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Abstract: The discovery of new drugs is required in the time of global aging and increasing pop-
ulations. Traditional drug development strategies are expensive, time-consuming, and have high
risks. Thus, drug repurposing, which treats new/other diseases using existing drugs, has become
a very admired tactic. It can also be referred to as the re-investigation of the existing drugs that
failed to indicate the usefulness for the new diseases. Previously published literature used maximum
flow approaches to identify new drug targets for drug-resistant infectious diseases but not for drug
repurposing. Therefore, we are proposing a maximum flow-based protein–protein interactions (PPIs)
network analysis approach to identify new drug targets (proteins) from the targets of the FDA (Food
and Drug Administration) drugs and their associated drugs for chronic diseases (such as breast
cancer, inflammatory bowel disease (IBD), and chronic obstructive pulmonary disease (COPD))
treatment. Experimental results showed that we have successfully turned the drug repurposing
into a maximum flow problem. Our top candidates of drug repurposing, Guanidine, Dasatinib, and
Phenethyl Isothiocyanate for breast cancer, IBD, and COPD were experimentally validated by other
independent research as the potential candidate drugs for these diseases, respectively. This shows
the usefulness of the proposed maximum flow approach for drug repurposing.

Keywords: drug–target interactions; protein–protein interactions; chronic diseases; drug repurposing;
maximum flow

1. Introduction

Chronic diseases are usually defined as the diseases that are persistent or long-lasting
and require ongoing medical attention. There are many different types of chronic diseases.
For example, breast cancer starts from the breast cancer cells. However, it can also spread
to other parts of the body. Breast cancer is referred to as the most frequently identified
cancer in women. This is the second prominent reason for cancer death among women [1].
Of note, cancer is a multistage disease [2], increasing the mortality rate among people
worldwide [3]. Several breast cancer treatment techniques are available, such as surgery,
chemotherapy, radiation, and hormone therapy. Often a combination of these treatments
is used in practice [4]. Other chronic diseases, such as inflammatory bowel disease (IBD)
and chronic obstructive pulmonary disease (COPD), are usually consequences of many
environmental and genomic factors. IBD is a chronic disease that includes both ulcerative
colitis and Crohn’s disease, and it lasts for a very long time. IBD results in a significant
burden to our society and families. IBD triggers segments of the bowel to get red and
swollen. IBD treatment involves medicines, diet modifications, and occasionally surgery [5].
The goal of such treatment options is to reduce the inflammation associated with IBD. In
the long term, existing treatments may achieve reduced risks of IBD complications. COPD
is a chronic lung disease that causes breathing problems. COPD is the main reason for
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respiratory mortality worldwide [6]. Current treatment options include lung transplants,
quitting smoking, and inhalers. However, these strategies can only assist in lessening the
progression of COPD. The fundamental cause of COPD is smoking [7]. Patients may not
know about the disease initially, but the condition worsens over time, such as with severe
breathing problems during simple tasks, e.g., walking.

There is a pressing need to identify potential drug targets and their drugs for devel-
oping personalized treatments for chronic diseases. However, new drug development
takes a very long time and is extremely expensive. Usually, this type of approach takes
10–15 years and $1 billion [8]. Nevertheless, we can save time and money using old drugs
for new usages called drug repurposing or repositioning. This is a helpful technique to find
different indications for current medications. For example, in 2020, COVID-19 infections
from the novel coronavirus became a primary worldwide public health concern [9]. As a
result, it was declared as a global pandemic in 2020 [10]. The pandemic created an emer-
gency to develop vaccines or therapeutic treatment for COVID-19 infections. However,
there were no available confirmed drugs to treat COVID-19 infections. Therefore, the drug
repurposing technique was used to obtain a new drug from the existing FDA-approved
drugs [11,12].

There are different types of approaches to identify new indications of an FDA-
approved drug, such as network-based [13,14], and machine learning (ML)-based [15,16]
approaches.

A biological network consists of a massive number of nodes and interactions among
them. A gene can easily make a subnetwork including drug targets, and these drug targets
act as the bridge between this subnetwork and the original network. We can identify the
risk genes of a given disease and the associated drug targets in a biological network to
remove the bridge connection between the subnetwork containing the risk genes and the
original network. Therefore, we can potentially treat the disease using drugs associated
with the drug targets responsible for the disease’s risk genes in the network.

