
machines

Article

Iterative Parameter Optimization for Multiple Switching
Control Applied to a Precision Stage for Microfabrication

Fu-Cheng Wang 1,* , Jun-Fu Lu 1, Tien-Tung Chung 1 and Jia-Yush Yen 1,2

����������
�������

Citation: Wang, F.-C.; Lu, J.-F.;

Chung, T.-T.; Yen, J.-Y. Iterative

Parameter Optimization for Multiple

Switching Control Applied to a

Precision Stage for Microfabrication.

Machines 2021, 9, 153. https://

doi.org/10.3390/machines9080153

Academic Editor: Christoph M. Hackl

Received: 9 July 2021

Accepted: 30 July 2021

Published: 3 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan;
r07522806@ntu.edu.tw (J.-F.L.); ttchung@ntu.edu.tw (T.-T.C.); jyen@ntu.edu.tw (J.-Y.Y.)

2 Department of Mechanical Engineering, National Taiwan University of Science and Technology,
Taipei 10617, Taiwan

* Correspondence: fcw@ntu.edu.tw; Tel.: +886-233662680

Abstract: This paper proposes an iteration procedure to derive optimal parameters for a multiple
switching control architecture. Control design is usually a compromise between various perfor-
mance requirements; therefore, switching between multiple controllers that achieve a particular
performance under different conditions can potentially improve the overall system behavior. In this
paper, we consider a control-switching mechanism that can automatically switch controllers based
on the prediction of future responses, and we develop an iteration procedure that can optimize the
mechanism parameters, such as the number of controllers and the prediction horizon. We then im-
plement the proposed mechanism in a long-stroke precision stage, and demonstrate the effectiveness
of switching robust control with simulations and experiments. Lastly, we integrate the stage with a
two-photon polymerization system to fabricate microlenses. The optical properties confirm that the
proposed iterative parameter optimization procedure is effective in improving the performance of
microfabrication employing multiple switching control.

Keywords: switching control; iterative parameter tuning; robust control; precision positioning; PZT
stage; two-photon polymerization

1. Introduction

Control design is a compromise between various performance requirements. For
example, controllers that provide fast transient responses tend to have large overshoots,
while controllers that provide smooth responses tend to have long rise times. Therefore,
switching controllers can potentially achieve better performance than can be achieved
using a single controller. For instance, Solihin et al. [1] designed a fuzzy-tuned proportional
integral derivative (PID) controller for a gantry crane. They updated the PID parameters
according to the errors to accomplish smaller settling times and overshoots than were
obtained with the original PID control. Bashash et al. [2] designed two controllers for a
piezoelectric transducer (PZT) stage and switched them based on the derivatives of position
errors. Qin et al. [3] designed a fuzzy adaptive PID controller for a fuel cell power plant
and updated the PID parameters using fuzzy logic algorithms. Xu et al. [4] designed a
fuzzy PID controller for marine vessels, where the PID coefficients were automatically
adjusted by positioning accuracy. Armaghan et al. [5] designed two PID controllers and a
switching logic for a magnetically driven system. Asl et al. [6] proposed a fuzzy switching
control, which fused a PID controller and a linear quadratic regulator, for a unicycle
robot. Rana et al. [7] applied model predictive control to improve the high-speed imaging
performance of an atomic force microscope. Wang et al. [8] applied an integral control
with tunable gains to a PZT stage, where the integrator eliminated steady-state errors
and the varying gains provided better performance than were obtained using a fixed
gain. The idea was extended in [9] by switching two robust controllers based on the
prediction of future responses. Wang et al. [10] further proposed multiple-switch robust
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control, which considered multiple control sequences and obtained more performance
benefits than were attained with a single switching control. In this paper, we propose an
iterative algorithm to tune the mechanism parameters for further improvement of system
performance, because the parameters of the multiple control mechanism can significantly
influence system performance and computing loads.

The stability and performance issues caused by the initial value problem in switching
controls have been considered in much research. For example, Nichols et al. [11] inter-
polated the linear controller parameters among four H∞ robust controllers to remove the
hidden coupling terms. Yamaguchi et al. [12] proposed initial value compensation to
control a hard disk driver. Because control reduction can reduce the initial value problems,
Wang et al. [10] simplified high-order robust controllers into robust PID controllers that
could achieve similar responses to the original controllers. In this paper, we further reduce
the robust controllers to robust proportional–integral (PI) controllers, thereby reducing the
computing loads in the multiple switching control mechanism.

