Next Issue
Volume 11, February
Previous Issue
Volume 10, December
 
 

Life, Volume 11, Issue 1 (January 2021) – 72 articles

Cover Story (view full-size image): The endoplasmic reticulum is the protein synthesis factory of the cells. ER stress and unfolded protein response (UPR) are key cellular responses against misfolded protein accumulation in the ER. UPR maintains cellular balance and potentially is involved in pathogenesis of many diseases, including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary (COPD) disease. Both genetic and environmental factors might be involved in UPR-induced IPF and COPD. UPR triggers programmed cell death (apoptosis), epithelial-to-mesenchymal transition (EMT), fibrosis and inflammation and potentially initiates IPF and COPD. Targeting different arms of UPR could be a future therapeutic approach for developing new therapies for IPF and COPD and bring hope to these patients for better quality of life. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 3438 KiB  
Review
Cancer, Retrogenes, and Evolution
by Klaudia Staszak and Izabela Makałowska
Life 2021, 11(1), 72; https://doi.org/10.3390/life11010072 - 19 Jan 2021
Cited by 5 | Viewed by 3744
Abstract
This review summarizes the knowledge about retrogenes in the context of cancer and evolution. The retroposition, in which the processed mRNA from parental genes undergoes reverse transcription and the resulting cDNA is integrated back into the genome, results in additional copies of existing [...] Read more.
This review summarizes the knowledge about retrogenes in the context of cancer and evolution. The retroposition, in which the processed mRNA from parental genes undergoes reverse transcription and the resulting cDNA is integrated back into the genome, results in additional copies of existing genes. Despite the initial misconception, retroposition-derived copies can become functional, and due to their role in the molecular evolution of genomes, they have been named the “seeds of evolution”. It is convincing that retrogenes, as important elements involved in the evolution of species, also take part in the evolution of neoplastic tumors at the cell and species levels. The occurrence of specific “resistance mechanisms” to neoplastic transformation in some species has been noted. This phenomenon has been related to additional gene copies, including retrogenes. In addition, the role of retrogenes in the evolution of tumors has been described. Retrogene expression correlates with the occurrence of specific cancer subtypes, their stages, and their response to therapy. Phylogenetic insights into retrogenes show that most cancer-related retrocopies arose in the lineage of primates, and the number of identified cancer-related retrogenes demonstrates that these duplicates are quite important players in human carcinogenesis. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

11 pages, 3568 KiB  
Article
Smart Nanoformulation Based on Polymeric Magnetic Nanoparticles and Vincristine Drug: A Novel Therapy for Apoptotic Gene Expression in Tumors
by Sharafaldin Al-Musawi, Sumayah Ibraheem, Salih Abdul Mahdi, Salim Albukhaty, Adawiya J. Haider, Afraa Ali Kadhim, Kadhim Ali Kadhim, Haitham Ali Kadhim and Hassan Al-Karagoly
Life 2021, 11(1), 71; https://doi.org/10.3390/life11010071 - 19 Jan 2021
Cited by 32 | Viewed by 3062
Abstract
Background: Advanced nanobiotechnology provides safe and efficient drug delivery systems to deliver chemotherapy that targets cancer cells efficiently. Methods: A polymeric-magnetic nanocarrier was composed of a dextran (DEX) shell, a superparamagnetic iron oxide (SPION) core and was conjugated with folate (FA) to carry [...] Read more.
Background: Advanced nanobiotechnology provides safe and efficient drug delivery systems to deliver chemotherapy that targets cancer cells efficiently. Methods: A polymeric-magnetic nanocarrier was composed of a dextran (DEX) shell, a superparamagnetic iron oxide (SPION) core and was conjugated with folate (FA) to carry the anticancer drug vincristine (VNC) in Tera-1 testicular tumor cells. The molecular mechanisms by which apoptosis was induced were analyzed using flow cytometry and qPCR, which exhibited anticancer activity of nanoparticles (NPs). Results: This nanocarrier revealed a controlled release of VNC in citrate and phosphate buffer solutions that were maintained at pH 5.5 and pH 7.4, respectively. The Inhibitory concentration (IC50) values were greater than 5 mg/mL and displayed ten times higher cytotoxicity than the comparable free drug concentration. The Caspase-9 and P53 expressions were increased, whereas P21 and AKt1 decreased noticeably in the treated cells. The results point to the possible activation of apoptosis following treatment with NPs loaded with vincristine. Full article
(This article belongs to the Special Issue 2020: A 10 Years Journey—Advances in Life Sciences)
Show Figures

Figure 1

12 pages, 710 KiB  
Review
The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases
by Peng-Zhou Hang, Hua Zhu, Pei-Feng Li, Jie Liu, Feng-Qin Ge, Jing Zhao and Zhi-Min Du
Life 2021, 11(1), 70; https://doi.org/10.3390/life11010070 - 19 Jan 2021
Cited by 25 | Viewed by 3643
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most abundant neurotrophins in the central nervous system. Numerous studies suggest that BDNF has extensive roles by binding to its specific receptor, tropomyosin-related kinase receptor B (TrkB), and thereby triggering downstream signaling pathways. Recently, growing [...] Read more.
Brain-derived neurotrophic factor (BDNF) is one of the most abundant neurotrophins in the central nervous system. Numerous studies suggest that BDNF has extensive roles by binding to its specific receptor, tropomyosin-related kinase receptor B (TrkB), and thereby triggering downstream signaling pathways. Recently, growing evidence highlights that the BDNF/TrkB pathway is expressed in the cardiovascular system and closely associated with the development and outcome of cardiovascular diseases (CVD), including coronary artery disease, heart failure, cardiomyopathy, hypertension, and metabolic diseases. Furthermore, circulating BDNF has also been revealed as a new potential biomarker for both diagnosis and prognosis of CVD. In this review, we discuss the current evidence of the emerging role of BDNF/TrkB signaling and address the challenges that remain in translating these discoveries to novel therapeutic strategies for CVD. Full article
Show Figures

Figure 1

19 pages, 1812 KiB  
Review
Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses
by Inseok Choi, Hyewon Son and Jea-Hyun Baek
Life 2021, 11(1), 69; https://doi.org/10.3390/life11010069 - 19 Jan 2021
Cited by 65 | Viewed by 10085
Abstract
The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria, [...] Read more.
The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria, while the intermediates of the TCA cycle are retained inside mitochondria due to their polarity and hydrophilicity. Under cell stress conditions, mitochondria can become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss its implication for immune activation and suppression. Full article
(This article belongs to the Special Issue Metabolism in Health and Disease 2020)
Show Figures

