR-interacting protein (ATRIP) to the stalled forkin RS [151]. Activated ATR-ATRIP
phosphorylates and activates Checkpoint kinase 1(CHK1), which induces cell cycle arrest
to allow DNA repair, fork stabilization, or replication start [156]. 3: Activating the helicase:
RPA binding stimulates the accumulation of the human DNA helicase B on chromatin in
replication stress [157].4. Unwinding G4: RPA binding promotes WRN activity and multi-
ple RPA binding makes WRN a super-helicase on G4 unwinding [152]. 5. Involvement in
DNA replication, recombination, and repair: BLM forms a complex with topoisomerase IIIα,
RPA, and several factors involved in functions related to DNA replication, recombination,
and repair [62]. 6. Activating BLM’s bidirectional DNA unwinding [153]. 7. Modulating
the fork remodeling enzyme activity: SMARCAL-1(SWI/SNF-related, matrix-associated,
actin-dependent regulator of chromatin, subfamily A-like 1) is a fork-remodeling enzyme.
RPA binds to ssDNA at the fork junction, creating an optimal DNA-protein substrate
for SMARCAL-1. However, when the RPA binding to the ssDNA formed at the leading
strand stimulates the SMARCAL1-mediated fork remodeling activity, the RPA binding
at the lagging strand inhibits the SMARCAL1 activity [154]. 8. Enhancing primase: RPA
enhances primase activity at forks [155] (Table 1).
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Table 1. Comparison of CST and RPA.

CST. Component aa OB wH wHTH1 Functions References

1. Binding to ssDNA. [119,133–137]

CTC1 1217 7 0 0 2. Binding to ssDNA-dsDNA junctions. [138]

STN1 368 1 0 2
3. Recognize different specialized DNA structures at

DNA replication and breakage sites. [139]

TEN1 123 1 0 0

4. Acting synergistically with ATR to maintain
telomere length and genome stability. [140]

5. Stimulating Polα. [141–143]

6. Helping in C-strand fill-in. [136,144]

7. Preventing the accumulation of G4. [139]

8. Preventing telomeric DNA damage. [125,134]

9. Interacting with the MCM and disrupting binding
of CDT1 to MCM, leading to decreased
origin licensing.

[145]

10. Interacting with AND-1. [146]

11. Inhibiting telomerase. [138,143,144,
147,148]

RPA 1. Binding ssDNA. [149]

RPA70 616 4 0 0 2. Activating the ATR signaling. [150]

RPA32 270 1 1 0 3. Activating the helicase. [151]

RPA14 121 1 0 0

4. Unwinding G4. [152]

5. Involved in DNA replication, recombination,
and repair. [62]

6. Activating BLM’s bidirectional DNA unwinding. [153]

7. Modulating the fork remodeling enzyme activity. [154]

8. Enhancing primase. [155]
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4.3. CTC1

CTC1 and CDC13 are the largest subunits of the human and budding yeast CST
complexes, respectively. As the CDC13 null strain cannot be generated in yeast cells [158],
it is believed that CDC13 is essential for cell viability. Although STN1 and TEN1 are highly
conserved [159], the genomic sequences and functions of CDC13 in yeast and that of CTC1
in humans are different [120]. Structurally, CDC13 consists of OB1, OB2, OB3, and OB4
(Figure 3A). The roles of these OBs include ssDNA binding, protein–protein interactions,
DNA polymerase α-primase binding, and CDC13 homo-dimerization [160–162]. However,
a recent study analyzing the crystal structures of the CST complex of Kluyveromyces lactis
suggests that OB2 and OB4 are required for the CDC13–STN1 interaction that assembles
CST in a 2:2:2, instead of1:1:1, stoichiometry [163].

Human CTC1 has OB-A, OB-B, OB-C, OB-D, OB-E, OB-F, and OB-G (Figure 3B).
The C terminus of CTC1 (OB-D through OB-G) acts as a platform to assemble STN1 and
TEN1 [118]. STN1 (STN1 OB and the first winged helix-turn-helix [wHTH1] domain of
STN1) interacts with CTC1 at two interaction sites, CTC1 OB-G and CTC1 OB-E, respec-
tively (Figure 3B) [118]. Structural analyses have shown that CTC1 OB-G is similar to
the OB-C of RPA70 and not CDC13 [128]. The CDC13 recruitment domain (RD) con-
tains numerous phosphorylation sites [164–168]. Phosphorylated CDC13 RD enhances
the ever shorter telomere 1 (Est1), a component of the yeast telomerase holoenzyme bind-
ing and telomerase recruitment to telomeres [164,165]. Est1 is present in humans and a
report shows that the expression of Est1 is significantly reduced in B-chronic lymphocytic
leukemia [169]. Dephosphorylated CDC13 RD promotes CST complex assembly to bind
and cap the ends of chromosomes [165–167,170]. Human CTC1 represses the elongation
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of telomerase by binding to telomerase-extended telomeres thus preventing telomerase
activity [144]. CDC13–Est1 and POT–TPP1 are essential in directing telomerase to the
chromosomal ends [171,172]. CTC1 interacts with TPP1 to compete with TPP1–POT1 for
binding at the telomeric 3′ tail and sequestrate the single-stranded telomeric overhang to
inhibit the telomerase extension reaction [120,144]. In humans and yeast, the CST complex
prevents 3′ overhangs via boosting the fill-in synthesis [148,173]. Yeast CDC13 deficiency
causes genome stability and unstable chromosomes [174]. Dyskeratosis congenita (DC)
and Coats plus syndrome (CPS) are two uncommon diseases associated with mutations
that affect the CST complex. CPS is an autosomal recessive, systemic disorder characterized
by intrauterine growth retardation, bilateral exudative retinal telangiectasias, intracra-
nial calcifications, intracerebral cysts, extra-neurological features, including osteopenia
with a tendency of fractures and gastrointestinal bleeding, and portal hypertension [175].
Symptoms of DC include increased cancer incidence, bone marrow failure, lacy reticu-
lar pigmentation of the upper chest and/or neck and oral leukoplakia [176]. Changes
that occur as a result of CTC1 and STN1 mutations include telomere DNA replication
defects, genome instability, defects in interactions with Polα, chromosome breakage, and
an accumulation of the ssDNA gaps of telomeric DNA [114,177,178]. Interestingly, some
reports have identified shorter telomere length in the lymphocytes of subjects with CTC1
mutations [176,179], but contradictory results were also reported [180,181]. Nevertheless,
further studies are crucial to clarify the roles of CST in disease pathogenesis.