A network-based approach tries to find a subnetwork that provides an insight into
the relationship between drugs and disease genes. For example, Cheng et al. [17] proposed
a network-based system to list the drug targets using three different inference algorithms,
which are drug resemblance in any network, protein correspondence in any network, and
recognized drug target within a bipartite network.

Yeh et al. [18] first proposed a maximum flow approach to predict a set of drugs as new
effective drug targets for the treatment of prostate cancer. The idea is that the candidate
proteins for a drug target with a higher flow value to the risk genes have more influence on
risk genes than other candidates for the drug targets. They used microarray data [19] and
an interactome (PPI) network [20] of prostate cancer to build their prediction model. Next,
they used the shortest path algorithm [21] to perform a maximum flow method within
their network and successfully identified 20 drug targets to reuse. These drug targets
were validated using other available literature that published these same drug targets for
prostate cancer.

Melak et al. [22] also used the idea of the maximum flow approach to prioritize a set
of drug targets to reduce the expression of tuberculosis disease from a list of known drug
targets. Yeh et al. [18] used the Pearson correlation coefficient and gene expression changes
between genes to calculate the weight of the edges of their PPI network. However, Melak
et al. [22] used a PPI network from STRING which includes the associated weights for the
edges. Thus, Yeh et al. [18] and Melak et al. [22] showed that proteins with the maximum
flow to the risk genes in the PPI network could be used as targets for developing drugs to
treat diseases.

This study aims to apply the maximum flow technique to a PPI network with a
set of breast cancer, IBD, and COPD risk genes to identify new breast cancer, IBD, and
COPD drugs, respectively, from a list of FDA-approved medications. We hypothesize
that identifying new drugs from the existing drugs (i.e., drug repurposing) for breast
cancer, IBD, and COPD can be converted into a maximum flow problem using a human
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interactome network (i.e., a PPI network). Furthermore, it is believed that drug targets
X (proteins) connected with risk genes through a higher flow value have more impact
on these risk genes than other drug targets. Therefore, these Xs can be used as potential
targets for drug development for the disease’s treatment. Furthermore, deletion of these Xs
from the PPI network will disrupt the communication among the risk genes and proteins.
Therefore, this study aims to identify a set of strongly correlated proteins with the disease
risk genes from a PPI network using a maximum flow approach. Later, we can identify
new candidate drugs for repurposing to treat breast cancer, IBD, and COPD associated
with these targets using a drug-target interaction network.

2. Materials and Methods
2.1. Datasets
2.1.1. Protein–Protein Interaction (PPI) Network

We collected a comprehensive biological network [23] which includes 140,899 interac-
tions among the 13,365 human proteins (genes). We used this biological network (Figure 1)
to conduct our experiments.
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Figure 1. An example of our PPI network. The network shows the interactions among the
FDA-approved drug targets (i.e., proteins), potential drug targets, and disease-associated risk pro-
teins/genes.

2.1.2. Drug-Target Interactions (DTIs) Network

We extracted 2390 FDA-approved drug targets (DTs) in human from DrugBank [24].
However, the PPIs network described in Section 2.1.1 contains only 1926 DTs among these
2390 FDA-approved DTs. We also collected the DTIs network, which has ~13,000 DTIs
among 5049 unique drugs and 3099 unique targets from the DrugBank.

2.1.3. Risk Genes

In this study, we focused our drug repurposing on the above-mentioned three diseases
(breast cancer, IBD, and COPD) since they have a relatively large number of disease-specific
risk genes identified from genome-wide association studies (GWAS) as described below.
These risk genes make the application of the maximum flow technique to drug repurposing
possible in this study. GWAS have already discovered more than 200 breast cancer risk loci.
For example, Baxter et al. [25] were able to mark 63 loci and identified 110 known target
genes at 33 loci. In addition, Wu et al. [26] identified 179 significant genes associated with
breast cancer risk. Thus, we have collected in total 289 breast cancer risk genes from these
two studies.

Previously published genomic studies identified 215 risk loci to explain the fundamen-
tal molecular biology of IBD [27]. In addition, Katrina et al. [27] marked three additional
loci which have therapeutic targets in IBD. They have also prioritized 811 IBD risk genes
from 240 risk variants.