Figure 1

13 pages, 1362 KiB  
Article
Effect of Chlorination on Microbiological Quality of Effluent of a Full-Scale Wastewater Treatment Plant
by Ioanna Zerva, Nikolaos Remmas, Ifigeneia Kagalou, Paraschos Melidis, Marina Ariantsi, Georgios Sylaios and Spyridon Ntougias
Life 2021, 11(1), 68; https://doi.org/10.3390/life11010068 - 19 Jan 2021
Cited by 15 | Viewed by 3417
Abstract
The evaluation of effluent wastewater quality mainly relies on the assessment of conventional bacterial indicators, such as fecal coliforms and enterococci; however, little is known about opportunistic pathogens, which can resist chlorination and may be transmitted in aquatic environments. In contrast to conventional [...] Read more.
The evaluation of effluent wastewater quality mainly relies on the assessment of conventional bacterial indicators, such as fecal coliforms and enterococci; however, little is known about opportunistic pathogens, which can resist chlorination and may be transmitted in aquatic environments. In contrast to conventional microbiological methods, high-throughput molecular techniques can provide an accurate evaluation of effluent quality, although a limited number of studies have been performed in this direction. In this work, high-throughput amplicon sequencing was employed to assess the effectiveness of chlorination as a disinfection method for secondary effluents. Common inhabitants of the intestinal tract, such as Bacteroides, Arcobacter and Clostridium, and activated sludge denitrifiers capable of forming biofilms, such as Acidovorax, Pseudomonas and Thauera, were identified in the chlorinated effluent. Chloroflexi with dechlorination capability and the bacteria involved in enhanced biological phosphorus removal, i.e., Candidatus Accumulibacter and Candidatus Competibacter, were also found to resist chlorination. No detection of Escherichia indicates the lack of fecal coliform contamination. Mycobacterium spp. were absent in the chlorinated effluent, whereas toxin-producing cyanobacteria of the genera Anabaena and Microcystis were identified in low abundances. Chlorination significantly affected the filamentous bacteria Nocardioides and Gordonia, whereas Zoogloea proliferated in the disinfected effluent. Moreover, perchlorate/chlorate- and organochlorine-reducing bacteria resisted chlorination. Full article
(This article belongs to the Special Issue Microbial Degradation and Biosorbents)
Show Figures

Figure 1

8 pages, 1279 KiB  
Communication
Dysfunction of Mitochondrial Dynamics in Drosophila Model of Diabetic Nephropathy
by Kiyoung Kim, Sun Joo Cha, Hyun-Jun Choi, Jeong Suk Kang and Eun Young Lee
Life 2021, 11(1), 67; https://doi.org/10.3390/life11010067 - 18 Jan 2021
Cited by 6 | Viewed by 2977
Abstract
Although mitochondrial dysfunction is associated with the development and progression of diabetic nephropathy (DN), its mechanisms are poorly understood, and it remains debatable whether mitochondrial morphological change is a cause of DN. In this study, a Drosophila DN model was established by treating [...] Read more.
Although mitochondrial dysfunction is associated with the development and progression of diabetic nephropathy (DN), its mechanisms are poorly understood, and it remains debatable whether mitochondrial morphological change is a cause of DN. In this study, a Drosophila DN model was established by treating a chronic high-sucrose diet that exhibits similar phenotypes in animals. Results showed that flies fed a chronic high-sucrose diet exhibited a reduction in lifespan, as well as increased lipid droplets in fat body tissue. Furthermore, the chronic high-sucrose diet effectively induced the morphological abnormalities of nephrocytes in Drosophila. High-sucrose diet induced mitochondria fusion in nephrocytes by increasing Opa1 and Marf expression. These findings establish Drosophila as a useful model for studying novel regulators and molecular mechanisms for imbalanced mitochondrial dynamics in the pathogenesis of DN. Furthermore, understanding the pathology of mitochondrial dysfunction regarding morphological changes in DN would facilitate the development of novel therapeutics. Full article
(This article belongs to the Collection Research Updates in Chronic Kidney Disease)
Show Figures

Figure 1

9 pages, 1875 KiB  
Article
Some Special Aspects of Liver Repair after Resection and Administration of Multipotent Stromal Cells in Experiment
by Igor Maiborodin, Elena Lushnikova, Marina Klinnikova and Swetlana Klochkova
Life 2021, 11(1), 66; https://doi.org/10.3390/life11010066 - 18 Jan 2021
Cited by 4 | Viewed by 1630
Abstract
Changes in rat liver after resection and injection of autologous multipotent mesenchymal stromal cells of bone marrow origin (MSCs) transfected with the GFP gene and cell membranes stained with red-fluorescent lipophilic membrane dye were studied by light microscopy. It was found that after [...] Read more.
Changes in rat liver after resection and injection of autologous multipotent mesenchymal stromal cells of bone marrow origin (MSCs) transfected with the GFP gene and cell membranes stained with red-fluorescent lipophilic membrane dye were studied by light microscopy. It was found that after the introduction of MSCs into the damaged liver, their differentiation into any cells was not found. However, under the conditions of MSCs use, the number of neutrophils in the parenchyma normalizes earlier, and necrosis and hemorrhages disappear more quickly. It was concluded that the use of MSCs at liver resection for the rapid restoration of an organ is inappropriate, since the injected cells in vivo do not differentiate either into hepatocytes, into epithelial cells of bile capillaries, into endotheliocytes and pericytes of the vascular membranes, into fibroblasts of the scar or other connective tissue structures, or into any other cells present in the liver. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

26 pages, 1398 KiB  
Review
Systemic Inflammation Associated with Immune Reconstitution Inflammatory Syndrome in Persons Living with HIV
by Caian L. Vinhaes, Mariana Araujo-Pereira, Rafael Tibúrcio, Juan M. Cubillos-Angulo, Fernanda O. Demitto, Kevan M. Akrami and Bruno B. Andrade
Life 2021, 11(1), 65; https://doi.org/10.3390/life11010065 - 18 Jan 2021
Cited by 18 | Viewed by 5235
Abstract
Antiretroviral therapy (ART) has represented a major advancement in the care of people living with HIV (PLWHH), resulting in significant reductions in morbidity and mortality through immune reconstitution and attenuation of homeostatic disruption. Importantly, restoration of immune function in PLWH with opportunistic infections [...] Read more.
Antiretroviral therapy (ART) has represented a major advancement in the care of people living with HIV (PLWHH), resulting in significant reductions in morbidity and mortality through immune reconstitution and attenuation of homeostatic disruption. Importantly, restoration of immune function in PLWH with opportunistic infections occasionally leads to an intense and uncontrolled cytokine storm following ART initiation known as immune reconstitution inflammatory syndrome (IRIS). IRIS occurrence is associated with the severe and rapid clinical deterioration that results in significant morbidity and mortality. Here, we detail the determinants underlying IRIS development in PLWH, compiling the available knowledge in the field to highlight details of the inflammatory responses in IRIS associated with the most commonly reported opportunistic pathogens. This review also highlights gaps in the understanding of IRIS pathogenesis and summarizes therapeutic strategies that have been used for IRIS. Full article
(This article belongs to the Special Issue Immune Reconstitution Disorders)
Show Figures