4.4. STN1

Human STN1 was initially named as Polα accessory factor44 as STN1 has been shown
to enhance primase and up-regulate the recruitment of Polα for lagging strand DNA repli-
cation [141,182]. Structurally, the yeast STN1 consists of an OB-5 domain and two wHTH
motifs, wHTH1 and wHTH2, which may involve Polα and CDC13 binding [118]. The
N-terminus of STN1 binds to TEN1, while the C-terminus associates with both CDC13
and Pol12 (the B subunit of Polα) [183,184].The STN1 and TEN1 are enlisted to telomere
ends via direct association with CDC13. Both STN1 and TEN1 display relatively poor
telomeric DNA-binding affinities [185]. In humans, STN1 functions as an adapter be-
tween TEN1 and CTC1 [122], and the STN1 N-terminal interacts with CTC1 OB-G and
the C-terminal with CTC1 OB-E [118]. Fluorescence investigation has demonstrated that
the STN1-binding sites are prone to DNA breakage in STN1 deficient cells under replica-
tion stress, leading to chromosome fragmentation [121]. The human STN1 and TEN1 can
associate to form a stable complex in vitro [127,137,159,162,170,171,185–188], which may
be due to the comprehensive interactions between the two C-terminal helices of the OB
folds and the contacts between these domain bodies. Additionally, OB-fold functions may
be related to its preference for the G-rich sequence [135,189]. CTC1 and STN1 can alone
reduce telomerase activity and disrupt telomeric DNA damage signaling [138]. STN1-
TEN1 forms a wide nucleic acid binding pocket on the surface of the protein complex [159].
STN1, the shelterin complex, and telomerase may recruit Polα to telomere [190]. A reduc-
tion in CTC1 or STN1 produces lengthened G-overhangs as the C-strand fill-in becomes
faulty [136,177,191]. STN1mutationlike CTC1 mutation can cause CPS [179,192,193]. De-
pletion of human CTC1 or STN1 increases multi-telomeric signals, telomere instabilities,
and chromosome breakage [191] and can result in impairing C-strand fill-in, leading to
excessively long G-overhangs [125,134,136,143].

4.5. TEN1

Of the CST components, TEN1is the smallest with a single OB fold [118]. Yeast
TEN1 may promote the activity of CDC13 and bind to telomeric ssDNA to enhance the
DNA-binding activity of CDC13 [194]. TEN1 in humans is to stabilize the binding of CTC1-
STN1to ssDNA and to support C-strand fill-in after G-strand extension by telomerase [138].
Human TEN1 attachment to CTC1 OB-G is facilitated by the OB of STN1 [118]. Human
TEN1mutant strain proteins are unable promote the binding of CDC13 to telomeres in vitro,
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indicating that TEN1 improves the telomeric DNA-binding activity of CDC13 that then
negatively affects the telomere length [138]. Knockout TEN1 cells show gradual telomere
shortening comparable to that resulting from telomerase deficiency [138], indicating that
TEN1 is crucial for the maintenance of telomere length. In addition to ensuring telomere
stability [119], TEN1 and STN1 can rescue replication fork stalling during replication
stress [122,125,195].

CDC13, STN1, and TEN1 are essential for cell viability and regulating telomere length.
Subunit mutations resulting in loss-of-function can cause an accumulation of telomeric
ssDNA and result in abnormal elongation of the telomeres, indicating that these three
subunits are critical to the health of organisms with the CST complex [6,118,133,147]. The
interactions between POT1-TPP1 and CST can significantly affect the telomere length
and may result in telomere length dysregulation and cancer development, such as fa-
milial glioma [196], melanoma [197], chronic lymphocytic leukemia [198] and breast
cancers [199,200], stomach cancers [199], and parathyroid cancers [201].