A GWAS in the United Kingdom by Sakornsakolpat et al. [6] identified 82 loci asso-
ciated with COPD or function. Among them, 47 loci were already known as risk loci of
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COPD. Of note, Sakornsakolpat et al. [6] have identified 156 COPD risk genes from these
82 loci.

Hence, we have collected 289, 811, and 156 risk genes responsible for breast cancer,
IBD, and COPD, respectively, from the earlier studies to validate the usefulness of our
proposed drug repurposing method.

2.2. The Maximum Flow Algorithm for Drug Repurposing

The analysis pipeline for drug repurposing includes multiple steps, as shown in
Figure 2 (taking breast cancer as an example). Below we explain the steps in more detail.
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Figure 2. Analysis pipeline for the maximum flow approach to prioritize drugs for drug repurposing (taking breast cancer
as an example). (A) Shows the types of data we collected for our experiments. (B) We mapped each target protein in the PPI
network to be either a risk gene, FDA-approved drug target, or potential candidate target. (C) Shows the construction of
maximum flow network from the collected PPI network to apply the Push-Relable maximum flow algorithm. (D) Shows
the steps to repurpose existing drugs based on the maximum flow values of each target protein.

2.2.1. Constructing the Maximum Flow Network

Mapping drug targets and risk genes to the PPIs network: We first mapped the 1926
FDA-approved DTs (FDA_DT) and risk genes (RGs) of a specific disease to the unweighted
PPIs network (refers to a graph where edges do not have weights, and there is only one
edge between any two nodes).

Constructing weighted PPIs network: We used TOMSimilarity (topological over-
lap matrix similarity) [19] to calculate the weight of edges between genes, and we used
Equation (1) to get TOMSimilarity between two nodes in our network.

TOMSimilarity (x, y) =

∣∣∣Nneighbor(x) ∩ Nneighbor(y)
∣∣∣+ Axy

min
(∣∣∣Nneighbor(x)

∣∣∣, ∣∣∣Nneighbor(y)
∣∣∣ )+ 1− Axy

(1)
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where Nneighbor(x) is the neighbors of x,
Nneighbor(y) is the neighbors of y,
Axy is the value of the adjacency matrix (i.e., one if nodes x and y are connected and

zero otherwise),
TOMSimilarity (x, y) is the Topological Overlap Matrix Similarity between the nodes

x and y.
Drug repurposing as a maximum flow problem: After the mapping of the drug

targets and risk genes, we specified the drug repurposing problem into a maximum flow
problem, we (1) created a dummy node SDN (i.e., the source of the network) which was
connected with all the FDA_DT; (2) created another dummy node DDN (i.e., the destination
of the network) which was connected with all the risk genes; (3) assigned a flow capacity
(i.e., weight) using Equation (1) for each of the connections in the network. Flows in the
maximum flow network follow the below rules: (1) The input flow is equal to the output
flow for any node except the source and destination nodes; (2) for any edge (e) in the
network, 0 ≤ flow(e) ≤ Capacity(e); (3) total flow out of the source node is equal to total
flow into the destination node.

However, the connections from the dummy source to the candidate drug targets will
have a dummy capacity. Each incoming edge from the dummy source node to a protein
(drug target) has a capacity equal to the sum of the capacities of the outgoing edges from
that protein (drug targets). Similarly, the connections from the risk genes to the dummy sink
node have dummy capacities. Each outgoing edge from a risk gene to the sink node has a
capacity equal to the sum of the capacities of the incoming edges to that risk gene. At this
point, we had the network named MaxNet (Figure 3) to run the maximum flow algorithm.
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2.2.2. Push-Relabel Maximum Flow Algorithm