Figure 1

14 pages, 11167 KiB  
Article
Efficient Production of Chimeric Hepatitis B Virus-Like Particles Bearing an Epitope of Hepatitis E Virus Capsid by Transient Expression in Nicotiana benthamiana
by Gergana Zahmanova, Milena Mazalovska, Katerina Takova, Valentina Toneva, Ivan Minkov, Hadrien Peyret and George Lomonossoff
Life 2021, 11(1), 64; https://doi.org/10.3390/life11010064 - 17 Jan 2021
Cited by 15 | Viewed by 3983
Abstract
The core antigen of hepatitis B virus (HBcAg) is capable of self-assembly into virus-like particles (VLPs) when expressed in a number of heterologous systems. Such VLPs are potential carriers of foreign antigenic sequences for vaccine design. In this study, we evaluated the production [...] Read more.
The core antigen of hepatitis B virus (HBcAg) is capable of self-assembly into virus-like particles (VLPs) when expressed in a number of heterologous systems. Such VLPs are potential carriers of foreign antigenic sequences for vaccine design. In this study, we evaluated the production of chimeric HBcAg VLPs presenting a foreign epitope on their surface, the 551–607 amino acids (aa) immunological epitope of the ORF2 capsid protein of hepatitis E virus. A chimeric construct was made by the insertion of 56 aa into the immunodominant loop of the HBcAg. The sequences encoding the chimera were inserted into the pEAQ-HT vector and infiltrated into Nicotiana benthamiana leaves. The plant-expressed chimeric HBcHEV ORF2 551–607 protein was recognized by an anti-HBcAg mAb and anti-HEV IgG positive swine serum. Electron microscopy showed that plant-produced chimeric protein spontaneously assembled into “knobbly” ~34 nm diameter VLPs. This study shows that HBcAg is a promising carrier platform for the neutralizing epitopes of hepatitis E virus (HEV) and the chimeric HBcAg/HEV VLPs could be a candidate for a bivalent vaccine. Full article
(This article belongs to the Special Issue Capsid Protein)
Show Figures

Figure 1

13 pages, 11240 KiB  
Review
Vascular Wall Reactions to Coronary Stents—Clinical Implications for Stent Failure
by Tommaso Gori
Life 2021, 11(1), 63; https://doi.org/10.3390/life11010063 - 17 Jan 2021
Cited by 11 | Viewed by 4972
Abstract
Coronary stents belong to the most commonly implanted devices worldwide. A number of different types of stent exist, with very different mechanical and biochemical characteristics that influence their interactions with vascular tissues. Inappropriate inflammatory reactions are the major cause of the two major [...] Read more.
Coronary stents belong to the most commonly implanted devices worldwide. A number of different types of stent exist, with very different mechanical and biochemical characteristics that influence their interactions with vascular tissues. Inappropriate inflammatory reactions are the major cause of the two major complications that follow implantation of stents in a percentage as high as 5–20%. It is therefore important to understand these reactions and how different they are among different generations of stents. Full article
(This article belongs to the Special Issue 2020: A 10 Years Journey—Advances in Life Sciences)
Show Figures

Figure 1

34 pages, 2151 KiB  
Review
Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination
by Mathilde Pruvost and Sarah Moyon
Life 2021, 11(1), 62; https://doi.org/10.3390/life11010062 - 15 Jan 2021
Cited by 8 | Viewed by 3486
Abstract
Oligodendroglial cells are the myelinating cells of the central nervous system. While myelination is crucial to axonal activity and conduction, oligodendrocyte progenitor cells and oligodendrocytes have also been shown to be essential for neuronal support and metabolism. Thus, a tight regulation of oligodendroglial [...] Read more.
Oligodendroglial cells are the myelinating cells of the central nervous system. While myelination is crucial to axonal activity and conduction, oligodendrocyte progenitor cells and oligodendrocytes have also been shown to be essential for neuronal support and metabolism. Thus, a tight regulation of oligodendroglial cell specification, proliferation, and myelination is required for correct neuronal connectivity and function. Here, we review the role of epigenetic modifications in oligodendroglial lineage cells. First, we briefly describe the epigenetic modalities of gene regulation, which are known to have a role in oligodendroglial cells. We then address how epigenetic enzymes and/or marks have been associated with oligodendrocyte progenitor specification, survival and proliferation, differentiation, and finally, myelination. We finally mention how environmental cues, in particular, neuronal signals, are translated into epigenetic modifications, which can directly influence oligodendroglial biology. Full article
(This article belongs to the Special Issue Myelin and Oligodendrocyte-Neuron Interactions)
Show Figures

Figure 1

10 pages, 1103 KiB  
Review
Mitochondrial Functionality in Inflammatory Pathology-Modulatory Role of Physical Activity
by Rafael A. Casuso and Jesús R. Huertas
Life 2021, 11(1), 61; https://doi.org/10.3390/life11010061 - 15 Jan 2021
Cited by 14 | Viewed by 4699
Abstract
The incidence and severity of metabolic diseases can be reduced by introducing healthy lifestyle habits including moderate exercise. A common observation in age-related metabolic diseases is an increment in systemic inflammation (the so-called inflammaging) where mitochondrial reactive oxygen species (ROS) production may have [...] Read more.
The incidence and severity of metabolic diseases can be reduced by introducing healthy lifestyle habits including moderate exercise. A common observation in age-related metabolic diseases is an increment in systemic inflammation (the so-called inflammaging) where mitochondrial reactive oxygen species (ROS) production may have a key role. Exercise prevents these metabolic pathologies, at least in part, due to its ability to alter immunometabolism, e.g., reducing systemic inflammation and by improving immune cell metabolism. Here, we review how exercise regulates immunometabolism within contracting muscles. In fact, we discuss how circulating and resident macrophages alter their function due to mitochondrial signaling, and we propose how these effects can be triggered within skeletal muscle in response to exercise. Finally, we also describe how exercise-induced mitochondrial adaptations can help to fight against virus infection. Moreover, the fact that moderate exercise increases circulating immune cells must be taken into account by public health agencies, as it may help prevent virus spread. This is of interest in order to face not only acute respiratory-related coronavirus (SARS-CoV) responsible for the COVID-19 pandemic but also for future virus infection challenges. Full article
(This article belongs to the Special Issue Impaired Mitochondrial Bioenergetics under Pathological Conditions)
Show Figures