5. Telomerase: Breaking through the Limitation of Replication

Telomerase, the enzyme responsible for lengthening the telomeres, can extend the
cellular lifespan or induce immortalization [1]. Typically, in healthy adult somatic cells,
telomerase is inactive to avoid uncontrolled cellular proliferation [2], whereas in approxi-
mately 90% of human tumors, telomerase is up-regulated or reactivated to help tumor cells
survive and multiply [202]. However, developing embryos, reproductive cells, activated
immune cells, bone marrow, and adult stem cells show high telomerase activity [18].

5.1. Components of Telomerase

Structurally, human telomerase consists of the TERT (hTERT), the telomerase RNA
template (TERC), and accessory proteins. The telomerase catalytic protein component
encoded by hTERT has telomerase activity, and this activity does not rely on the other
components [3]. The hTERT can wrap the chromosome to add single-stranded telomere
repeats [203]. The TERC contains the template for telomere replication [7]. The acces-
sory proteins include: 1. Dyskerin, a highly conserved nucleolar protein that catalyzes
the pseudouridylation of specific residues in newly synthesized ribosomal RNAs and
spliceosomal small nuclear RNAs [204]. 2. Non-histone protein 2 (NHP2) and nucleolar
protein 10 (NOP10), which are both ribonucleoproteins [205]. 3. Glycine-arginine rich 1
(GAR1), which is involved in RNA metabolism [206]. 4. p23, a small but important cochap-
erone for the Heat shock protein 90 (HSP90) chaperoning pathway, as part of the complex
with telomerase [207]. 5. Telomerase Cajal body protein 1 (TCAB1) [13] is a telomerase
holoenzyme and markedly enriched in Cajal bodies (CBs). In addition to regulating the
subcellular location of telomerase [208], TCAB1 facilitates the recruitment of telomerase to
CBs in the S phase of the cell cycle. This recruitment is dependent on TCAB1 binding to a
telomerase RNA component [209]. 6. Reptin and pontin, two ATPases, interact with TERT
in the S phase of the cell cycle [210].7. Serine and arginine-rich splicing factor 11 (SRSF11)
is a TERC-binding protein that influences telomerase function, subcellular localization,
and biogenesis [211]. Although hTERT and TERC are sufficient to reconstitute telomerase
activity in vitro, a functional holoenzyme complex assembles hTERT, TERC, and acces-
sory proteins in vivo to extend the telomere length in rapid cell divisions for attenuating
or preventing telomere erosion [212] (Figure 4A). Furthermore, TERC is up-regulated in
carcinomas affecting the cervix, head and neck, lung, and ovary—possibly serving as a
therapeutic target [213,214].



Life 2021, 11, 1405 13 of 31

Life 2021, 11, x FOR PEER REVIEW 13 of 32 
 

 

repeats [203]. The TERC contains the template for telomere replication [7]. The accessory 
proteins include: 1. Dyskerin, a highly conserved nucleolar protein that catalyzes the 
pseudouridylation of specific residues in newly synthesized ribosomal RNAs and spliceo-
somal small nuclear RNAs [204]. 2. Non-histone protein 2 (NHP2) and nucleolar protein 
10 (NOP10), which are both ribonucleoproteins [205]. 3. Glycine-arginine rich 1 (GAR1), 
which is involved in RNA metabolism [206]. 4. p23, a small but important cochaperone 
for the Heat shock protein 90 (HSP90) chaperoning pathway, as part of the complex with 
telomerase [207]. 5. Telomerase Cajal body protein 1 (TCAB1) [13] is a telomerase holoen-
zyme and markedly enriched in Cajal bodies (CBs). In addition to regulating the subcel-
lular location of telomerase [208], TCAB1 facilitates the recruitment of telomerase to CBs 
in the S phase of the cell cycle. This recruitment is dependent on TCAB1 binding to a 
telomerase RNA component [209]. 6. Reptin and pontin, two ATPases, interact with TERT 
in the S phase of the cell cycle [210].7. Serine and arginine-rich splicing factor 11 (SRSF11) 
is a TERC-binding protein that influences telomerase function, subcellular localization, 
and biogenesis [211]. Although hTERT and TERC are sufficient to reconstitute telomerase 
activity in vitro, a functional holoenzyme complex assembles hTERT, TERC, and acces-
sory proteins in vivo to extend the telomere length in rapid cell divisions for attenuating 
or preventing telomere erosion [212] (Figure 4A). Furthermore, TERC is up-regulated in 
carcinomas affecting the cervix, head and neck, lung, and ovary—possibly serving as a 
therapeutic target [213,214]. 

. 