We used the Push-Relabel maximum flow algorithm [28] in the MaxNet (Figure 3) to
maximize the flow amount passed from the FDA-approved drug targets to the risk genes.
Algorithm 1 (revised from [29]) shows the Push-Relabel maximum flow algorithm. In
addition, this algorithm works with one vertex at a time. Every vertex is associated with
two variables: height and excess flow. A vertex can send flows to a lower-height vertex
only. The extra flow of a vertex represents the difference between the total in-flow and
out-flow of that vertex. Furthermore, each edge is associated with two variables: flow (i.e.,
current flow through this edge) and capacity (i.e., the maximum flow we can send through
this edge). This algorithm sends flows (i.e., PUSH operation) from a node (S) to its adjacent
node (D) when the excess flow of D is not equal to zero and the height of D is less than the
height of S. If there is no adjacent node of S with lesser height than this algorithm increases
the height of S (i.e., RELABEL operation) by the minimum height of the adjacent nodes of
S plus 1.
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Algorithm 1 Push-Relabel_MaximumFlow_Algorithm [28].

Input: PPI, Capacity = C, N = unique nodes of PPI, start_node = SDN, destination_node = DDN.
Output: Maximum flow between SDN and DDN

(1) FOR i = 1 to length [N]:
a. HeightV [i] = 0//HeightV is height of every vertex
b. FlowV [i] = 0//FlowV is the flow of every vertex

(2) HeightV [start_node] = length [N]
(3) FOR i = 1 to length [PPI]:

a. FlowE [i] = 0//FlowE is the flow of every edge in the PPI
(4) V = adjacentVetex[start_node]
(5) FOR i = 1 to length [V]:

a. FlowV [V[i]] = Capacity [V[i]]
b. excessFlow [V[i]] = Capacity [V[i]]

(6) PUSH: FOR i = 1 to length [N]:
If excessFlow [N[i]] 6= 0: (in the residual graph)

tmpV = adjacentVetex[N[i]]
if HeightV [N[i]] > lowest_height[tmpV]

Push_flow from N[i] to lower height vertices
(7) RELABEL: FOR i = 1 to length [N]:
If excessFlow [N[i]] 6= 0: (in the residual graph)

tmpV = adjacentVetex[N[i]]
if HeightV [N[i]] ≤ lowest_height[tmpV]

HeightV [N[i]] = minimumHeight[tmp]

2.2.3. Drug Repurposing from Maximum Flow Values

After applying the Push-Relabel maximum flow algorithm in our MaxNet network,
we sorted all the FDA drug targets into a list LDTs according to their flow value to the
risk genes (descending order). Then, we used this sorted list LDTs of the DTs to sort the
FDA-approved drugs into a list Ldrugs using ~13,000 DTIs collected from DrugBank [29].
Hence, according to our hypothesis, the top drugs in L are the most prominent drugs that
can be reused to treat the given disease associated with its risk genes.

The whole analysis pipeline of the maximum flow-based drug repurposing is summa-
rized in Algorithm 2.

Algorithm 2 Pipeline of the maximum flow-based drug repurposing.

Input: PPI = all the PPIs, FDA_DT = all the FDA approved DTs in PPIs network, DTI = DTIs for
FDA_DT, RG = risk genes, W = flow capacity of edges.
Output: CD = candidate drugs for repurposing for the treatment of breast cancer.

1. FOR i = 1 to length [PPI]:
a. Calculate flow capacity of the edge using Equation (1):

C[i] = TOMSimilarity (PPI[i])
2. CREATE two dummy nodes:

a. source dummy node = SDN and destination dummy node = DDN
3. FOR i = 1 to length [FDA_DT]:

a. Index = length [PPI] + 1
b. CONNECT SDN to FDA_DT[i] and add this interaction in PPI[index]
c. W[index] = sum of the capacities of the outgoing edges from PPI[index]

4. FOR i = 1 to the length of RG:
a. Index = length of PPI + 1
b. CONNECT RG[i] to DDN and add this interaction in PPI[index]
c. C[index] = sum of the capacities of the incoming edges from PPI[index]

5. The nodes in PPIs and their associated outgoing flow value = Push-Relabel_
MaximumFlow_Algorithm (PPI, C, SDN, DDN)

6. prioritized_DTs = sort the nodes in PPI in decreasing order of their outgoing flows
7. CD = sort drugs in DTI using prioritized_DTs
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3. Experimental Results
3.1. Mapping Drug Targets and Disease-Specific Risk Genes to the PPIs Network