Graphical abstract

42 pages, 1160 KiB  
Review
The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases
by Carmine Izzo, Paolo Vitillo, Paola Di Pietro, Valeria Visco, Andrea Strianese, Nicola Virtuoso, Michele Ciccarelli, Gennaro Galasso, Albino Carrizzo and Carmine Vecchione
Life 2021, 11(1), 60; https://doi.org/10.3390/life11010060 - 15 Jan 2021
Cited by 67 | Viewed by 7936
Abstract
Aging can be seen as process characterized by accumulation of oxidative stress induced damage. Oxidative stress derives from different endogenous and exogenous processes, all of which ultimately lead to progressive loss in tissue and organ structure and functions. The oxidative stress theory of [...] Read more.
Aging can be seen as process characterized by accumulation of oxidative stress induced damage. Oxidative stress derives from different endogenous and exogenous processes, all of which ultimately lead to progressive loss in tissue and organ structure and functions. The oxidative stress theory of aging expresses itself in age-related diseases. Aging is in fact a primary risk factor for many diseases and in particular for cardiovascular diseases and its derived morbidity and mortality. Here we highlight the role of oxidative stress in age-related cardiovascular aging and diseases. We take into consideration the molecular mechanisms, the structural and functional alterations, and the diseases accompanied to the cardiovascular aging process. Full article
Show Figures

Figure 1

19 pages, 6625 KiB  
Article
Insights into the Geomicrobiology of Biovermiculations from Rock Billet Incubation Experiments
by Hilary Kelly, Michael N. Spilde, Daniel S. Jones and Penelope J. Boston
Life 2021, 11(1), 59; https://doi.org/10.3390/life11010059 - 15 Jan 2021
Cited by 2 | Viewed by 1806
Abstract
Biovermiculations are uniquely patterned organic rich sediment formations found on the walls of caves and other subterranean environments. These distinctive worm-like features are the combined result of physical and biological processes. The diverse microbial communities that inhabit biovermiculations may corrode the host rock, [...] Read more.
Biovermiculations are uniquely patterned organic rich sediment formations found on the walls of caves and other subterranean environments. These distinctive worm-like features are the combined result of physical and biological processes. The diverse microbial communities that inhabit biovermiculations may corrode the host rock, form secondary minerals, and produce biofilms that stabilize the sediment matrix, thus altering cave surfaces and contributing to the formation of these wall deposits. In this study, we incubated basalt, limestone, and monzonite rock billets in biovermiculation mixed natural community enrichments for 468–604 days, and used scanning electron microscopy (SEM) to assess surface textures and biofilms that developed over the course of the experiment. We observed alteration of rock billet surfaces associated with biofilms and microbial filaments, particularly etch pits and other corrosion features in olivine and other silicates, calcite dissolution textures, and the formation of secondary minerals including phosphates, clays, and iron oxides. We identified twelve distinct biofilm morphotypes that varied based on rock type and the drying method used in sample preparation. These corrosion features and microbial structures inform potential biological mechanisms for the alteration of cave walls, and provide insight into possible small-scale macroscopically visible biosignatures that could augment the utility of biovermiculations and similarly patterned deposits for astrobiology and life detection applications. Full article
(This article belongs to the Section Astrobiology)
Show Figures

Figure 1

16 pages, 1151 KiB  
Review
Polymorphisms of ATP-Binding Cassette, Sub-Family A, Member 4 (rs560426 and rs481931) and Non-Syndromic Cleft Lip/Palate: A Meta-Analysis
by Mohammad Moslem Imani, Masoud Sadeghi, Santosh Kumar Tadakamadla, Annette Brühl, Dena Sadeghi Bahmani, Mohammad Taheri and Serge Brand
Life 2021, 11(1), 58; https://doi.org/10.3390/life11010058 - 15 Jan 2021
Cited by 6 | Viewed by 1668
Abstract
Background: A number of genes are associated with the incidence of non-syndromic cleft lip/palate (NSCL/P). Studies have shown a significant association between polymorphisms of ATP-binding cassette, sub-family A, member 4 (ABCA4) with the risk of NSCL/P. The present meta-analysis assessed the association between [...] Read more.
Background: A number of genes are associated with the incidence of non-syndromic cleft lip/palate (NSCL/P). Studies have shown a significant association between polymorphisms of ATP-binding cassette, sub-family A, member 4 (ABCA4) with the risk of NSCL/P. The present meta-analysis assessed the association between ABCA4 polymorphisms (rs560426 and rs481931) and the NSCL/P risk by reviewing case-control studies. Methods: Four databases (Scopus; Cochrane Library; Web of Science; and PubMed) were searched for articles published up to June 2020. The Review Manager 5.3 software was used to calculate the crude odds ratio (OR) and 95% confidence interval (CI). Both subgroup analyses for ethnicity and source of controls and a meta-regression related to publication year were conducted. Results: Of 94 retrieved studies, 12 were analyzed in this meta-analysis (2859 NSCL/P patients and 3792 controls for ABCA4 rs560426 polymorphism and 1333 NSCL/P patients and 1884 controls for ABCA4 rs481931 polymorphism). Overall, there was no significant association between both polymorphisms and the risk of NSCL/P. However, subgroup analysis demonstrated that there was a higher risk of NSCL/P for specific models: the allelic model (OR = 1.13; p = 0.03), the homozygote model (OR = 1.53; p = 0.04), and the recessive model (OR = 1.30; p = 0.03) in the Asian ethnicity for the rs560426 polymorphism. Conclusion: The findings confirmed that the NSCL/P risk was significantly associated with the G allele and GG genotype of rs560426 polymorphism but not for rs481931 polymorphism. There were no associations between both polymorphisms (rs560426 and rs481931) and the NSCL/P risk in those of European descent and the mixed ethnicities. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

17 pages, 2173 KiB  
Article
Comparison of Treatment Effects of Different Iron Chelators in Experimental Models of Sepsis
by Christian Lehmann, Maral Aali, Juan Zhou and Bruce Holbein
Life 2021, 11(1), 57; https://doi.org/10.3390/life11010057 - 14 Jan 2021
Cited by 14 | Viewed by 2837
Abstract
Growing evidence indicates that dysregulated iron metabolism with altered and excess iron availability in some body compartments plays a significant role in the course of infection and sepsis in humans. Given that all bacterial pathogens require iron for growth, that iron withdrawal is [...] Read more.
Growing evidence indicates that dysregulated iron metabolism with altered and excess iron availability in some body compartments plays a significant role in the course of infection and sepsis in humans. Given that all bacterial pathogens require iron for growth, that iron withdrawal is a normal component of innate host defenses and that bacterial pathogens have acquired increasing levels of antibiotic resistance, targeting infection and sepsis through use of appropriate iron chelators has potential to provide new therapeutics. We have directly compared the effects of three Food and Drug Administration (FDA)-approved chelators (deferoxamine—DFO; deferiprone—DFP; and deferasirox—DFX), as were developed for treating hematological iron overload conditions, to DIBI, a novel purpose-designed, anti-infective and anti-inflammatory water-soluble hydroxypyridinone containing iron-selective copolymers. Two murine sepsis models, endotoxemia and polymicrobial abdominal sepsis, were utilized to help differentiate anti-inflammatory versus anti-infective activities of the chelators. Leukocyte adhesion, as measured by intravital microscopy, was observed in both models, with DIBI providing the most effective reduction and DFX the poorest. Inflammation in the abdominal sepsis model, assessed by cytokine measurements, indicated exacerbation by DFX and DFO for plasma Interleukin (IL)-6 and reductions to near-control levels for DIBI and DFP. Peritoneal infection burden was reduced 10-fold by DIBI while DFX and DFP provided no reductions. Overall, the results, together with those from other studies, revealed serious limitations for each of the three hematological chelators, i.e., as potentially repurposed for treating infection/sepsis. In contrast, DIBI provided therapeutic benefits, consistent with various in vitro and in vivo results from other studies, supporting the potential for its use in treating sepsis. Full article
(This article belongs to the Special Issue 2020: A 10 Years Journey—Advances in Life Sciences)
Show Figures