The iterative parameter optimization procedures were then applied to a long-stroke
precision positioning stage employing multiple switching control. This stage consists of a
PZT stage and a motor stage, where the PZT stage achieves nanometer-level precision and
the motor stage provides large displacement of up to 10 cm. The PZT stage was frequently
applied for precision positioning because of its high resolution and large driving forces.
However, the displacements of PZTs were usually limited. Therefore, large-travel actuators,
such as linear motors, were normally integrated with the PZT stages to increase their
working ranges. For instance, Wang et al. [8] integrated a motor stage and a PZT stage to
achieve precision positioning for large travels. Hossain and Rahman [13] designed a triple
stage, which consisted of a voice coil motor, a PZT, and a thermal flying-height control.
Because the hysteretic effects of PZTs might degrade system performance, advanced
control methods are usually applied to improve system performance. For example, Zhu
and Rui [14] designed a PID control with an inverse generalized Bouc–Wen model to
improve the precision positioning of a PZT actuator. Wang et al. [8] proposed an integral
control with gain scheduling to a PZT stage. Saleem et al. [15] applied a Bouc–Wen model
and particle swarm optimization (PSO) to compensate for the hysteretic characteristics.
Gan and Zhang [16] developed a generalized Bouc–Wen model to characterize the rate-
dependent hysteresis of PZTs. Fang et al. [17] developed a modified Bouc–Wen model and
designed a fuzzy PID control with an inverse model feedforward compensator for a PZT
stage. Wang et al. [10] proposed an automatic switching control for a PZT stage. Zhang
et al. [18] designed an autonomous switching control to suppress the vibration of a double-
beam system employing piezoelectric shunt damping. In this paper, we designed robust
controllers for the PZT stage and optimized the switching parameters via the proposed
iterative procedures. We then applied similar approaches to the motor stage. Because
the motor stage model is a first-order type, its switching control can be further simplified
to gain scheduling with feedforward control to reduce the computing loads. The two
stages were then combined to demonstrate the system’s capacity for long-stroke precision
positioning. Lastly, we integrated the combined stage with a two-photon polymerization
(TPP) system, and showed the benefits of multiple switching control employing iterative
parameter optimization in microfabrication.

The rest of this paper is arranged as follows: Section 2 introduces the multiple switch-
ing control structure and proposes an iterative procedure to optimize the structure pa-
rameters. Section 3 applies the iterative parameter optimization method to a large-stroke
precision stage. The simulation and experimental results demonstrate the effectiveness
of the proposed iterative parameter tuning. We further integrate the stage with a TPP
system to fabricate microlenses and demonstrate the effectiveness of the proposed iterative
parameter optimization in microfabrication. Lastly, we draw conclusions in Section 4.
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2. Multiple Switching Control with Iterative Parameter Optimization

The multiple switching control architecture is shown in Figure 1, consisting of a
feedback control loop and a response predictor. The former implements the selected
controller to the system, while the latter picks the best controller that provides the optimal
system responses among all potential control sequences. We propose an iterative algorithm
to optimize the structure parameters, such as the number of controllers, the prediction
horizon, and the switching steps.
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Figure 1. The multiple switching control structure.

Because control design is usually a compromise between various performance require-
ments, we can combine the merits of different controllers by switching them at appropriate in-
stances. For example, consider a standard second-order system G(s) = ω2

n/
(
s2 + 2ξωns + ω2

n
)

with ξ= 1 and ωn= 6; the controller design is a compromise between various specifications,
such as the rise time, the overshoot, and the steady-state error. For instance, a controller
C1(s) = 3/s can provide a short rise time with zero steady-state error, but with a large
overshoot, while a controller C2(s) = 0.8/s can achieve small overshoot and zero steady-
state error, but with a long rise time. Therefore, we can combine the advantages of these
two controllers by switching them at the right moments. For example, we can define the
system cost as follows:

J =

√√√√ 1
HP
·

k+Hp

∑
k

(r(k)− y(k))2 (1)

where k is the current step and Hp is the future horizon. That is, the predictor calculates
the future system responses from step k to step k + Hp, and the corresponding cost J, by all
potential control sequences. Then, the optimal control sequence that minimizes J is selected
to control the system. For example, we set Hp = 40 and derive the system response, as
shown in Figure 2, where the switching control achieves short rising time, small overshoot,
and small steady-state error simultaneously.
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Because the performance of the switching control structure can be significantly influ-
enced by the structure parameters, we propose a method to tune these parameters. As
shown in Figure 1, the response predictor estimates future system responses by all possible
control sequences, and selects the optimal control sequence that minimizes certain system
costs. Suppose that there are N controllers, and the number of controller switching steps is
Sp; the number of possible control sequences is then NSP . For instance, suppose that two
controllers—C1 and C2 (i.e., N = 2)—have two switching steps (i.e., Sp = 2); there will be
22 = 4 possible control sequences, as follows: (C1, C1, C1, . . . , C1), (C1, C2, C2, . . . , C2),
(C2, C1, C1, . . . , C1), (C2, C2, C2, . . . , C2). Therefore, the predictor needs to calculate the
system responses employing these four control sequences, and then choose the optimal
control sequence that minimizes certain performance indices.

Although the control parameters can significantly influence the system performance,
simultaneous optimization of these parameters is impractical because of the hardware
computing loads. For example, the predictor needs to estimate the future system responses
in the next Hp steps with NSP control sequences. Therefore, we propose an iterative method
that can tune these parameters one by one at each iteration until they converge. For
example, suppose that we have three structure parameters (N, HP, SP), where N is the
number of controllers, Hp is the prediction horizon, and Sp is the number of switching
steps. The proposed iteration procedures are illustrated as follows (see Figure 3):

1. Set the default parameters (N, HP, SP);
2. Apply (N, HP, SP) to derive an optimized N, labelled as Nopt, which can improve

system performance without exceeding hardware computing limits;
3. Apply (Nopt, HP, SP) to derive an optimized HP, labelled as Hopt

P , which can improve
system performance without exceeding hardware computing limits;

4. Apply (Nopt, Hopt
P , SP) to derive an optimized SP, labelled as Sopt

P , which can improve
system performance without exceeding hardware computing limits;

5. If (Nopt, Hopt
P , Sopt

P ) = (N, HP, SP), then the iteration is terminated, and the optimal
parameters (Nopt, Hopt

P , Sopt
P ) can be implemented by the multiple control structure.

Otherwise, set (N, HP, SP) = (Nopt, Hopt
P , Sopt

P ) and return to step 1.
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3. Iterative Parameter Optimization for the Long-Stroke Precision Stage Employing
Multiple Switching Control

This section applies the proposed iterative parameter tuning method to the long-stroke
precision stage employing multiple switching control. This stage consists of a PZT stage
and a motor stage, as illustrated in Figure 4. The specifications of the stage are illustrated
in Table 1. We apply the switching control mechanism to both stages, and integrate them
for simulations and experiments.

Table 1. Specifications of the long-stroke precision stage.

P-517.RCD PZT Stage [19]
Active axis x, y

Maximum stroke −50 to 50 µm
Mass 1.4 kg

Resolution 1 nm
SVR/150/3 amplifier [20]

Output voltage range −30 to 150 V
Max gain 30 (tunable)

ALS-510-H2 P stepper [21]
Active axis x, y

Maximum stroke 100 mm
Resolution 0.1 µm

Maximum loading 40 kgf
Maximum command 80,000 pulse/sec

ALV-104-HP stepper [22]
Active axis z

Maximum stroke 40 mm
Resolution 0.1 µm

Maximum loading 10 kgf
Maximum command 40,000 pulse/sec
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3.1. Multiple Switching Control for the PZT Stage

The PZT stage [19] has a travel range of 100 µm and is equipped with an encoder
with a resolution of 1.22 nm. We applied PCI-6221 and PCI-6229 data acquisition (DAQ)
cards [23] to measure the stage displacements, and to transmit the control signals within
±5 V. Because the operation voltage of the PZT was −20 to 120 V, we used an SVR/150/3
amplifier [20] to magnify the voltage signals 10-fold and offset 50 V to control the stage
displacements between 0 and 100 µm.