First, we collected the PPI network. This is an unweighted network. So, we calculated
topological overlap similarity (TOMSimilarity) to assign weights on the edges. These
weights were used as the capacities of the flow through the edges. In this PPI network,
we had 1926 FDA-approved DTs. Next, we mapped disease-specific risk genes to this PPI
network. The PPIs network contained 155 breast cancer RGs from the 289 breast cancer
RGs identified by Baxter et al. [25] and Wu et al. [26]. It also had 565 IBD risk genes among
the 811 prioritized IBD risk genes by Katrina et al. [27]. This PPI network also contained
118 COPD risk genes among the 156 COPD risk genes identified by Sakornsakolpa et al. [6].
Table 1 shows several statistical properties of the PPI network. In Table 1, transitivity refers
to the probability of adjacent nodes being interconnected. It provides an intuition about the
clusters in the network. Of note, in a graph, total triangles represent the total number of
triangles formed by any three nodes. In addition, we also showed the PPI network’s degree
distribution in Figure 4. Figure 4 indicates that only a few nodes in the PPIs network have
a high number of neighbors. This means the PPI network has a small number of hubs.

Table 1. Statistical properties of the PPIs network.

Properties Values

Number of nodes 13,368
Number of edges 140,899

Transitivity 0.292
Average clustering coefficient 0.173

Edge density 0.002
Average degree 21.08
Total triangles 4,105,272
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3.1. Mapping Drug Targets and Disease-Specific Risk Genes to the PPIs Network 

First, we collected the PPI network. This is an unweighted network. So, we calculated 

topological overlap similarity (TOMSimilarity) to assign weights on the edges. These 

weights were used as the capacities of the flow through the edges. In this PPI network, we 

had 1926 FDA-approved DTs. Next, we mapped disease-specific risk genes to this PPI 

network. The PPIs network contained 155 breast cancer RGs from the 289 breast cancer 

RGs identified by Baxter et al. [25] and Wu et al. [26]. It also had 565 IBD risk genes among 

the 811 prioritized IBD risk genes by Katrina et al. [27]. This PPI network also contained 

118 COPD risk genes among the 156 COPD risk genes identified by Sakornsakolpa et al. 

[6]. Table 1 shows several statistical properties of the PPI network. In Table 1, transitivity 

refers to the probability of adjacent nodes being interconnected. It provides an intuition 

about the clusters in the network. Of note, in a graph, total triangles represent the total 

number of triangles formed by any three nodes. In addition, we also showed the PPI net-

work’s degree distribution in Figure 4. Figure 4 indicates that only a few nodes in the PPIs 

network have a high number of neighbors. This means the PPI network has a small num-

ber of hubs. 

Table 1. Statistical properties of the PPIs network. 

Properties Values 

Number of nodes 13,368 

Number of edges 140,899 

Transitivity 0.292 

Average clustering coefficient 0.173 

Edge density 0.002 

Average degree 21.08 

Total triangles 4,105,272 

 

Figure 4. Degree distribution of the PPIs network. Figure 4. Degree distribution of the PPIs network.

3.2. Weights of the Interactions in PPIs Network

We calculated topological overlap similarity (TOMSimilarity) to assign weights on the
edges of the unweighted PPI network. The values of these edge weights ranged from 0 to
1. We used these edge weights as flow capacity for each connection during maximum flow
implementation with Algorithm 1.

3.3. Formulating Drug Repurposing as a Maximum Flow Network

FDA-approved drug targets are the network sources, while risk genes are the desti-
nations of the network. Hence, we needed to convert this multiple sources and multiple
destinations network into a single source and single destination network. To do this, we
created a dummy source node and connected this node with 1926 DTs. Similarly, we created
a dummy destination node and only connected this sink node with the disease-specific risk
genes. As a result, there were no incoming arcs to the source node and no outgoing arcs
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from the destination node. We calculated the sum of the capacities of the outgoing arcs
from a drug target node and put this sum as the capacities on the arcs from the dummy
source node to the drug target node. Likewise, we calculated the sum of the capacities of
the incoming arcs to a risk gene node and put this sum as the capacities to the arc from the
risk gene node to the dummy destination node. We called this network the MaxNet.