Figure 1

12 pages, 1387 KiB  
Review
Long Non-Coding RNAs and Their Potential Roles in the Vector–Host–Pathogen Triad
by Parwez Ahmad, Chaima Bensaoud, Imen Mekki, Mujeeb Ur Rehman and Michail Kotsyfakis
Life 2021, 11(1), 56; https://doi.org/10.3390/life11010056 - 14 Jan 2021
Cited by 27 | Viewed by 5278
Abstract
Long non-coding (lnc)RNAs have emerged as critical regulators of gene expression and are involved in almost every cellular process. They can bind to other molecules including DNA, proteins, or even other RNA types such messenger RNA or small RNAs. LncRNAs are typically expressed [...] Read more.
Long non-coding (lnc)RNAs have emerged as critical regulators of gene expression and are involved in almost every cellular process. They can bind to other molecules including DNA, proteins, or even other RNA types such messenger RNA or small RNAs. LncRNAs are typically expressed at much lower levels than mRNA, and their expression is often restricted to tissue- or time-specific developmental stages. They are also involved in several inter-species interactions, including vector–host–pathogen interactions, where they can be either vector/host-derived or encoded by pathogens. In these interactions, they function via multiple mechanisms including regulating pathogen growth and replication or via cell-autonomous antimicrobial defense mechanisms. Recent advances suggest that characterizing lncRNAs and their targets in different species may hold the key to understanding the role of this class of non-coding RNA in interspecies crosstalk. In this review, we present a general overview of recent studies related to lncRNA-related regulation of gene expression as well as their possible involvement in regulating vector–host–pathogen interactions. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

11 pages, 473 KiB  
Article
The Core of Gut Life: Firmicutes Profile in Patients with Relapsing-Remitting Multiple Sclerosis
by Madina Kozhieva, Natalia Naumova, Tatiana Alikina, Alexey Boyko, Valentin Vlassov and Marsel R. Kabilov
Life 2021, 11(1), 55; https://doi.org/10.3390/life11010055 - 14 Jan 2021
Cited by 3 | Viewed by 2140
Abstract
The multiple sclerosis (MS) incidence rate has been increasing in Russia, but the information about the gut bacteriobiome in the MS-afflicted patients is scarce. Using the Illumina MiSeq sequencing of 16S rRNA gene amplicons, we aimed to analyze the Firmicutes phylum and its [...] Read more.
The multiple sclerosis (MS) incidence rate has been increasing in Russia, but the information about the gut bacteriobiome in the MS-afflicted patients is scarce. Using the Illumina MiSeq sequencing of 16S rRNA gene amplicons, we aimed to analyze the Firmicutes phylum and its taxa in a cohort of Moscow patients with relapsing-remitting MS, assessing the effects of age, BMI, disease modifying therapy (DMT), disability (EDSS), and gender. Among 1252 identified bacterial OTUs, 857 represented Firmicutes. The phylum was the most abundant also in sequence reads, overall averaging 74 ± 13%. The general linear model (GLM) analysis implicated Firmicutes/Clostridia/Clostridiales/Lachospiraceae/Blautia/Blautia wexlerae as increasing with BMI, and only Lachospiraceae/Blautia/Blautia wexlerae as increasing with age. A marked DMT-related decrease in Firmicutes was observed in females at the phylum, class (Clostridia), and order (Clostridiales) levels. The results of our study implicate DMT and gender as factors shaping the fecal Firmicutes assemblages. Together with the gender-dependent differential MS incidence growth rate in the country, the results suggest the likely involvement of gender-specific pathoecological mechanisms underlying the occurrence of the disease, switching between its phenotypes and response to disease-modifying therapies. Overall, the presented profile of Firmicutes can be used as a reference for more detailed research aimed at elucidating the contribution of this core phylum and its lower taxa into the etiology and progression of relapsing-remitting multiple sclerosis. Full article
Show Figures

Figure 1

13 pages, 1556 KiB  
Review
Hibernation as a Tool for Radiation Protection in Space Exploration
by Anggraeini Puspitasari, Matteo Cerri, Akihisa Takahashi, Yukari Yoshida, Kenji Hanamura and Walter Tinganelli
Life 2021, 11(1), 54; https://doi.org/10.3390/life11010054 - 14 Jan 2021
Cited by 12 | Viewed by 4592
Abstract
With new and advanced technology, human exploration has reached outside of the Earth’s boundaries. There are plans for reaching Mars and the satellites of Jupiter and Saturn, and even to build a permanent base on the Moon. However, human beings have evolved on [...] Read more.
With new and advanced technology, human exploration has reached outside of the Earth’s boundaries. There are plans for reaching Mars and the satellites of Jupiter and Saturn, and even to build a permanent base on the Moon. However, human beings have evolved on Earth with levels of gravity and radiation that are very different from those that we have to face in space. These issues seem to pose a significant limitation on exploration. Although there are plausible solutions for problems related to the lack of gravity, it is still unclear how to address the radiation problem. Several solutions have been proposed, such as passive or active shielding or the use of specific drugs that could reduce the effects of radiation. Recently, a method that reproduces a mechanism similar to hibernation or torpor, known as synthetic torpor, has started to become possible. Several studies show that hibernators are resistant to acute high-dose-rate radiation exposure. However, the underlying mechanism of how this occurs remains unclear, and further investigation is needed. Whether synthetic hibernation will also protect from the deleterious effects of chronic low-dose-rate radiation exposure is currently unknown. Hibernators can modulate their neuronal firing, adjust their cardiovascular function, regulate their body temperature, preserve their muscles during prolonged inactivity, regulate their immune system, and most importantly, increase their radioresistance during the inactive period. According to recent studies, synthetic hibernation, just like natural hibernation, could mitigate radiation-induced toxicity. In this review, we see what artificial hibernation is and how it could help the next generation of astronauts in future interplanetary missions. Full article
(This article belongs to the Special Issue Radiobiology in Space)
Show Figures