Figure 4. Schematic structure of telomerase. (A)Components of telomerase consist of the TERT 
(hTERT), the telomerase RNA template (TERC), and accessory proteins, including dyskerin, 
GAR1, NHP2, and NOP10. HSP 90, p23, pontin, reptin, and serine, SRSF11, and TCAB1. (B) The 
hTERT gene is situated on 5p15.33 which is responsible for 40 kb of human genome. The hTERT 
gene promoter contains five GC boxes (5′-GGGCGG-3′), two E-boxes (5′-CACGTG-3′), and one 
TSS. GC boxes are interacted with SP-1; E-boxes also have binding sites to MAD1; TSS binds 
THF1. Point mutations at the TERT promoter, predominantly at two points (C228T and C250T) 
generate new ETS/ternary complex (ETS/TCF) binding sites for transcription factors (TF). Increas-
ing the expression of TFs such as c-MYC, ETS, NF-kB, and SP-1 results in binding to their particu-
lar sites and can up-regulate hTERT transcription. Binding of down-regulating transcription fac-
tors, such as WT1, CTCF, and MZF2, down-regulate TERT transcription. CTCF: CCCTC-binding 
factor; hTERT: human telomerase reverse transcriptase; NF-kB: nuclear factor kappa-light-chain-
enhancer of activated B; TSS: transcription start site; WT1: Wilms tumor protein1; MZF2: myeloid 
zinc finger protein 2; GAR1: glycine-arginine rich 1; NHP2: non-histone protein 2; NOP10: nucleo-
lar protein 10; HSP90: heat shock protein 90; TCAB1: telomerase Cajal body protein 1; SRSF11: 
serine and arginine-rich splicing factor 11. 

  

Figure 4. Schematic structure of telomerase. (A)Components of telomerase consist of the TERT
(hTERT), the telomerase RNA template (TERC), and accessory proteins, including dyskerin, GAR1,
NHP2, and NOP10. HSP 90, p23, pontin, reptin, and serine, SRSF11, and TCAB1. (B) The hTERT gene
is situated on 5p15.33 which is responsible for 40 kb of human genome. The hTERT gene promoter
contains five GC boxes (5′-GGGCGG-3′), two E-boxes (5′-CACGTG-3′), and one TSS. GC boxes are
interacted with SP-1; E-boxes also have binding sites to MAD1; TSS binds THF1. Point mutations
at the TERT promoter, predominantly at two points (C228T and C250T) generate new ETS/ternary
complex (ETS/TCF) binding sites for transcription factors (TF). Increasing the expression of TFs such
as c-MYC, ETS, NF-kB, and SP-1 results in binding to their particular sites and can up-regulate hTERT
transcription. Binding of down-regulating transcription factors, such as WT1, CTCF, and MZF2,
down-regulate TERT transcription. CTCF: CCCTC-binding factor; hTERT: human telomerase reverse
transcriptase; NF-kB: nuclear factor kappa-light-chain-enhancer of activated B; TSS: transcription
start site; WT1: Wilms tumor protein1; MZF2: myeloid zinc finger protein 2; GAR1: glycine-arginine
rich 1; NHP2: non-histone protein 2; NOP10: nucleolar protein 10; HSP90: heat shock protein 90;
TCAB1: telomerase Cajal body protein 1; SRSF11: serine and arginine-rich splicing factor 11.

5.2. TERT Is Important forthe Activity of Telomerase

In cancer cells, high telomerase activity breaks through the limitation of replication
and avoids activation of the DNA damage signaling pathway [215]. Telomerase activity
has been detected in 42–54% of thyroid cancer cases [216,217], 86.6% of non-small cell lung
cancer cases [218], more than 80% of hepatocellular carcinoma cases [219], and 76% of
cervical cancer cases [220]. These data suggest the criticality of the telomerase in cancer cells
acquiring immortality or progression. While telomerase activation is poorly understood,
hTERT is an important factor in telomerase activation. Generally, hTERT acts as the limiting
factor for controlling telomerase activity and turns on the telomere clock for the aging
process in all somatic adult cells [221]. Fibroblasts are a good example as fibroblasts
do not express TERT and thus demonstrate gradual telomere shortening and eventual
replicative senescence. However, introduced TERT expression in fibroblasts can maintain
the telomere length and immortalize the cells [222]. Furthermore, hTERT is aberrantly
expressed in approximately 90% of aggressive cancers [203,223,224] and 73% of tumor
cases [225]. Therefore, increased TERT expression and telomerase activity can be detected
in close to 90% of human cancers [226,227], highlighting the association of the hTERT with
the telomerase in the emergence of malignant and aggressive phenotypes.

hTERT is situated on the 5p15.33 chromosome, which is responsible for 40 kb of the
human genome [5,228]. hTERT has 16 exons and 15 introns that can produce 22 splicing
variants and these variants can be dominant or negative [229]. The promoter responsible
for hTERT transcription lacks typical regulatory sequences, such as the TATA and CAAT
boxes, and instead comprises a transcription start site (TSS), two E-boxes (5′-CACGTG-3′),
and five GC boxes (5′-GGGCGG-3′). TSS is a single transcription start site that multi-
functional transcription factors such as THF1 can bind to. E-boxes have attachment sites
for MAD1 to down-regulate the transcription of hTERT. GC boxes interact with the zinc
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finger transcription factor SP-1 [230]. The region (Figure 4B, white rectangles) represents a
260 bp hTERT core promoter region and has multiple binding motifs for enhancing factors,
such as c-MYC, SP-1, E-twenty-six (ETS) family members, and NF-kB. hTERT transcription
has also been reportedly down-regulated by the transcriptional factors CTCF, MZF-2, and
WT1. Therefore, the hTERT promoter is pivotal for transcriptional activity [32] (Figure 4B).