3.4. Drug Repurposing for Breast Cancer, IBD, and COPD

We created three MaxNets (MaxNet_BC, MaxNet_IBD, and MaxNet_COPD) for breast
cancer, IBD, and COPD RGs, respectively. For all three MaxNets, the dummy source node
was connected with the 1926 FDA-approved DTS. However, our PPIs network contained
only 155 breast cancer RGs, 565 IBD RGs, and 118 COPD RGs. Therefore, we connected the
155 breast cancer RGs with the dummy destination node in the MaxNet_BC, the 565 IBD
RGs with the dummy destination node in the MaxNet_IBD, and the 118 COPD RGs with
the dummy destination node in the MaxNet_COPD.

We ran the Push-Relabel maximum flow algorithm in all three MaxNets to get the
maximum flow values for each node from the dummy source to the dummy destination.
First, we extracted three sorted lists of the targets (FDA-approved) based on their outgoing
flows from the MaxNet_BC, MaxNet_IBD, and MaxNet_COPD in descending order. Then,
we used these sorted lists of targets to sort the drug list using a drug-target interaction
network for breast cancer, IBD, and COPD. According to our hypothesis, the top drug in
each of these sorted drug lists has the maximum potential to be used as a candidate drug
for the treatment of breast cancer, IBD, and COPD, respectively.

3.5. Performance Evaluation

We performed a comprehensive literature review to validate our top five repurposed
candidates for breast cancer, IBD, and COPD as shown in Tables 2–4, respectively.

Table 2. The top five repurposed drugs for breast cancer.

Drug Name Target Protein Target Gene Flow Value Status Reference

Guanidine P78352 DLG4 0.0489 Confirmed [30]
Phenethyl Isothiocyanate P31946 YWHAB 0.0389 Confirmed [31]

Caffeine P78527 PRKDC 0.0363 Confirmed [32]
Tamoxifen Q05655 PRKCD 0.0363 Confirmed [33]

(2S)-2-({6-[(3-Amino-5-
chlorophenyl)amino]-9-
isopropyl-9H-purin-2-
yl}amino)-3-methyl-1-

butanol

Q00534 CDK6 0.03319202

Table 3. The top five repurposed drugs for IBD.

Drug Name Target Protein Target Gene Flow Value Status Reference

Dasatinib P12931 SRC 0.08292133 Confirmed [34]
Phenethyl

Isothiocyanate P31946 YWHAB 0.06112281 Confirmed [35]

Adenosine-5′ P00558 PGK1 0.04545455 Confirmed [36]
Acetylsalicylic acid P54646 PRKAA2 0.03627599

Glutamic Acid P07814 EPRS 0.03527291 Confirmed [37]
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Table 4. The top five repurposed drugs for COPD.

Drug Name Target Protein Target Gene Flow Value Status Reference

Phenethyl Isothiocyanate P31946 YWHAB 0.05054656 Confirmed [38]
Minocycline P42574 CASP3 0.03767546 Confirmed [39]

Pseudoephedrine P15336 ATF2 0.03201844 Confirmed [38]
Methyl 4,6-O-[(1R)-1-

carboxyethylidene]-beta-D-
galactopyranoside

P02743 APCS 0.03150388

NADH O43920 NDUFS5 0.02409639 Confirmed [40]

In addition, we have shown the top 10 prioritized repurposed drugs in the
Supplementary Tables S1–S3 for each of these diseases.

3.6. Performance Comparison with Other Methods

We used the same datasets to compare the performance of our maximum flow-based
drug prioritization with the baseline methods, such as degree, betweenness centrality,
closeness centrality, random walk, and page rank (Table 5). Degree centrality refers to
the number of incoming links to a node and ranks the risk genes by their degree value.
Closeness centrality is defined as the geodesic distance (normalized) for any node to any
other node in the network. Finally, the betweenness centrality of a node denotes the number
of shortest paths that include this node. First, we used MATLAB functions to calculate
degree centrality, closeness centrality, and betweenness centrality from the PPI network
for each disease of interest (breast cancer, IBD, and COPD). Then, we sorted each of these
lists of targets in descending order. Furthermore, we obtained a sorted list of candidate
drugs using these sorted targets and a drug-target interaction dataset. Then we used the
python functions of random walk [41] and page rank [42] to calculate the importance of
each target associated with breast cancer, IBD, and COPD in the PPI network. Finally, we
used sorted random walk [41] and page rank [42] (descending order) lists of targets to
identify potential drug repurposing candidates from the drug-target interaction network
we collected from the DrugBank database.