The system model was derived from the following experiments: we applied a swept
sinusoidal voltage signal VP and measured the stage displacements XP from the encoder.
Given the system variation and uncertainties during operations, we repeated the proce-
dures 10 times and obtained the following transfer functions:

Gi
P(s) = TvP→XP , i = 1, 2, . . . , 10 (2)

A nominal plant was selected for the controller design. We assume that a nominal
plant Go

P has the following left coprime factorization [24]:

Go
P = M̃−1Ñ, (3)

where M̃, Ñ ∈ RH∞ and M̃M̃ ∗+ÑÑ∗ = I. Suppose that a perturbed plant G∆
P can be

represented as:

G∆
P =

(
M̃ + ∆M̃

)−1(
Ñ + ∆Ñ

)
, (4)

in which ∆M̃, ∆Ñ ∈ RH∞. The gap between the nominal plant Go
P and the perturbed plant

G∆
P is defined as in [25]. The smallest value of ‖

[
∆M̃∆Ñ

]
‖∞ that perturbs Go

P into G∆
P is

denoted as δ(Go
P, G∆

P ). Based on the gap analyses, the following G1
P was selected as the

nominal plant Go
P, because it minimized the maximum gaps between models:

Go
P = arg

{
ε = min

Go
P

max
Gi

P

δg(G0
P, Gi

P)

}
, ∀i

= G1
P(s) =

1517s3+1.75·105s2+6.053·108s+1.778·1010

s4+292.6s3+4.142·105s2+8.282·107s+2.064·109

(5)
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We designed the following three robust loop-shaping controllers [26] for Go
P:

CF = 67.3s6+4.19×104s5+1.53×1010s3+2.73×1012s2+1.97×1014s+3.79×1015

s7+923s6+6.50×105s5+3.59×108s4+7.48×1010s3+5.45×1012s2+1.04×1014s

CM = 34.8s6+1.81×104s5+1.67×107s4+6.21×109s3+7.40×1011s2+3.26×1013s+4.63×1014

s7+883.2s6+6.19×105s5+3.36×108s4+6.35×1010s3+3.60×1012s2+5.92×1013s

CS = 12.1s6+5912s5+5.77×106s4+2.00×109s3+2.42×1011s2+1.07×1013s+1.52×1014

s7+697s6+5.49×105s5+2.56×108s4+4.20×1010s3+2.34×1012s2+3.87×1013s

(6)

where CF, CM, and CS provide fast, intermediate, and smooth responses, respectively, for
the PZT stage. The control design processes are illustrated in Appendix A, in which the
stability margins of all controllers are greater than the system gap ‖

[
∆M̃∆Ñ

]
‖∞; therefore,

internal stability can be guaranteed during operation.
Because the designed robust controllers are seventh-order controllers, this might

increase the computing loads and cause initial value problems. Therefore, we also apply the
PSO algorithms [27] to approximate these controllers as the following robust PI controllers:

CF = 0.05 +
36.97

s
, CM = 0.08 +

8.01
s

, CS = 0.05 +
3.94

s
(7)

The design of the robust PI controllers is shown in Appendix B. The system responses
by these controllers are illustrated in Figure 5 and Table 2, where the robust PI controllers
provide system responses similar to those of the high-order robust controllers, but with
much simpler forms. That is, the fast controllers CF provide faster responses (i.e., shorter
rise time and settling time), but with larger overshoots than are achieved with the other
controllers. Conversely, the smooth controllers CS give smooth responses (i.e., without
overshoot), but with larger rise times and settling times than are seen for the other con-
trollers. The behaviors of the intermediate controllers CM fall between the fast controllers
and the smooth controllers. We further add an extra controller C4 = 0.07 + 23.01/s with
characteristics between CF and CM. We will demonstrate the possibility of achieving the
merits of these controllers simultaneously with a switching control employing the iterative
optimization procedures.
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We applied the iteration procedures (see Figure 3) to derive the optimal parameters
for the switching control mechanism. The processes are shown in Appendix C, where the
optimal parameters were

(
Nopt = 3, Hopt

P = 20, Sopt
P = 2

)
. Therefore, we implemented

these parameters in the PZT stage employing the multiple control structure, and we
illustrate the system responses in Figure 6. At t = 1 s, the stage began to track a step
command of 10 µm with the fast controller CF. Based on the response prediction, the
switching mechanism switched the controller to CS at t = 1.003 s, and to CM at t = 1.004 s.
Finally, the fast controller CF was chosen at t = 1.02 s to track the step command. As shown
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in Figure 6, the switching control combined the merits of these controllers to achieve a fast
and smooth response.