Figure 1

16 pages, 726 KiB  
Review
Clinical Implications of Uric Acid in Heart Failure: A Comprehensive Review
by Marko Kumrić, Josip A Borovac, Tina Tičinović Kurir and Joško Božić
Life 2021, 11(1), 53; https://doi.org/10.3390/life11010053 - 14 Jan 2021
Cited by 16 | Viewed by 4266
Abstract
Affecting more than 26 million people worldwide and with rising prevalence, heart failure (HF) represents a major global health problem. Hence, further research is needed in order to abate poor HF outcomes and mitigate significant expenses that burden health care systems. Based on [...] Read more.
Affecting more than 26 million people worldwide and with rising prevalence, heart failure (HF) represents a major global health problem. Hence, further research is needed in order to abate poor HF outcomes and mitigate significant expenses that burden health care systems. Based on available data, experts agree that there is an urgent need for a cost-effective prognostic biomarker in HF. Although a significant number of biomarkers have already been investigated in this setting, the clinical utility of adding biomarker evaluation to routine HF care still remains ambiguous. Specifically, in this review we focused on uric acid (UA), a purine metabolism detriment whose role as cardiovascular risk factor has been exhaustingly debated for decades. Multiple large population studies indicate that UA is an independent predictor of mortality in acute and chronic HF, making it a significant prognostic factor in both settings. High serum levels have been also associated with an increased incidence of HF, thus expanding the clinical utility of UA. Importantly, emerging data suggests that UA is also implicated in the pathogenesis of HF, which sheds light on UA as a feasible therapeutic target. Although to date clinical studies have not been able to prove the benefits of xanthine oxidase in HF patients, we discuss the putative role of UA and xanthine oxidase in the pathophysiology of HF as a therapeutic target. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

15 pages, 488 KiB  
Review
Human Umbilical Cord: Information Mine in Sex-Specific Medicine
by Ilaria Campesi, Flavia Franconi, Andrea Montella, Salvatore Dessole and Giampiero Capobianco
Life 2021, 11(1), 52; https://doi.org/10.3390/life11010052 - 13 Jan 2021
Cited by 11 | Viewed by 3167
Abstract
Biological differences between sexes should be considered in all stages of research, as sexual dimorphism starts in utero leading to sex-specific fetal programming. In numerous biomedical fields, there is still a lack of stratification by sex despite primary cultured cells retaining memory of [...] Read more.
Biological differences between sexes should be considered in all stages of research, as sexual dimorphism starts in utero leading to sex-specific fetal programming. In numerous biomedical fields, there is still a lack of stratification by sex despite primary cultured cells retaining memory of the sex and of the donor. The sex of donors in biological research must be known because variations in cells and cellular components can be used as endpoints, biomarkers and/or targets of pharmacological studies. This selective review focuses on the current findings regarding sex differences observed in the umbilical cord, a widely used source of research samples, both in the blood and in the circulating cells, as well as in the different cellular models obtainable from it. Moreover, an overview on sex differences in fetal programming is reported. As it emerges that the sex variable is still often forgotten in experimental models, we suggest that it should be mandatory to adopt sex-oriented research, because only awareness of these issues can lead to innovative research. Full article
(This article belongs to the Special Issue Gender-Specific Medicine and Pharmacology)
Show Figures

Figure 1

17 pages, 6237 KiB  
Review
Implication of Contactins in Demyelinating Pathologies
by Ilias Kalafatakis, Maria Savvaki, Theodora Velona and Domna Karagogeos
Life 2021, 11(1), 51; https://doi.org/10.3390/life11010051 - 13 Jan 2021
Cited by 8 | Viewed by 2887
Abstract
Demyelinating pathologies comprise of a variety of conditions where either central or peripheral myelin is attacked, resulting in white matter lesions and neurodegeneration. Myelinated axons are organized into molecularly distinct domains, and this segregation is crucial for their proper function. These defined domains [...] Read more.
Demyelinating pathologies comprise of a variety of conditions where either central or peripheral myelin is attacked, resulting in white matter lesions and neurodegeneration. Myelinated axons are organized into molecularly distinct domains, and this segregation is crucial for their proper function. These defined domains are differentially affected at the different stages of demyelination as well as at the lesion and perilesion sites. Among the main players in myelinated axon organization are proteins of the contactin (CNTN) group of the immunoglobulin superfamily (IgSF) of cell adhesion molecules, namely Contactin-1 and Contactin-2 (CNTN1, CNTN2). The two contactins perform their functions through intermolecular interactions, which are crucial for myelinated axon integrity and functionality. In this review, we focus on the implication of these two molecules as well as their interactors in demyelinating pathologies in humans. At first, we describe the organization and function of myelinated axons in the central (CNS) and the peripheral (PNS) nervous system, further analyzing the role of CNTN1 and CNTN2 as well as their interactors in myelination. In the last section, studies showing the correlation of the two contactins with demyelinating pathologies are reviewed, highlighting the importance of these recognition molecules in shaping the function of the nervous system in multiple ways. Full article
(This article belongs to the Special Issue Myelin and Oligodendrocyte-Neuron Interactions)
Show Figures