Table 5. Number of confirmed disease-specific candidates by the baseline approaches for drug repurposing in the list of top
five candidate drugs.

Method
Number of Confirmed Candidates in Top 5 Candidate Drug List

Breast Cancer IBD COPD

Degree centrality 0 0 1
Closeness centrality 2 1 0

Betweenness centrality 0 0 2
Random walk [41] 0 2 2

Page rank [42] 2 2 2
Our proposed framework 4 4 4

4. Discussion

Traditional machine learning methods, such as naive Bayesian, support vector ma-
chines, and the latest deep neural networks, reveal their effectiveness for drug discovery.
Zhao et al. proposed a method that uses drug-induced expression profiles to predict the
sign of a disease in psychiatry [43]. Saberian et al. [44] introduced a framework that takes
anti-similarity between drugs and a disease as input to train a model. Their model can
predict new usage apart from the primary indications of a drug. However, researchers
have concerns about using conventional machine learning techniques for this purpose
because of the background noisiness and the high-dimensionality nature of the biological
data [45]. Hence, Cheng et al. [17] used a chemical structure with the genome sequence to
perform the drug and protein resemblance checking. At the same time, they anticipated
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related drugs might share identical drug targets for a disease. However, they did not find
any helpful result from these similarities checking among the drugs. Nevertheless, they
concluded that the chemical structure could not be represented as a parameter to identify
similar drugs or proteins. Estrada et al. [46] also used a biological network’s global measure
such as closeness/betweenness centrality to identify drug targets. They considered a node
in the network as the drug target if it has a higher closeness/betweenness centrality value
than the other nodes. These measures are based on the shortest paths in the network. In
addition, random walk [41] and page rank (the algorithm that Google uses for their search
engine) [42] can be used to extract such global measures to identify potential new drug
targets. In this study, we adopted a maximum flow-based approach similar to Yeh et al. [18]
and Melak et al. [22] to prioritize FDA-approved drugs repurposed for breast cancer, IBD,
and COPD.

We used a PPI network [23] to conduct our experiments. The investigators mentioned
that these interactions do not contain any interactions estimated from gene expression data.
These interactions fall into the following categories: protein–protein interactions (most
of the interactions fall into this category), regulatory interactions, protein database, and
signaling interactions [47]. However, this PPI network is not weighted. Therefore, we
converted our PPI network to a weighted network using TOMSimilarity. We used TOM-
Similarity because Langfelder et al. [48] showed its effectiveness as a highly robust measure
of network interconnectedness (proximity) for the hierarchical clustering of biological data.
TOMSimilarity calculates the topological similarity between two connected proteins (i.e.,
genes) using an adjacency matrix. Then, we applied the Push-Relabel algorithm to obtain
the node importance based on its outflow. This algorithm works locally rather than looking
into the entire residual graph (this graph indicates if it is possible to send flows from the
source to the destination of the network) to find an augmenting path to send flows.

The primary usage of our most promising candidate drug, “Guanidine” (Table 2), is
to treat muscle weakness caused by Eaton-Lambert syndrome. In 2009, Meruling et al. [30]
showed that at 0.5 microM, dextran aminoguanidine conjugate killed more than 95% of the
breast cancer cells compared to 25% for Adriamycin. The second candidate, “Phenethyl
Isothiocyanate” (PEITC) (Table 2), with unique specificity, has promising results for HER2
breast cancer patients. “Caffeine” (Table 2) is primarily used to restore mental alertness
when fatigue or drowsiness are present and for the treatment of post-dural lumbar puncture
headaches. However, Pantziarka et al. [32] confirmed that caffeine could be used to treat
breast cancer. The fourth candidate, “Tamoxifen,” is primarily used for breast cancer.
Hence, we showed the top five candidate drugs using our proposed framework in Table 2.