Table 2. Statistical comparison of the controllers.

Robust Controller Robust PI Controller

CF CM CS CF CM CS
Si

m
.

Rise time (sec) 0.0043 0.0171 0.0622 0.0051 0.0327 0.0692
Settling time (sec) 1.0415 1.0612 1.1331 1.0563 1.0654 1.1283

Overshoot (%) 41.1600 0 0 39.2792 0.0101 0
RMSE (µm) 1.6834 2.0511 2.6434 1.6863 1.8733 2.5951

Ex
p.

Rise time (sec) 0.0043 0.0158 0.0622 0.0038 0.0287 0.0654
Settling time (sec) 1.0647 1.0579 1.1269 1.0495 1.0574 1.1183

Overshoot (%) 54.8200 0.1100 0 47.4300 0.2100 0.0500
RMSE (µm) 1.8872 2.1419 2.7021 1.6934 1.9034 2.4406

Sim.: simulation; Exp.: experiments.
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3.2. Switching Control for the Motor Stage

The motor stage [21,22] has a travel range of 10 cm, and is equipped with an encoder
with a resolution of 0.1 µm. Similarly, we derived its transfer functions from experiments,
and selected the nominal plant, as follows:

Go
M =

0.1
s

(8)

for control design. Because Go
M is first-order, we only need to apply a zero-order control

KP to achieve arbitrary pole placement. Therefore, we designed a gain-scheduling control
with command feedforward, as shown in Figure 7, for the motor stage.
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The gain scheduling control is a stepless switching control based on tracking errors,
while the command feedforward can reduce tracking errors for varying inputs, such as
ramp or sinusoidal inputs. The gain-scheduling control can be represented as C(s) = Kp,
where Kp is adjusted by the following equation:

KP =


1600, if |eM| ≥ 50µm
30 · |eM|+100, if 10 < |eM| < 50µm
400, if |eM| ≤ 10µm

(9)

We applied the motor stage for tracking the ramp and sinusoidal inputs. The results
are shown in Figure 8 and Table 3. First, Figure 8a,b shows the tracking responses to the
ramps of 100 µm/s and 500 µm/s, respectively. The gain-scheduling control was set as
Kp = 400, because the tracking errors were less than 10 µm. Compared to the control used
in [9], the RMSE was decreased from 2.4797 µm to 0.2238 µm for the ramp of 100 µm/s,
and from 8.7794 µm to 0.7851 µm for the ramp of 500 µm/s. Second, the tracking responses
for sinusoidal inputs of 0.1 Hz and 1 Hz are shown in Figure 8c,d, respectively. Similarly,
the gain-scheduling control was set as Kp = 400, because the tracking errors were less than
10 µm. Compared to the control used in [9], the RMSE was reduced from 0.5609 µm to
0.1355 µm for r(t) = sin(0.2πt), and from 5.5460 µm to 0.4161 µm for r(t) = sin(2πt).

Table 3. Tracking performance of the motor stage.

Inputs Ramp Sinusoidal
Sizes 100 µm/s 500 µm/s 0.1 Hz 1 Hz

Si
m

. Phase lag (◦) - - 0 0
Maximum error (µm) 0.3324 1.6622 0.0017 0.171

RMSE (µm) 0.0401 0.2007 0.0013 0.2939

Ex
p.

Phase lag (º) - - 0 0
Maximum error (µm) 0.4000 2.5000 0.3000 1.1267

RMSE(µm) 0.2238 0.7851 0.1355 0.4161
Sim.: simulation; Exp.: experiments.

3.3. The Combined Stage

We integrated the PZT and the motor stage with the control structure, as shown in Figure 9,
where the PZT stage applies the multiple switching control with (N = 3, HP = 20, SP = 2),
while the motor stage employs the gain-scheduling control with command feedforward.
The response predictor also applies a similar layout to estimate the stage responses by all
possible control sequences. The predictor then calculates the corresponding system costs
and selects the optimal control sequence for the PZT stage.
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The motor stage applies gain-scheduling control based on the current positioning
error eM(k) = r(k)− XM(k), where r(k) is the command and XM(k) is the motor stage
position. Considering that the PZT stage has a travel limit of 50 µm, we set the following
anti-lock function:

eP(k) =
{

0, if |e(k)| ≥ 50 µm
r(k)− yM(k)− yP(k), if |e(k)| < 50 µm

(10)

where eP(k) is the error of the PZT stage and e(k) = r(k)− XM(k)− XP(k) is the error
of the combined stage. The PZT stage provides precision positioning using multiple
switching control to regulate the position errors of the combined stage. Because the optimal
parameters for the PZT stage are N = 3 and Sp = 2, the predictor estimates the system
responses and calculates the corresponding system costs with all nine (NSP = 9) possible
control sequences; it then chooses the optimal one to regulate the PZT stage.