5.3. Mechanisms Involved in TERT Activation
5.3.1. TERT Promoter Is Critical in Cellular Immortality and Infinite Proliferation

In cancer cells, many mechanisms cause TERT activation. Several studies suggest
that TERT is essential for malignant transformation, and transcriptional control of the
TERT gene is highly regulated at various levels [231,232]. The mutation rate of the TERT
promoter is more than 90% inhuman malignancies [232]. The mutation may activate
telomerase, leading to infinite proliferation and infinite growth. Specifically, TERT promoter
mutations may influence telomere length and affect gene expression [231]. TERT promoter
mutations produce the ETS transcription factor family binding sites in multiple cancer
types [232,233]. The ETS transcription factor family includes the activating GA Binding
Protein Transcription Factor Subunit Alpha (GABPA) in a heterotetramer form with its
counterpart, GA Binding Protein Transcription Factor Subunit Beta (GABPB), to activate
TERT transcription and telomerase [233,234]. Consistently, thyroid carcinoma derived cells,
which were knock-down GABPA, significantly down-regulated TERT expression [235]
and GBM cells, which were knocked out of GABPB1, underwent apoptosis, and lost
tumorigenic ability telomere shortening/dysfunction and proliferation/survival [234].
To sum up, inhibiting the GABPA or GABPB1 expression can lead to diminished TERT
expression. These findings suggest that the TERT promoter mutations facilitate the binding
of transcription factors, leading to the development of cancers.

5.3.2. C228T and C250T: Gain-of-Function Mutation

TERT transcription can be activated by point mutations at the TERT promoter, predom-
inantly at two points (C228T and C250T) [233]. Primary tumors bearing either mutation
(C228T or C250T) tend to express higher levels of TERT mRNA and telomerase activ-
ity, implying a stimulatory effect on TERT expression [225,231]. Chiba et al. created a
C228T mutation in the TERT promoter region in human iPSCs and found that these cells
constitutively expressed TERT and telomerase even after having undergone terminal differ-
entiation, in contrast to the wild-type TERT promoter-bearing stem cell-derived progenies,
where the TERT transcription was shut down following cellular differentiation [236]. Li
et al. introduced the C228T mutation into the TERT promoter in normal human bladder
stem cells, and this single event was sufficient to drive the transformation of these stem
cells [237]. Thus, these findings suggest that the presence of C228T or C250T mutation has
a “gain-of-function effect” that can confer cell immortality, sustain proliferation potential,
and promote cell transformation by activating TERT transcription. These mutations are first
found in familial and sporadic malignant melanomas [229]. These mutations were then as-
sociated with enhanced telomerase activity in cancer cells [231]. This mutation pair results
in TERT activation that then triggers the telomerase to elongate telomere length [184,238]
and, as a consequence, leads to the immortal, anti-senescence, and proliferative properties
of tumor cells. The C228T mutation is more readily detected in cancers than the C250T
mutation [225,231]. The results of C228T and C250T may enhance GABPA or GABPB1
binding, inhibiting DICER1, leading to cell proliferation, immortality, and oncogenesis.

5.3.3. Other Possible Mechanisms That Trigger TERT Activation

Several mechanisms, including TERT amplification, epigenetic changes [231], pro-
moter methylation [239], alterations in alternative splicing of TERT pre-mRNA [214,228],
chromatin remodeling, increased copy number, disruption of the telomere position effect
(TPE) machinery [231], which is stronger with the longer telomere, and telomere shortening
may lead to increased TERT transcription by the loss of TPE [240], which can trigger TERT
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activation. TPE has a silencing effect on genes located close to the telomeres [231]. TPE is
also thought to be capable of regulating genes further away from the telomeres in what
is called TPE over long distances (TPE-OLD) [232,241]. TERT expression is regulated by
various transcription factors, such as MYC, SP-1, and E2F. AP-1, CCCTC binding factor,
E2F, and estrogen response element (ERE) are associated with promoting TERT transcrip-
tion [232,242,243]. Estrogen receptor α interacts with the TERT promoter and enhances the
TERT mRNA output [232,242,243]. The phosphatidylinositol-3kinase/AKT pathway can
phosphorylate TERT to increase the TERT functions [244,245].

TERT polymorphisms, such as rs2736100-CC genotype features, were reported more
frequently than the wild-type TERT promoter in patients with cancer [246]. This genotype
results in the elongation of telomeres through increasing TERT expression [247]. Although
mammalian subtelomere regions are packed into constitutive heterochromatin, the detailed
mechanisms of how epigenetic modifications impact telomere protection and structures
are largely unknown. The heterochromatin is characterized by high levels of histone 3
lysine 9 trimethylation (H3K9me3), histone 4 at Lys20 (H4K20) trimethylation, and CpG
methylation [248]. Stern et al. noted that a single nucleotide mutation in the TERT promoter
led to the presence of the H3K4me2/3, which were associated with competent chromatin,
and recruited the GABPA/B1 transcription factor that was transcriptionally active in several
cancer cell lines [249].

