# Blaise Pascal’s Mechanical Calculator: Geometric Modelling and Virtual Reconstruction

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

- The possibility of developing user interaction applications that allow knowing the operation of the invention, detailed knowledge of each of its components or the materials from which they were manufactured.
- The possibility of incorporating its WebGL model into a website.
- The possibility of obtaining realistic virtual recreations for public display or printing said 3D CAD model using additive manufacturing techniques.

## 2. Materials and Methods

## 3. Results and Discussion

#### 3.1. Considerations and Operation

#### 3.2. Modelling of Elements and Assembly of Subsets

#### 3.2.1. Modelling the Internal Mechanism

#### 3.2.2. Modelling of the Structure

#### 3.2.3. Modelling of the External Part

#### 3.3. Final Assembly

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Pascal, B. Obra Completa; Villar Ezcurra, A., Ed.; Gredos: Madrid, Spain, 2012. (In Spanish) [Google Scholar]
- Russo, T.A. Antique Office Machines: 600 Years of Calculating Devices; Schiffer Publishing: Atglen, PA, USA, 2001. [Google Scholar]
- García Merayo, F. Pascal: Un Genio Precoz; Nivola: Madrid, Spain, 2007. (In Spanish) [Google Scholar]
- Gutiérrez Vázquez, S. Blaise Pascal: Un matemático virtuoso. Suma
**2012**, 70, 105–114. (In Spanish) [Google Scholar] - Balard, M.; Genet, J.P.; Rouche, M. De los Bárbaros al Renacimiento (Iniciación a la Historia); Akal: Madrid, Spain, 1989. (In Spanish) [Google Scholar]
- Arithmetical Machines & Instruments. Pascal’s Calculators: Distinguishing Originals from Replicas. Available online: http://www.ami19.org/Pascaline/IndexPascaline-English.html (accessed on 3 July 2021).
- Akg-Images. Zu Pascal, Addiermaschine. Available online: https://www.akg-images.de/CS.aspx?VP3=SearchResult&VBID=2UMESQ6X7PSJO&SMLS=1&RW=1 (accessed on 3 July 2021).
- Williams, M.R. History of Computing Technology; IEEE Computer Society: Los Alamitos, CA, USA, 2009. [Google Scholar]
- Pascaline~1650—Working Exemplar Based on Surviving Machines. Available online: http://metastudies.net/pmwiki/pmwiki.php?n=Site.Pascaline1652 (accessed on 3 July 2021).
- Bruderer, H. The Antikythera Mechanism. Commun. ACM
**2020**, 63, 108–115. [Google Scholar] [CrossRef] [Green Version] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. Agustín de Betancourt’s Optical Telegraph: Geometric Modeling and Virtual Reconstruction. Appl. Sci.
**2020**, 10, 1857. [Google Scholar] [CrossRef] [Green Version] - Del Río-Cidoncha, G.; Rojas-Sola, J.I.; González-Cabanes, F.J. Computer-Aided Design and Kinematic Simulation of Huygens’s Pendulum Clock. Appl. Sci.
**2020**, 10, 538. [Google Scholar] [CrossRef] [Green Version] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. The Hay Inclined Plane in Coalbrookdale (Shropshire, England): Geometric Modeling and Virtual Reconstruction. Symmetry
**2019**, 11, 589. [Google Scholar] [CrossRef] [Green Version] - Rojas-Sola, J.I.; Galán-Moral, B.; De la Morena-De la Fuente, E. Agustín de Betancourt’s Double-Acting Steam Engine: Geometric Modeling and Virtual Reconstruction. Symmetry
**2018**, 10, 351. [Google Scholar] [CrossRef] [Green Version] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. Digital 3D reconstruction of Betancourt’s historical heritage: The dredging machine in the Port of Kronstadt. Virtual Archaeol. Rev.
**2018**, 9, 44–56. [Google Scholar] [CrossRef] [Green Version] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. Geometric Modeling of the Machine for Cutting Cane and Other Aquatic Plants in Navigable Waterways by Agustín de Betancourt y Molina. Technologies
**2018**, 6, 23. [Google Scholar] [CrossRef] [Green Version] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. Agustin de Betancourt’s Wind Machine for Draining Marshy Ground: Approach to Its Geometric Modeling with Autodesk Inventor Professional. Technologies
**2017**, 5, 2. [Google Scholar] [CrossRef] [Green Version] - Bucolo, M.; Buscarino, A.; Famoso, C.; Fortuna, L.; Gagliano, S. Automation of the Leonardo da Vinci Machines. Machines
**2020**, 8, 53. [Google Scholar] [CrossRef] - Franco, W.; Ferraresi, C.; Revelli, R. Functional analysis of Piedmont (Italy) ancient water mills aimed at their recovery or reconversion. Machines
**2019**, 7, 32. [Google Scholar] [CrossRef] [Green Version] - Marruganti, M.; Frizziero, L. Maintainability of a gearbox using design for disassembly and augmented reality. Machines
**2020**, 8, 87. [Google Scholar] [CrossRef] - Frizziero, L.; Liverani, A.; Caligiana, G.; Donnici, G.; Chinaglia, L. Design for disassembly (DfD) and augmented reality (AR): Case study applied to a gearbox. Machines
**2019**, 7, 29. [Google Scholar] [CrossRef] [Green Version] - Principles of Seville. Available online: http://smartheritage.com/wp-content/uploads/2016/06/PRINCIPIOS-DE-SEVILLA.pdf (accessed on 3 July 2021).
- London Charter. Available online: http://www.londoncharter.org (accessed on 3 July 2021).
- Pascal, B. Oeuvres de Blaise Pascal; Bossut, C., Ed.; Chez Detune: La Haye, The Netherlands, 1779. [Google Scholar]
- Tickoo, S. Catia V5 R20 for Designers; CADCIM Technologies: West Lafayette, IN, USA, 2010. [Google Scholar]

**Figure 3.**Assembly plan of the interior of the Pascaline using transparencies of the lid, and side and front panels (Elements 34–61).

**Figure 4.**Assembly plan of the interior of the Pascaline with added transparency of input wheels and accumulators of the highest levels (Elements 62–68).

**Figure 6.**Zoomed representation of the mechanism showed in Figure 3.

**Figure 15.**Falling movement of the carry mechanism in its final position with contact at the top of the structure.

**Figure 19.**Models of the numbered crowns together with the stop bars in their real relative position.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rojas-Sola, J.I.; del Río-Cidoncha, G.; Fernández-de la Puente Sarriá, A.; Galiano-Delgado, V.
Blaise Pascal’s Mechanical Calculator: Geometric Modelling and Virtual Reconstruction. *Machines* **2021**, *9*, 136.
https://doi.org/10.3390/machines9070136

**AMA Style**

Rojas-Sola JI, del Río-Cidoncha G, Fernández-de la Puente Sarriá A, Galiano-Delgado V.
Blaise Pascal’s Mechanical Calculator: Geometric Modelling and Virtual Reconstruction. *Machines*. 2021; 9(7):136.
https://doi.org/10.3390/machines9070136

**Chicago/Turabian Style**

Rojas-Sola, José Ignacio, Gloria del Río-Cidoncha, Arturo Fernández-de la Puente Sarriá, and Verónica Galiano-Delgado.
2021. "Blaise Pascal’s Mechanical Calculator: Geometric Modelling and Virtual Reconstruction" *Machines* 9, no. 7: 136.
https://doi.org/10.3390/machines9070136