For experimental verification, we applied the combined stage to track the word “NTU”
with a scale of 100 mm × 50 mm, as shown in Figure 10a. The experimental results are
illustrated in Figure 10 and Table 4. Compared with previous works [8,9], the RMSE was
reduced, because the multiple switching control can quickly adjust the tracking errors
at the turning points, as shown in Figure 10c,d. For example, the switching mechanism
switched the x-axis controller of the PZT stage from CF to CM at t = 331.990 s, and from CM
to CS at t = 332.060 s. Finally, the intermediate controller CM was chosen at t = 332.080 s to
complete the turning. Similarly, the switching mechanism switched the controller from CF
to CS at t = 564.008 s, from CS to CM at t = 564.023 s, and from CM to CS at t = 564.033 s
to complete tracking the turning point. Compared with previous studies [8,9], parameter
optimization of the switching control led to significantly improved system performance.
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Table 4. Tracking performance of the combined stage.

RMSE

Control method in [8] 203.9 nm
Control method in [9] 140.5 nm

Multiple switching control 136.8 nm

3.4. Microfabrication by Two-Photon Polymerization

We integrated the combined stage with a TPP system, as shown in Figure 11 to
fabricate a microlens. An adaptor with a microscope slide was connected to the PZT
stage, and the laser was projected to fabricate microstructures by hardening the materials
(OrmoComp) on the microscope slide. Note that the adaptor and the microscope slide were
put on the stage when we identified the PZT stage models in Equation (2). Furthermore,
the model variation caused by the loading effects can be neglected because the adaptor is
lightweight. We demonstrate the effectiveness of the proposed control method using the
images and optical properties of the microlens.
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Figure 11. Integration of the combined stage and the TPP system.

The Fresnel zone plate (FZP) is a planar microlens designed to focus light. We designed
an FZP with a diameter of 128 µm, as follows [28]:

rn =

√
n f λ +

1
4

n2λ2 (11)

where n is the number of circles, rn is the radius of the n-th circle, λ is the wavelength in
µm, and f is the focal length of the lens in µm. For example, setting n = 13, λ = 632.8 nm,
and f = 500 µm, the radius is calculated as rn = 18, 25, · · · , 64 µm when n = 1, 2, · · · , 13.
The design and fabrication results are shown in Figure 12.
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We evaluated the optical quality of the FZP by the light intensity and sharpness
detected on the CMOS images. The FZP focused light onto a CMOS camera, as shown
in Figure 13a, where the CMOS image was gray, scaled as black and white. Every pixel
had a value of 0–255 to represent its brightness, as shown in Figure 13b, where 0 and 255
represented an image that was completely black and completely white, respectively. We an-
alyzed the intensity of the image brightness along the red line, as shown in Figure 13c. The
light sharpness was defined as the derivative of the intensity, as illustrated in Figure 13d.
The tracking RMSE of the combined stage and the optical properties of the microlens
are shown in Table 5. Compared with previous reports [8,9], the optical qualities of the
microlens were greatly improved. The proposed multiple switching control employing
iterative parameter tuning is therefore deemed effective in improving microfabrication.
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Table 5. Comparison of the lens performance.