5.3.4. Telomeric Repeat-Containing RNA (TERRA)

Telomeric sequences contain TERRA, which is a very long, non-coding RNA [250].
TERRA can interact with TRF1 and TRF2 to regulate telomere length [250,251] and pro-
mote telomere shortening by inhibiting telomerase activity [252], promoting exonuclease
1 dependent resections [253], increasing the formation of euchromatin and decreasing
heterochromatin formation [254]. The ability of TERRA to regulate telomere length is also
related to human diseases. For instance, elevated levels of TERRA were found in ALT-
positive tumors [255] and TERRA levels showed down-regulation following tumor grades
in human astrocytoma cell lines [256]. These findings suggest that TERRA participates in
the regulation of various physiological processes, such as telomerase activity, TERT and
heterochromatinization, and disruptions to these processes can affect development and
directly or indirectly induce disease. Moreover, TERRA is associated with telomeres via
tethering in a DNA-RNA hybrid formation [257,258]. This structure may help to further
understand the molecular interaction between DNA-RNA at the chromosome ends and to
design specific telomere-targeting therapy in the future.

6. Telomerase-Based Anti-Cancer Strategy

The fundamental concept of cancer immunotherapy is based on manipulating the
host immune system to attack the cancer cells. Although there are several novel cancer
immunotherapy strategies, vaccine-based strategies are the most attractive and promising
ones. However, it is very difficult to target tumor-associated antigens on the surface of
tumor cells but not on that of the normal cells because of the heterogeneity and overlapping
expression of these antigens in both cancers and healthy tissues [259]. As cancer cells
lacking telomerase can undergo spontaneous remission, telomerase inhibition in most
cancers may shed light on a potentially successful therapeutic strategy [260]. As telom-
erase is an HLA class-I antigen and can stimulate a cell-mediated immune response by
inducing cytotoxic T-cells, numerous novel approaches have recently been developed to
attenuate/inhibit the functions of the telomerase that impact cancer. Vaccination against
telomerase is tolerable and safe and has been shown to induce excellent immunological
responses associated with increased survival in several cancer types. Four well-known
telomerase-based anticancer vaccines are discussed below.
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6.1. GV1001

The GV1001, an HLA class II-restricted peptide vaccine, is composed of 16 amino acids
(TERT611–626:EARPALLTSRLRFIPK) derived from the hTERT active site [32,261]. GV1001
was the first TERT peptide vaccine to be evaluated for treating advanced pancreatic cancer,
lung carcinoma, melanoma, and liver carcinoma in clinical trials [261–268]. GM-CSF can
enhance immunological response through the recruitment and maturation of dendritic cells
and the activation of macrophages, neutrophils, and NK cells [269]; therefore, GV1001in
combination with GM-CSF can result in a high frequency of immune responder s [32,262].
GV1001 can induce an efficient hTERT-specific T-cell activation and penetrate within tumor
cells through the cell membrane [270]. Therefore, it can recognize the antigen-presenting
cells that are internalized in the tumor and lymph nodes [262]. GV1001 can induce cancer
cell apoptosis [271–273] and down-regulate heat shock proteins, hypoxia-inducible factor-1,
and vascular endothelial growth factor to enhance its anti-tumor effect [270,272,274]. Al-
though GV1001 is theoretically suitable for most cancers, a report suggests that the GV1001
vaccination is not effective in cutaneous T-cell lymphoma [275], and another report indi-
cates that GV1001 cannot induce any specific immune responses in patients with advanced
HCC [263], and the addition of GV1001 to chemotherapy (gemcitabine and capecitabine)
did not show any significant clinical benefits [266]. Patients with tuberculosis or receiv-
ing tuberculin may not be suitable for GV1001 vaccination because the evoked immune
response against mycobacterial peptides may be so dominant as to suppress the immune
response against the hTERT peptide [264].

6.2. GX301

The GX301 vaccine contains four immunogenic peptides (hTERT540–548: ILAKFL-
HWL; hTERT611–626: EARPALLTSRLRFIPK; hTERT672–686: RPGLLGASVLGLDDI, and
hTERT766–780: LTDLQPYMRQFVAHL) that can bind both HLA class I and II; GX301 also
contains two complementary adjuvants, Montanide ISA-51 and Imiquimod. Each GX301
administration consists of four intradermal injections (a fixed hTERT peptide dose, 500 µg)—
one injection for each hTERT peptide—given at the same time and followed by topical
application of imiquimod [276]. Montanide can protect the degradation of the peptides by
tissue proteases, enhance peptide uptake by intradermal dendritic cells, induce interferon-
γ release by innate immunity cells, and increase the expression of major histocompatibil-
ity complex (MHC) by tumor cells [277]. Imiquimod can activate the Toll-like receptor-7
and receptor-8 and induce the activation and maturation of dendritic cells [278]. The im-
munogenicity of GX301 was demonstrated in an ex vivo study in which circulating T-cell
responses to its hTERT peptides were detected in all subjects [276]. A phase I trial of
GX301 has provided evidence of vaccine-specific immune response in patients with stage
IV prostate and kidney cancer, and prolonged progression-free survival and overall sur-
vival were observed in patients showing a full pattern of vaccine-specific immunologic
responses [276]. A phase II, randomized, parallel-group, open-label, multicenter trial (Eu-
draCT: 2014-000095-26 and ClinicalTrials.gov Identifier: NCT02293707) has demonstrated
that all the patients showed good immune responses to at least one of the peptides. The over-
all response was more for the multi-peptide vaccines than the single-peptide vaccines [279],
suggesting that the four GX301 peptides endow a cumulative epitope pattern wide enough
for inducing telomerase-specific peripheral T-cell reactivity in most individuals. A phase II,
multicenter, randomized, parallel-group, open-label trial (EudraCT:2014-000095-26 and
ClinicalTrials.gov Identifier:NCT02293707) was designed to comparatively analyze the
safety and immunological response to GX301 regimens in castration-resistant prostate can-
cer patients with response/disease stability after docetaxel chemotherapy. Although the
results indicate that the GX301 cancer vaccine is safe and 95% of the patients showed at
least one vaccine-specific immune response, the overall survival did not differ between
immunological responders and non-responders [280].