According to our proposed framework, the most promising candidate drug used as the
IBD repurposed drug is “Dasatinib” (Table 3). It has been shown that Dasatinib is helpful
to decrease the inflammation in a rodent model of colitis [34] for ulcerative colitis type IBD.
Therefore, the study concluded that Dasatinib could be a potential candidate for ulcerative
colitis treatment. Our second IBD repurposed drug candidate is “Phenethyl Isothiocyanate”
(PEITC) (Table 3). PEITC Essential Oil contains more than 95% of PEITC. Therefore, Dey
et al. [35] confirmed PEITC essential oil as a potential treatment for ulcerative colitis patients.
The third candidate, “Adenosine” (Table 3), is working as a modulator for inflammation
(including Crohn’s disease and ulcerative colitis) both in humans and animals [36]. Our
last candidate, “Glutamic Acid” (Table 3), was confirmed by [37] as an amino acid is an
adjuvant ulcerative colitis type of IBD treatment. Furthermore, the investigators showed
that microinjection of this amino acid into the paraventricular nucleus on ulcerative colitis
in rats significantly improved anti-oxidation levels. This outcome suggests that glutamic
acid is a potential candidate for a therapeutic application of paraventricular nucleus
regulation in ulcerative colitis. However, the doses of glutamic acid may change for the
naturally-occurring IBD.

The primary usage of Phenethyl Isothiocyanate (PEITC) is the treatment of lung
cancer [38]. Nonetheless, our proposed framework considers this drug the most favorable
contender in our top five candidate drugs list (Table 4) for COPD. Our next candidate,
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“Minocycline” (Table 4), is effective as an addition to treatment with cyclophosphamide
in reducing the number of lung cancer [39]. The third candidate, “Pseudoephedrine”
(Table 4) can also be used for COPD-related diseases such as the treatment of nasal and
sinus congestion that is caused by a breathing illness (e.g., bronchitis) [49,50]. Finally, the
last candidate, “NADH” (Table 4), improves trial COPD [40], emphasizing a probable
helpful treatment for COPD.

From Table 5, it is self-evident that our proposed framework outperformed baseline
methods (degree centrality, betweenness and closeness centrality, random walk [15], and
page rank [42]) in prioritizing drug candidates for disease-specific drug repurposing.
A literature review-based validation confirmed that our proposed framework correctly
prioritized four out of the top five candidate drugs for drug repurposing for breast cancer,
IBD, and COPD, respectively. On the other hand, degree and betweenness centrality
methods have only one and two confirmed drug candidates, respectively, to be used as
repurposed drugs for COPD only. Closeness centrality has two and one confirmed drug
candidates as repurposed drugs for breast cancer and IBD, respectively. The random walk
has zero, two, and two confirmed drugs in the predicted top five drugs to treat breast
cancer, IBD, and COPD diseases, respectively. However, the page rank approach listed two
confirmed drugs for each disease in the top five predicted lists of drugs.

The above literature review-based comparison suggests that our proposed framework
can be used for novel drug discovery and drug repurposing. Therefore, it may be promising
to use the proposed drug repurposing framework to prioritize candidate disease-specific
repurposed drugs and disease-specific primary drugs.

5. Conclusions

This study aims to formulate drug repurposing for a specific disease as a maximum
flow problem. We used a human interactome network and a set of FDA-approved drug
targets along with different disease-specific (breast cancer, IBD, and COPD) risk genes to
perform our experiments. We hypothesized that our proposed framework would identify
a set of FDA-approved drugs that can be repurposed to treat breast cancer, IBD, and COPD.
Experimental results showed that we had identified a prioritized list of drug targets and
associated drugs that can be reused to treat these diseases. Furthermore, our proposed
framework identified the natural flow to strongly influence the disease genes without any
prior knowledge. Finally, we performed a comprehensive literature review to validate our
proposed framework’s performance. This validation shows that our proposed framework
outperformed other baseline methods regarding the total number of confirmed repurposed
drugs. The validation also suggests that our drug repurposing approach can also be used
for novel drug discovery.

Future works of this study include experiments and clinical trials with our prioritized
lists of candidate drugs. These approaches will confirm whether our candidate drugs have
the potential to treat breast cancer, IBD, and COPD, respectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/life11111115/s1, Table S1: The top 10 prioritized repurposed drugs for breast cancer, Table S2:
The top 10 prioritized repurposed drugs for IBD, Table S3: The top 10 prioritized repurposed drugs
for COPD.
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