Control in [8] Control in [9] Proposed Control

Intensity 164 255 255

Sharpness 9.15 11.7 15.8

4. Conclusions

This paper proposed an iteration procedure that optimizes the structure parameters
for multiple switching control. Because control design is a compromise between various
performance requirements, the merits of different controllers can potentially be achieved
by switching them at appropriate moments. We introduced a multiple switching control
structure and proposed an iteration method to optimize the structure parameters, such as
the number of controllers and the prediction horizon. The iterative method began with
a default set of parameters, which were iteratively tuned until they converged. We then
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applied the proposed iterative optimization method to a long-stroke precision stage, and
demonstrated its effectiveness via simulations and experiments. We further integrated the
stage with a TPP system to fabricate a microlens and evaluate its optical properties. The
results show that the proposed iterative method for multiple switching control is effective in
improving the performance of microfabrication systems. The developed iteration parameter
optimization method for multiple switching control is a general control technique, and
can also be applied to other control systems—such as atomic force microscopes [29,30], air-
bearing planar stages [31], and visual-servo systems [32]—to improve system performance.
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Appendix A. Robust Control Design for the PZT Stage

We applied loop-shaping techniques (see Figure 2 of [10]), to design robust controllers
for the PZT stage. The principles of loop shaping are:

1. Increasing the loop gains at low frequencies for disturbance rejection;
2. Decreasing the loop gains at high frequencies for noise attenuation;
3. Smoothing the magnitude slopes near the crossover frequency for stability consideration.

The weighting functions were iteratively adjusted and verified by the system per-
formance by simulations and experiments. Finally, we selected the following weighting
functions for the PZT stage:

WF =
50(s + 40π)

s(s + 30π)
, WM =

20(s + 15π)

s(s + 30π)
, WS =

15(s + 10π)

s(s + 40π)

where the subscripts F, M, and S represent fast, intermediate, and smooth, respectively.
The corresponding robust controllers were designed as follows:

KF
∞ = 1.773s5+792.5s4+8.101s3+2.597·108s2+2.464·1010s+5.213·1011

s5+874.1s4+5.619·105s3+3.212·108s2+4.03·1010s+9.243·1011 ,

KM
∞ = 1.773s5+792.5s4+8.101s3+2.597·108s2+2.464·1010s+5.213·1011

s5+874.1s4+5.619·105s3+3.212·108s2+4.03·1010s+9.243·1011 ,

KS
∞ = 1.194s5+466.6s4+5.247·105s3+1.47·108s2+1.056·1010s+1.96·1011

s5+575.3s4+4.67·105s3+1.964·108s2+1.333·1010s+2.341·1011 .

Then, the weighted controllers CF = WFKF
∞, CM = WMKM

∞ , and CS = WSKS
∞ were

implemented to the plant.
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Appendix B. Robust PI Control Design by the PSO Algorithms

We applied PSO techniques to derive robust PI controllers, because the standard
robust controllers are high-ordered, and might increase difficulties in implementation.

PSO is a stochastic optimization technique [27] that simulates the social behavior
of birds and fish in order to effectively solve multidimensional optimization problems,
especially for nonlinear systems. Figure A1 shows the concept of a particle swarm opti-
mization algorithm, where Xk

i and Vk
i represent the particle’s current velocity and position,

respectively. Pbesti is the historical best position of the i-th particle, while Gbest is the best
position among the swarms. Each particle updates its position and velocity through the
following equations:

Vk+1
i = w×Vk

i + c1 × rand1 × (Pbesti − Xi) + c2 × rand2 × (Gbest− Xi),
Xk+1

i = Xk
i + Vk+1

i .

where w is the inertia weighting function for the velocity, c1 and c2 are learning factors,
and rand1 and rand2 are random numbers between 0 and 1.
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We applied the PSO techniques to derive the following PI controllers:

CPI(s) = KP +
KI
s

which can provide similar responses to the standard robust controllers. We define the
fitness function as follows:

F(KP, KI) =
n

∑
i=1

ωi · Ji =
n

∑
i=1

ωi·(
JPI
i

JRobust
i

− 1)
2

where JPI
i and JRobust

i represent the performance indices employing the PI and robust
controllers, respectively.Ji indicates the similarity between the PI controller and the robust
controller in terms of Ji, while ωi represents the weighting of Ji. We set n = 5 and consider
the following five indices:

1. Stability margin: J1 = b(G0
P, CPI);

2. Root-mean-square error: J2 =
(
(
∫

1.2
1

∣∣e(t)∣∣2dt)/0.2
)1/2;

3. Settling time: J3 = the settling time to a step input;
4. Overshoot: J4 = percentage overshoot of a step response;
5. Rising time: J5 = rising time to a step input.