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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6.3. UV1

UV1 is a second-generation, multi-peptide vaccine constituted by three hTERT-derived
peptides (hTERT652–665: AERLTSRVKALFSVL; hTERT660–689: ALFSVLNYERARRPGLL-
GASVLGLDDIHRA and hTERT691–705: RTFVLRVRAQDPPPE) [262]. In phase I and IIa
trials, UV1 was administered along with GM-CSF for six months in patients with metastatic
prostate cancer in combination with radiotherapy and androgen deprivation treatment
(ADT). A total of 85.7% of patients showed an immune activation and 64% showed re-
duced levels of the prostate-specific antigen (PSA). In addition, 45% of the patients showed
no evidence of the disease at the end of the trial [281]. Several checkpoint inhibitors,
including Ipilimumab (anti-CTLA-4) or pembrolizumab (anti-PD-1) in melanoma pa-
tients (NCT02275416 and NCT03538314, respectively) and ipilimumab in association with
nivolumab (anti-PD-L1) in patients affected by mesothelioma (NIPU trial, NCT04300244)
have been singly or multiply used in combination with UV1 in clinical trials. The results
showed that the treatment of UV1 together with these checkpoint inhibitors were safe and
well-tolerated, and no severe allergic reactions were observed [282–284]. The NIPU trial is
still ongoing and the primary end-point is expected to be analyzed in 2022.

6.4. Vx-001

Vx-001 is a peptide-based cancer vaccine consisting of two peptides: hTERT-derived
low-affinity cryptic hTERT peptide: TERT 572 (RLFFYRKSV; ARG-Vx001) and its optimized
mutant hTERT peptide: TERT 572Y (YLFFYRKSV; TYR-Vx001), which has an enhanced
affinity to MHC class I molecules as the first amino acid was replaced with a tyrosine
residue [285]. The antitumor efficacy and safety of Vx-001 has also been investigated in
phase I/II clinical trials for different cancers, such as melanoma, bile duct cancer, breast
cancer, and lung cancer. Results of these trials show that Vx-001may elicit a specific and
possibly optimal cytotoxic T cell response against hTERT-expressing tumor cells and has
improved clinical outcomes in clinical trials without any relevant toxicity [286–289].

Collectively, the hTERT-vaccine clinical trials indicate that these immunotherapies
may represent a promising approach in cancer treatment. Apart from the TERT pep-
tide vaccines, several novel immunotherapies, including the dendritic cell-based tumor
vaccine, such as GRNVAC1 [289] and GRNVAC2 [290,291]; Tumor Antigen Presenting
Cells (TAPCells) vaccines [292]; DNA vaccines such as phTERT [293], INVAC-1 [294];
adenovirus type 6 of an anticancer vaccine expressing hTERT, such astheV934/V935 vac-
cine [295]; gene-modified T-cell therapy, such as the use of tumor antigen-specific T-cell
receptors originating from tumor-specific T cells or their clones [296,297]; the use of a
chimeric antigen receptor (CAR) [298,299]; the molecules inhibiting Ras farnesylation [76],
and hTERT-expressing human umbilical endothelial cells (HUVEC-TERTs) [300], may be
effective without prominent toxicity.

7. Alternative Lengthening of Telomere (ALT)
7.1. ATRX and DAXX

Even with these new therapies, there have been certain cancers that can evade treat-
ment by using an alternative lengthening of the telomere (ALT) mechanism. ALT is a
telomerase-independent mechanism that uses recombination-dependent pathways to in-
crease telomere length [301]. ALT is present in non-neoplastic tissues and in stromal,
endothelial, and epithelial cells [302] and in approximately 10-15% of cancers [303], and it
is common in sarcoma and glioma [304,305]. In the absence of telomerase, the ALT pathway
uses a homologous recombination-based DNA replication mechanism to gain immortality.
ALT activation required two chromatin-remodeling factors: the α-thalassemia X-linked
intellectual disability (ATRX) and the death domain-associated protein (DAXX) [304,306].
DAXX was initially describe as a Fas death receptor binding protein [307]. ATRX is widely
expressed and is a multi-functional factor involved in chromatin organization, DNA methy-
lation, and transcriptional regulation [308]. Mutations in ATRX result in α-thalassemia
ATRX syndrome, which is characterized by severe developmental delays, peculiar facial hy-
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potonia and a characteristic mouth, intellectual impairment, genital anomalies ranging from
undescended testes to ambiguous genitalia, and anemia secondary to α-thalassemia [309].
Patients with this syndrome may present long telomeres, which may be due to either
improper maintenance of telomeric heterochromatin, improper resolution of replication
stress at telomeres, or both by the mutation of ATRX [310].