Figure 1

9 pages, 246 KiB  
Article
Obstructive Sleep Apnea as a Risk Factor of Insulin Resistance in Nondiabetic Adults
by Monika Michalek-Zrabkowska, Piotr Macek, Helena Martynowicz, Pawel Gac, Grzegorz Mazur, Magda Grzeda and Rafal Poreba
Life 2021, 11(1), 50; https://doi.org/10.3390/life11010050 - 13 Jan 2021
Cited by 15 | Viewed by 2285
Abstract
Objective: The aim of this research was to assess the relationship between prevalence and severity of obstructive sleep apnea (OSA) and insulin resistance among patients with increased risk of OSA without diabetes mellitus. Method and materials: our study group involved 102 individuals with [...] Read more.
Objective: The aim of this research was to assess the relationship between prevalence and severity of obstructive sleep apnea (OSA) and insulin resistance among patients with increased risk of OSA without diabetes mellitus. Method and materials: our study group involved 102 individuals with suspected OSA, mean age 53.02 ± 12.37 years. Data on medical history, medication usage, sleep habits, sleep quality and daytime sleepiness, were obtained using questionnaires. All patients underwent standardized full night polysomnography. Serum fasting insulin and glucose concentration were analyzed, the homeostatic model assessment-insulin resistance (HOMA-IR) index was calculated. Results: polysomnographic study indicated that in the group with OSA mean values of apnea–hypopnea index (AHI), oxygen desaturation index (ODI), duration of SpO2 < 90% and average desaturation drop were significantly higher compared to the group without OSA, while the minimum SpO2 was significantly lower. The carbohydrate metabolism parameters did not differ within those groups. Significantly higher fasting insulin concentration and HOMA-IR index were found in the group with AHI ≥ 15 compared to the group with AHI < 15 and in the group with AHI ≥ 30 compared to the group with AHI < 30. Higher AHI and ODI were independent risk factors for higher fasting insulin concentration and higher HOMA-IR index. Increased duration of SpO2 < 90% was an independent risk factor for higher fasting glucose concentration. Conclusions: Individuals with moderate to severe OSA without diabetes mellitus had a higher prevalence of insulin resistance. Full article
20 pages, 1540 KiB  
Review
Noncoding RNA: An Insight into Chloroplast and Mitochondrial Gene Expressions
by Asha Anand and Gopal Pandi
Life 2021, 11(1), 49; https://doi.org/10.3390/life11010049 - 13 Jan 2021
Cited by 14 | Viewed by 6226
Abstract
Regulation of gene expression in any biological system is a complex process with many checkpoints at the transcriptional, post-transcriptional and translational levels. The control mechanism is mediated by various protein factors, secondary metabolites and a newly included regulatory member, i.e., noncoding RNAs (ncRNAs). [...] Read more.
Regulation of gene expression in any biological system is a complex process with many checkpoints at the transcriptional, post-transcriptional and translational levels. The control mechanism is mediated by various protein factors, secondary metabolites and a newly included regulatory member, i.e., noncoding RNAs (ncRNAs). It is known that ncRNAs modulate the mRNA or protein profiles of the cell depending on the degree of complementary and context of the microenvironment. In plants, ncRNAs are essential for growth and development in normal conditions by controlling various gene expressions and have emerged as a key player to guard plants during adverse conditions. In order to have smooth functioning of the plants under any environmental pressure, two very important DNA-harboring semi-autonomous organelles, namely, chloroplasts and mitochondria, are considered as main players. These organelles conduct the most crucial metabolic pathways that are required to maintain cell homeostasis. Thus, it is imperative to explore and envisage the molecular machineries responsible for gene regulation within the organelles and their coordination with nuclear transcripts. Therefore, the present review mainly focuses on ncRNAs origination and their gene regulation in chloroplasts and plant mitochondria. Full article
(This article belongs to the Special Issue Research Advances in Plant Genomics)
Show Figures

Figure 1

10 pages, 807 KiB  
Article
Flexor Digitorum Brevis Muscle Dry Needling Changes Surface and Plantar Pressures: A Pre-Post Study
by Eva María Martínez-Jiménez, Marta Elena Losa-Iglesias, Marta San Antolín-Gil, Daniel López-López, Carlos Romero-Morales, María Benito-de-Pedro, César Calvo-Lobo and Ricardo Becerro-de-Bengoa-Vallejo
Life 2021, 11(1), 48; https://doi.org/10.3390/life11010048 - 13 Jan 2021
Cited by 5 | Viewed by 2837
Abstract
Background: The effects of the dry needling technique and pain reduction have been demonstrated in numerous quality studies. However, the mechanical effects of dry needling are largely unknown. Methods: A total of 18 subjects with flexor digitorum brevis muscle myofascial trigger point were [...] Read more.
Background: The effects of the dry needling technique and pain reduction have been demonstrated in numerous quality studies. However, the mechanical effects of dry needling are largely unknown. Methods: A total of 18 subjects with flexor digitorum brevis muscle myofascial trigger point were evaluated pre- and post-deep dry needling. We measured static footprint variables in a pre–post study. Main findings: We found differences in rearfoot maximum pressure (119.22–111.63 KPa; p = 0.025), midfoot maximum pressure (13.68–17.26 KPa; p = 0.077), midfoot medium pressure (4.75–6.24 KPa; p = 0.035) and forefoot surface (86.58–81.75 cm2; p = 0.020). All variables with significant differences decrease, with the exception of forefoot surface which showed an increase. Conclusions: After flexor digitorum brevis muscle dry needling, midfoot plantar pressures (maximum and medium) and forefoot surface were increased, and rearfoot maximum pressure was decreased. Full article
(This article belongs to the Special Issue Fasciae from a Molecular and Biomechanical Perspective)
Show Figures

Figure 1

24 pages, 32229 KiB  
Article
Chitin Synthases Are Critical for Reproduction, Molting, and Digestion in the Salmon Louse (Lepeophtheirus salmonis)
by Hulda María Harðardóttir, Rune Male, Frank Nilsen and Sussie Dalvin
Life 2021, 11(1), 47; https://doi.org/10.3390/life11010047 - 13 Jan 2021
Cited by 5 | Viewed by 3103
Abstract
Chitin synthase (CHS) is a large transmembrane enzyme that polymerizes Uridine diphosphate N-acetylglucosamine into chitin. The genomes of insects often encode two chitin synthases, CHS1 and CHS2. Their functional roles have been investigated in several insects: CHS1 is mainly responsible for synthesizing [...] Read more.
Chitin synthase (CHS) is a large transmembrane enzyme that polymerizes Uridine diphosphate N-acetylglucosamine into chitin. The genomes of insects often encode two chitin synthases, CHS1 and CHS2. Their functional roles have been investigated in several insects: CHS1 is mainly responsible for synthesizing chitin in the cuticle and CHS2 in the midgut. Lepeophtheirus salmonis is an ectoparasitic copepod on salmonid fish, which causes significant economic losses in aquaculture. In the present study, the tissue-specific localization, expression, and functional role of L. salmonis chitin synthases, LsCHS1 and LsCHS2, were investigated. The expressions of LsCHS1 and LsCHS2 were found in oocytes, ovaries, intestine, and integument. Wheat germ agglutinin (WGA) chitin staining signals were detected in ovaries, oocytes, intestine, cuticle, and intestine in adult female L. salmonis. The functional roles of the LsCHSs were investigated using RNA interference (RNAi) to silence the expression of LsCHS1 and LsCHS2. Knockdown of LsCHS1 in pre-adult I lice resulted in lethal phenotypes with cuticle deformation and deformation of ovaries and oocytes in adult lice. RNAi knockdown of LsCHS2 in adult female L. salmonis affected digestion, damaged the gut microvilli, reduced muscular tissues around the gut, and affected offspring. The results demonstrate that both LsCHS1 and LsCHS2 are important for the survival and reproduction in L. salmonis. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