We applied 100 particles with random initial values and set w = 0.4, c1 = 0.4, c2 = 0.4
with 50 iterations. The PSO algorithms iteratively update the parameters. Finally, the fast
robust PI controller is designed as:

CF(s) = KF
P +

KF
I

s
= 0.05 +

36.97
s
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Similarly, the intermediate and the smooth PI controllers are derived as follows:

CM(s) = 0.08 +
8.01

s
, CS(s) = 0.05 +

3.94
s

These controllers (CF, CM, and CS) are implemented for multiple switching control.
We compare the system responses by these robust PI controllers with the standard robust
controllers (CF, CM, and CS), as illustrated in Table A1. First, all Ji ≈ 0 except for J1,
indicating that the robust PI controllers provide similar time-domain characteristics to
the higher-order robust controllers. Second, the robust PI controllers cannot achieve the
original stability margins, because these robust controllers were designed to provide the
maximum stability margins. However, system stability can still be guaranteed, because the
stability margins of robust PI controllers are much larger than the system gap (0.0039).

Table A1. The performance costs for robust PI controller design.

¯
J1

¯
J2

¯
J3

¯
J4

¯
J5

CF CF 0.419 4.476 × 10−5 2.100 × 10−2 3.000 × 10−3 5.100 × 10−5

CM CM 0.520 4.300 × 10−3 2.000 × 10−3 5.371 × 10−5 1.200 × 10−2

CS CS 0.601 8.000 × 10−3 6.573 × 10−4 0 4.000 × 10−2

Appendix C. Iterative Parameter Optimization for the PZT Stage

First, we set
(

N, HP, SP
)

=
(

4, 40, 4
)

at step 1. At step 2, we apply
HP = 40 and SP = 4 to optimize N; the results are shown in Figure A2a, where J = 1.557,
1.489, and 1.477 (µm) when N = 2, 3, and 4, respectively. Therefore, we set Nopt = 3,
because it provides similar performance to N = 4, but with less computing load. At step 3,
we apply Nopt = 3 and SP = 4 to optimize HP; the results are shown in Figure A2b, where
J = 1.617, 1.489, and 1.489 (µm) when HP = 5, 20, and 40, respectively. Hence, we set
Hopt

P = 20, as this provides the best performance with a lesser prediction horizon. At step 4,
we apply Nopt = 3 and Hopt

P = 20 to optimize SP; the results are shown in Figure A2c,
where J = 1.860, 1.489, and 1.489 (µm) when SP = 1, 2, and 3, respectively. Therefore, we set
Sopt

P = 2, because it provides the best performance with less computing load. At step 5, we

notice that
(

Nopt = 3, Hopt
P = 20, Sopt

P = 2
)
6= (N = 4, HP = 40, SP = 4); therefore, we

set (N = 3, HP = 20, SP = 2) and return to step 1 to repeat the procedures. At the second
iteration, the optimal parameters are found to be

(
Nopt = 3, Hopt

P = 20, Sopt
P = 2

)
, which

is the same as (N = 3, HP = 20, SP = 2), as illustrated in Table A2.
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Table A2. Iterative parameter tuning for the PZT stage.

Initial Setting Parameters Optimal Parameters Costs

Fi
ts

ti
te

ra
ti

on

HP = 40, SP = 4 Nopt = 3
N = 2, J = 1.557 µm
N = 3, J = 1.489 µm
N = 4, J = 1.477 µm

SP = 4, Nopt = 3 Hopt
P = 20

Hp = 5, J = 1.617 µm
N = 20, J = 1.489 µm
Hp = 40, J = 1.489 µm

Nopt = 3, Hopt
P = 20 Sopt

P = 2
Sp = 1, J = 1.860 µm
Sp = 2, J = 1.489 µm
Sp = 3, J = 1.489 µm

Se
co

nd
it

er
at

io
n

HP = 20, SP = 2 Nopt = 3
N = 2, J = 1.557 µm
N = 3, J = 1.489 µm
N = 4, J = 1.477 µm

SP = 2, Nopt = 3 Hopt
P = 20

Hp = 5, J = 1.617 µm
Hp = 20, J = 1.489 µm
Hp = 40, J = 1.489 µm

Nopt = 3, Hopt
P = 20 Sopt

P = 2
Sp = 1, J = 1.860 µm
Sp = 2, J = 1.489 µm
Sp = 3, J = 1.489 µm
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