7.2. Correlation between the Loss-of-Function of ATRX/DAXX and ALT in Cancer

The mutated ATRX gene is frequently detected in several tumors, including adreno-
cortical carcinoma, gliomas, GBM, neuroblastoma, and osteosarcoma [306], and pancreatic
neuroendocrine tumors(panNETs), which are a group of endocrine tumors arising in the
pancreas. PanNETs are among the most common neuroendocrine tumors. Functioning
panNETs include insulinoma, gastrinoma, vasoactive intestinal peptide tumors (VIPoma),
glucagonoma, and others that produce specific hormonal hypersecretion syndromes. En-
docrine testing, imaging, and histological evidence is necessary to accurately diagnose
panNETs. PanNETs may or may not cause signs or symptoms; however, as most panNETs
may have malignant potential, an aggressive therapeutic approach for panNETs, including
surgery, locoregional therapy, systemic therapy, and complication control, is required [311].
A report showed that 43% of panNETs contained the mutated ATRX or DAXX [312]. A cor-
relation between the loss-of-function of ATRX/DAXX and the ALT phenotype in panNETs
was found [313] and ATRX was proposed to serve as the primary suppressor of ALT [314].
Furthermore, when ATRX was reintroduced into ALT-positive ATRX-negative cell lines it
was found to eliminate ALT-associated phenotypes [315,316]. Gliomas with wild-typeTERT
promoters often present ATRX mutations to activate ALT [317]. A fibrosarcoma cell line
(HTC75), which is telomerase-positive, can be converted to an ALT-mediated telomere
elongation mechanism through TERT knockout, and the subsequent changes result in
telomeric DNA damage and disruption of the ATRX/DAXX complex, indicating a negative
correlation between mutations affecting TERT and ATRX/DAXX [304]. Consequently,
telomeric DNA damage can reduce the compaction of telomeric chromatin, resulting in the
production of altered telomeric DNA sequences. This in turn activates a telomere-specific
DDR pathway [12,316], which can stimulate the homology-directed synthesis of telomeric
DNA. However, cancer cells can circumvent cell death caused by an absence of telom-
erase or dysfunction by switching from telomerase-dependent to ALT-mediated telomere
lengthening [318,319].

7.3. Targeting Telomerase Activity and the ATRX/DAXX Complex

Direct and indirect approaches to targeting telomerase activity and the ATRX/DAXX
complex could prove effective. Direct approaches include immunotherapy specifically
targeting TERT tumor-associated antigens, such as anti-sense oligonucleotides (e.g., Ime-
telstat/GRN163L) and small-molecule inhibitors (e.g., BIBR1532) and small molecule
inhibitors could be used to bind telomerase and inhibit telomere elongation. Indirect
techniques, such as G-quadruplex stabilizers (e.g., RHPS4, Telomestatin, TMPyP4, CX-
3543/quarfloxacin), which are designed to block telomerase activity, are promising [320].
The G-rich oligos, which homolog to the telomeric overhang that forms the G4 structures,
cause telomere dysregulation and a decreased proliferation rate, enhance apoptosis, and
reduce expression of the TERT within melanoma cells [321].An alternative approach is
based on telomere uncapping, using nucleoside analogs(e.g., 6-thio-dG) that rapidly affect
telomere dysfunction, quickly triggering cancer cell death [322]. In addition, other factors,
such as transcriptional, posttranscriptional, and epigenetic modifications can affect the acti-
vation or silencing of TERT; however, the effects are poorly understood in somatic, cancer,
and stem cells. Epigenetic regulators, such as non-coding RNAs, histone modification, and
DNA methylation, are now seen as crucial components for the regulation of telomeres and
telomerase activity [323] and unlocking the epigenetic mechanisms associated with telom-
erase regulation could see advances in cancer diagnosis, treatment, and prognosis [324].
Convergently, a multipronged treatment strategy can maximize anti-tumor effects.
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8. Conclusions

Telomeres are hexameric DNA repeats situated at the ends of human chromosomes
and are associated with genome replication and protection. Telomere length regulation
has been attributed to several functional modulators, telomerase, and two important
protein complexes, shelterin and CST synergizing with DNA replication, repair, and RNA
metabolism pathway components. The mechanisms involving telomere maintenance
play a critical role in cancer development and thus form the primary targets for the
development of cancer therapeutics. In the majority of cancers, tumors attain replicative
immortality primarily through telomerase activation via increased TERT transcription,
providing telomerase as the preferred target for drug development in cancer therapeutics.

Among numerous novel anticancer therapies, vaccine-based strategies are the most
attractive and promising approach. While there is much excitement in the telomerase-
against-cancer arena, many challenges and questions still remain unanswered. Although
much work is needed, several clinical trials have shown the effective anticancer responses
of these telomerase-based anticancer vaccines without toxicity to non-cancer cells. Fur-
thermore, the suppression of CST, shelterin, and ALT cells may inhibit cell proliferation.
Combining vaccines with the targeted manipulation of the immune response through dif-
ferent pharmacological approaches may improve the overall efficacy of telomerase-based
anti-cancer immunotherapies in future trials.
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