12 pages, 3275 KiB  
Article
Comparison of Different Signal Peptides for the Efficient Secretion of the Sweet-Tasting Plant Protein Brazzein in Pichia pastoris
by Fabrice Neiers, Christine Belloir, Nicolas Poirier, Christian Naumer, Michael Krohn and Loïc Briand
Life 2021, 11(1), 46; https://doi.org/10.3390/life11010046 - 13 Jan 2021
Cited by 17 | Viewed by 4810
Abstract
Brazzein is a small sweet-tasting protein found in the red berries of a West African evergreen shrub, Pentadiplandra brazzeana Baillon. Brazzein is highly soluble and stable over a large pH range and at high temperatures, which are characteristics that suggest its use as [...] Read more.
Brazzein is a small sweet-tasting protein found in the red berries of a West African evergreen shrub, Pentadiplandra brazzeana Baillon. Brazzein is highly soluble and stable over a large pH range and at high temperatures, which are characteristics that suggest its use as a natural sweetener. However, Pentadiplandra brazzeana culture is difficult at a large scale, limiting the natural source of brazzein. Heterologous expression of brazzein has been established in numerous systems, including bacteria, yeast, and transgenic plants. Brazzein requires four disulfide bonds to be active in eliciting an intense sweet taste, and the yeast Pichia pastoris appears to be one of the best options for obtaining functional brazzein in high quantities. Employing yeast secretion in the culture medium allows us to obtain fully active brazzein and facilitate purification later. To increase yeast secretion, we compared seven different signal peptides to successfully achieve brazzein secretion using the yeast P. pastoris. The brazzein proteins corresponding to these signal peptides elicited activation of the sweet taste receptor functionally expressed in a cellular assay. Among these tested signal peptides, three resulted in the secretion of brazzein at high levels. Full article
(This article belongs to the Special Issue Structure, Function and New Developments of Sweet Proteins)
Show Figures

Figure 1

19 pages, 700 KiB  
Review
Extracellular Vesicles in Viral Pathogenesis: A Case of Dr. Jekyll and Mr. Hyde
by Lada Purvinsh, Andrey Gorshkov, Aleksandra Brodskaia and Andrey Vasin
Life 2021, 11(1), 45; https://doi.org/10.3390/life11010045 - 13 Jan 2021
Cited by 10 | Viewed by 3819
Abstract
Secretion of extracellular vesicles (EVs) is a fundamental property of living cells. EVs are known to transfer biological signals between cells and thus regulate the functional state of recipient cells. Such vesicles mediate the intercellular transport of many biologically active molecules (proteins, nucleic [...] Read more.
Secretion of extracellular vesicles (EVs) is a fundamental property of living cells. EVs are known to transfer biological signals between cells and thus regulate the functional state of recipient cells. Such vesicles mediate the intercellular transport of many biologically active molecules (proteins, nucleic acids, specific lipids) and participate in regulation of key physiological processes. In addition, EVs are involved in the pathogenesis of multiple diseases: infectious, neurodegenerative, and oncological. The current EV classification into microvesicles, apoptotic bodies, and exosomes is based on their size, pathways of cellular biogenesis, and molecular composition. This review is focused on analysis of the role of EVs (mainly exosomes) in the pathogenesis of viral infection. We briefly characterize the biogenesis and molecular composition of various EV types. Then, we consider EV-mediated pro- and anti-viral mechanisms. EV secretion by infected cells can be an important factor of virus spread in target cell populations, or a protective factor limiting viral invasion. The data discussed in this review, on the effect of EV secretion by infected cells on processes in neighboring cells and on immune cells, are of high significance in the search for new therapeutic approaches and for design of new generations of vaccines. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

13 pages, 4392 KiB  
Article
Machine Learning Algorithms Applied to Identify Microbial Species by Their Motility
by Max Riekeles, Janosch Schirmack and Dirk Schulze-Makuch
Life 2021, 11(1), 44; https://doi.org/10.3390/life11010044 - 12 Jan 2021
Cited by 6 | Viewed by 3106
Abstract
(1) Background: Future missions to potentially habitable places in the Solar System require biochemistry-independent methods for detecting potential alien life forms. The technology was not advanced enough for onboard machine analysis of microscopic observations to be performed in past missions, but recent increases [...] Read more.
(1) Background: Future missions to potentially habitable places in the Solar System require biochemistry-independent methods for detecting potential alien life forms. The technology was not advanced enough for onboard machine analysis of microscopic observations to be performed in past missions, but recent increases in computational power make the use of automated in-situ analyses feasible. (2) Methods: Here, we present a semi-automated experimental setup, capable of distinguishing the movement of abiotic particles due to Brownian motion from the motility behavior of the bacteria Pseudoalteromonas haloplanktis, Planococcus halocryophilus, Bacillus subtilis, and Escherichia coli. Supervised machine learning algorithms were also used to specifically identify these species based on their characteristic motility behavior. (3) Results: While we were able to distinguish microbial motility from the abiotic movements due to Brownian motion with an accuracy exceeding 99%, the accuracy of the automated identification rates for the selected species does not exceed 82%. (4) Conclusions: Motility is an excellent biosignature, which can be used as a tool for upcoming life-detection missions. This study serves as the basis for the further development of a microscopic life recognition system for upcoming missions to Mars or the ocean worlds of the outer Solar System. Full article
(This article belongs to the Section Astrobiology)
Show Figures

Figure 1

16 pages, 5069 KiB  
Article
Synthesis, Properties, and Biodegradability of Thermoplastic Elastomers Made from 2-Methyl-1,3-propanediol, Glutaric Acid and Lactide
by Lamya Zahir, Takumitsu Kida, Ryo Tanaka, Yuushou Nakayama, Takeshi Shiono, Norioki Kawasaki, Naoko Yamano and Atsuyoshi Nakayama
Life 2021, 11(1), 43; https://doi.org/10.3390/life11010043 - 12 Jan 2021
Cited by 4 | Viewed by 2934
Abstract
An innovative type of biodegradable thermoplastic elastomers with improved mechanical properties from very common and potentially renewable sources, poly(L-lactide)-b-poly(2-methyl-1,3-propylene glutarate)-b-poly(L-lactide) (PLA-b-PMPG-b-PLA)s, has been developed for the first time. PLA-b-PMPG-b-PLAs were synthesized [...] Read more.
An innovative type of biodegradable thermoplastic elastomers with improved mechanical properties from very common and potentially renewable sources, poly(L-lactide)-b-poly(2-methyl-1,3-propylene glutarate)-b-poly(L-lactide) (PLA-b-PMPG-b-PLA)s, has been developed for the first time. PLA-b-PMPG-b-PLAs were synthesized by polycondensation of 2-methyl-1,3-propanediol and glutaric acid and successive ring-opening polymerization of L-lactide, where PMPG is an amorphous central block with low glass transition temperature and PLA is hard semicrystalline terminal blocks. The copolymers showed glass transition temperature at lower than −40 °C and melting temperature at 130–152 °C. The tensile tests of these copolymers were also performed to evaluate their mechanical properties. The degradation of the copolymers and PMPG by enzymes proteinase K and lipase PS were investigated. Microbial biodegradation in seawater was also performed at 27 °C. The triblock copolymers and PMPG homopolymer were found to show 9–15% biodegradation within 28 days, representing their relatively high biodegradability in seawater. The macromolecular structure of the triblock copolymers of PLA and PMPG can be controlled to tune their mechanical and biodegradation properties, demonstrating their potential use in various applications. Full article
(This article belongs to the Special Issue Microbial Degradation and Biosorbents)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop