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Abstract: Currently, permanent-magnet-type traction motors drive most electric vehicles. However,
the potential demagnetization of magnets in these motors limits the performance of an electric vehicle.
It is well known that during severe duty, the magnets are demagnetized if they operate beyond a
‘knee point’ in the B(H) curve. We show herein that the classic knee point definition can degrade a
magnet by up to 4 grades. To prevent consequent excessive loss in performance, this paper defines
the knee point k as the point of intersection of the B(H) curve and a parallel line that limits the
reduction in its residual flux density to 1%. We show that operating above such a knee point will
not be demagnetizing the magnets. It will also prevent a magnet from degenerating to a lower
grade. The flux density at such a knee point, termed demag flux density, characterizes the onset of
demagnetization. It rightly reflects the value of a magnet, so can be used as a basis to price the
magnets. Including such knee points in the purchase specifications also helps avoid the penalty of
getting the performance of a low-grade magnet out of a high-grade magnet. It also facilitates an
accurate demagnetization analysis of traction motors in the worst-case conditions.

Keywords: traction motors; electric vehicle (EV); permanent magnets; knee point; demagnetiza-
tion curve; severe duty; short-circuit fault; IDF; magnetic field analysis; reversible segment; heat-
resistant magnet

1. Introduction

At present, 80 to 90% of electric vehicles sold globally use permanent magnet (PM)
type traction motors [1]. Rare-earth magnets are a critical but expensive component of all
such applications. However, these magnets carry a demagnetization risk which can cause
a permanent loss in the performance of the electric vehicle. Vehicle manufacturers recently
recognized that such an irreversible demagnetization fault (IDF) is a major risk factor of
PM motors [2–4]. This Achilles heel of PM motors prevents them from competing with the
induction motors for applications such as pumps, fans, and compressors [5]. Therefore,
engineers constantly seek approaches that minimize the demagnetization risk. This risk
can occur during severe duties such as short-circuit, rapid acceleration from 0 to 60 mph,
hill climbing, etc. Such worst cases or severe duties apply large demagnetizing fields on
the magnets. Large fields that are beyond the capability of a magnet can cause excessive
demagnetization. Thus, there is a fundamental need to define a proper metric to judge as
to when an unacceptably large demagnetization occurs. In traction motors, this occurs at
high temperatures, so it is sometimes called heat resistance.

The magnetic characteristics of a magnet are described by plots that show the variation
of flux density B or J [tesla] with demagnetizing field H [kA/m]. They can be represented
as a magnetic flux density B(H) curve or a ferric flux density J(H) curve. J is also known
as polarization or intrinsic flux density. It is the magnetic flux density B less vacuum flux
density µoH where µo = 4π·10−7 [N/A2] is the permeability of vacuum(J ≡ B − µoH).

Both curves have a ‘knee’ that joins a reversible line segment smoothly with an
irreversible segment. On a J(H) curve, the knee will fall in the 2nd quadrant. On a B(H)

Machines 2021, 9, 124. https://doi.org/10.3390/machines9060124 https://www.mdpi.com/journal/machines

https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines9060124
https://doi.org/10.3390/machines9060124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/machines9060124
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines9060124?type=check_update&version=1


Machines 2021, 9, 124 2 of 13

curve, for traction motors that operate at elevated temperatures, the knee will also fall in
the 2nd quadrant. For others, it can fall in the 3rd quadrant, so it will require additional
data. The knee signifies the transition to demagnetization.

A specific ‘knee point’ within a knee demarcates the change in the behavior of the
magnet from a reversible state to an irreversibly demagnetized state. When a magnet
operates above the ‘knee point’, it will return reversibly to its initial state, with no reduction
in the residual flux density Br [6–8]. However, operating below the knee point will cause it
to return along a parallel path which will reduce the residual flux density to a smaller value
Br
′
. This reduction in residual flux density δBr = Br − Br′ is known as a demagnetization loss,

irreversible loss, or simply loss.
Such reduction in Br requires more current to generate the same torque. This increases

the copper loss, which increases the magnet temperature further, which in turn degrades
the magnet more. The resulting vicious circle can cause a significant loss in the performance
of the electric vehicle.

An unacceptably large demagnetization loss will push the operating point below
the knee point, thereby causing an unacceptably large permanent reduction in the flux-
producing capability of the magnet [8,9]. Since the flux density falls sharply as a waterfall
beyond the knee, a minute increase in the demagnetizing field can drastically reduce the
performance of a traction motor [9,10]. This can reduce the service life of the electric vehicle.
In addition, replacing a demagnetized magnet in an electric vehicle is labor-intensive and
very expensive. The resulting large downtime can even dissuade a consumer from using
electric vehicles altogether.

The knee point thus plays a critical role in limiting the performance of an electric
vehicle. It also characterizes IDF. Therefore, knowledge of the precise position of the knee
point is critical for the selection of magnets in traction motors and to prevent IDF. The
primary purpose of this paper is therefore to develop a well-defined method to locate the
position of the knee point of a magnet on its B(H) curve.

At present, different engineering communities seem to have different views of the
location of the knee point. To distinguish them, we label them as:

• Classic knee point K;
• Knee endpoint k′.

Classic knee point K—The magnet material engineers (who develop/test magnets)
use the J(H) curve to define the classic knee point K. They define K as the point on the
J(H) curve that permits 10% Br demagnetization loss. (In the 1960s, up to 20% loss was
considered acceptable [11,12]). Their metric for demagnetization is the respective field HK.

Historically, in the 1980s, material engineers used such HK to indicate magnets with
fewer defects [13,14]. A J(H) curve that is closest to the largest rectangle Br HcJ is deemed to
have the least defects (HcJ = coercivity on the J(H) curve). They used the ‘loop squareness’
HK/HcJ [15,16] as a metric to develop better compositions that yielded magnets with the
fewest defects [17,18].

In the 1990s, they used the same HK to define the acceptable limit on the demagnetiza-
tion loss [19–21]. Initially, they presumed that the linear segment of J(H) of rare-earths to
be nearly horizontal. Therefore, they defined the classic knee point K as the point on the
J(H) curve where it intersects a horizontal line that passes through the 0.9·Br point [22–24].
However, the linear segment is slightly inclined [25,26]. Therefore, later Gaster [27,28]
redefined it as the point on the J(H) where it intersects a parallel inclined line that passes
through the 0.9·Br point. Both definitions indicate that the material engineers considered
the 10% reduction in Br to be acceptable.

Material engineers widely consider that coercivity HcJ is the metric for the demagneti-
zability of a magnet. However, in 2008, Trout [29] wrote that the ‘(classic) knee point field
HK may be a better figure of merit’ (than coercivity HcJ) or better metric for the onset of
demagnetization. Since then, all commercial B(H) measurement systems are programmed
to list this HK [30–33]. Currently, manufacturers use this HK in purchase specifications as a
basis to negotiate the price of the magnets. However, over the past 10 years, tremendous
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improvements enabled the manufacturers to make superior magnets to tighter tolerances.
Modern magnets, therefore, require a better metric with a tighter tolerance than the 10%
loss allowed by HK.

Knee endpoint k′—The motor design engineers (who select and size the magnets for
traction motors), on the other hand, rely on the Maxwell laws-based magnetic field software
for the detailed design of traction motors [34–36]. Such software uses the B(H) curve rather
than the J(H) curve. Therefore, these engineers rely on the B(H) curve to define the knee
endpoint k′. They define it as one where the knee on the B(H) curve starts deviating from a
straight line to a curve [37].

Their metric for demagnetization is the knee endpoint flux density Bk′ . Motors
subject the magnets to nonuniform fields, so the demagnetized volumes (where the flux
density is less than the knee endpoint flux density Bk′ ) are local at the edges or center of
magnets. The motor design engineers rely on Bk′ to estimate the demagnetized volume
fraction Vd [38–42], which is then used to limit the loss in performance caused by the
demagnetization of the magnets.

1.1. Difference between K, k′

The following examples illustrate that these prior-art knee points K, k′ differ signifi-
cantly.

Figure 1a displays the demagnetization curves for Arnold’s N38UH grade at 180 ◦C
[43]. It shows that the classic knee point K lies close to the irreversible segment, while the
knee endpoint k′ lies close to its reversible segment. Specifically, the classic knee point flux
density BK (0.25 T) is ~30% lower than the knee endpoint flux density Bk′ (0.37 T). It shows
that the classic knee point field HK (−517.2 kA/m) is numerically 9% higher than that Hk′

at the knee endpoint (−475 kA/m).
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significantly different from the knee endpoint k′. So, from now onwards, we focus on the 
knee endpoint as it signals the onset of demagnetization better. 

Figure 1. (a) For Arnold’s N38UH, the knee flux densities Bk′ , BK differ by ~50%. (b) For Hitachi’s NMX-S34GH, the knee
fields Hk′ , HK differ by 30%. Therefore, the knee endpoint k′ differs significantly from the classic knee point K.

As indicated earlier, at present engineers tie the price of the magnet to the field HK
at the classic knee point. The higher this HK, the higher the price. However, Figure 1a
demonstrates that, by specifying HK as the basis to price magnets, a buyer is paying a
significant, but spurious 9% higher price for a magnet.

Figure 1b displays the demagnetization curves for Hitachi’s NMX-N34GH [44]. It
shows that (for the 20 ◦C curves) the classic knee point K lies far inside the reversible
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segment, while the knee endpoint k′ lies close to the knee. Moreover, it shows that the
classic knee point field HK (−1900 kA/m) is 30% (numerically) smaller than the knee
endpoint field Hk′ (−2500 kA/m).

Figure 2 displays Innuovo’s N48UH at 180 ◦C [45]. As shown, the manufacturer lists
the classic knee point field HK as −6.583 kOe (= −524 kA/m). However, its knee endpoint
field Hk′ of −495.5 kA/m is 5.4% lower. This again demonstrates that using the classic
knee point K to price magnets, a buyer is paying a significant, but spurious 5.4% higher
cost for the magnet.
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Figure 2. For Innuovo’s N48UH grade, the classic knee point K lies inside the nonlinear segment. Therefore, a minute
decrease in H can result in a sharp fall in the flux density.

This plot also shows that its classic knee point K lies in the irreversible waterfall
segment. Therefore, even a minute reduction in H will cause the flux density to fall sharply,
thereby resulting in severe demagnetization. Moreover, it shows that its 0.32 T classic knee
point flux density BK is 40% lower than the 0.45 T knee endpoint flux density Bk′ .

All these examples confirm that the classic knee point K does not adequately represent
the onset of demagnetization or value of a magnet. Moreover, it can be significantly
different from the knee endpoint k′. So, from now onwards, we focus on the knee endpoint
as it signals the onset of demagnetization better.

1.2. Manual Method to Locate k′

At present, a precise method to locate k′ is not available. The motor designers locate
the knee endpoint k′ on a B(H) curve by a manual method, i.e., visually judging where the
straight-line possibly ‘ends’ [46–50]. However, where exactly the knee ‘ends’ depends on
the intuitive judgment of the person who picks it. For example, in Hitachi’s NMX-36EH
at 180 ◦C, Choi [39] picked 0.14 T as the knee endpoint. However, actually, it is ~0.2 T—a
25% error.

Figure 3 shows that, for the HPMG N42UH grade at 150 ◦C [51], one engineer may
pick point k1’, while another may pick point k2’. However, their flux densities are 0.21 and
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0.31 T, respectively—a 50% error. These examples illustrate that the manual method of
locating the knee endpoint k′ is imprecise and prone to significant errors.
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1.3. Other Prior Methods to Locate k′

To define the starting point of demagnetization more precisely, over the past 20 years,
several experts strived to devise various non-manual methods, but they fell short of
expectations as discussed below.

By fitting a single model. These methods fit the entire B(H) data to a simple function,
such as a hyperbola [52], arctan, tanh [53–57], coth [8], exponential [56], polynomial [58],
or splines [59]. Over the past century, scores of attempts have been made to model the B(H)
curves accurately [60]. However, most B(H) models are known to suffer from significant
errors [59,61,62]. In addition, Peng [10] found that the k′ predicted by the tanh model differs
significantly from that of tests. Moreover, fitting a single model does not locate k′ anyway.
Due to all these considerations, the single model methods have not gained traction.

By fitting two models. These methods split the data into several segments. It fits one
segment of data to a ‘straight-line model’ function and another segment to a ‘knee model’
function. Then, it determines k′ as the point of intersection of both. Several experts have
employed diverse knee-models, e.g., arc of circle [61], exponential [6,7,62,63] or rational
fraction [64]. However, the knee is so narrow that one usually can capture 2 to 4 data points
at most [41]. Hence, fitting a knee model to so few data points can result in large errors [6,7].
For example, the Neo Grade 3512 at 160 ◦C, [7] showed that fitting the exponent model
resulted in a 30% error. Therefore, these methods have also not gained traction.

Therefore, this prior-art review indicates so far that there has been no satisfactory
method that can determine the knee endpoint precisely [65]. Thus, there is still a need to
develop a method to precisely locate this critical point, called simply knee point k from now
onwards. To achieve this, we first introduce the concept of degeneration.

2. Knee Point k

Degeneration is the phenomenon in which a higher grade magnet gets so demagnetized
during the operation that its residual flux density degrades to that of a lower grade magnet.
Once degenerated, a high-grade magnet behaves as a lower-grade magnet over its entire life.
As a result, a degenerated magnet reduces the torque capacity of the motor permanently,
thereby causing severe degradation of the performance of an electric vehicle forever.

Higher-grade magnets are very expensive. Their degeneration means that the extra
dollars spent in buying the higher grade are wasted—it does not deliver the superior
performance expected from the higher grade. To avoid such waste of money, one must
make every effort to prevent degeneration.

To this end, we propose herein the knee point k as the point which prevents a magnet
from degenerating to a lower grade. Operating above such knee point k will prevent an
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expensive high-grade from delivering the performance of a lower-grade magnet. We detail
below an optimal method to determine this knee point k.

2.1. Offset Method

It is well known that, for metals, the stress-strain curve comprises linear (elastic) and
nonlinear (inelastic) segments. A century ago, engineers faced the challenge of defining the
‘knee point’ of metals that demarcates the inelastic segment. They resolved it by creating
the offset method. As shown in Figure 4b, this method defines a yield point Y as the point of
intersection of the stress-strain curve and a parallel straight-line that is offset by a small but
acceptable 0.2% strain. Yield strength is the stress at such yield point Y. The stress-strain
curve above Y demarcates the inelastic segment.
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In 1924, ASTM adopted this as the standard method to compute the yield strength.
It codified this method in its Standard E8 [66]. Such a codified offset method is now
universally used to quantify the strength of steels. Over the past 100 years, engineers relied
on it to protect thousands of bridges and buildings against the inelastic behavior of steel.

Figure 4a shows that the B(H) curve of magnets is strikingly similar to the stress-
strain curve of metals shown in Figure 4b. The offset method—which was used for years
to protect against the yielding of metals—thus can also be used to protect against the
demagnetization of magnets.

We define the knee point k as the point of intersection of the B(H) curve and a parallel
straight-line that is offset by a small but acceptable demagnetization loss. To define it
precisely, one has to specify as to what is an acceptable loss. As already indicated, the
return path reduces the magnet’s residual flux density from Br to a smaller Br′. The
reduction δBr = Br − Br′ is called demagnetization loss. Alternately, we reformulate it as
offset x = δBr/Br (expressed as a percentage). Then, defining k amounts to specifying x.

2.2. Options for Offset x

Figure 4a displays knee point k as well as all prior-art knee points K, k′, and D (not to
scale). We demonstrate herein how prior-art definitions of knee point are inadequate in
protecting magnets against degeneration.



Machines 2021, 9, 124 7 of 13

• 10% offset (K). This classic knee point K was proposed in the 1990s by magnet material
engineers [20] as one that tolerates 10% Br loss. However, consider the N40UH grade
with Br of 1.29 T. A 10% loss reduces it to Br′ of 1.16 T. Table 1 below shows that this is
the Br for N33UH, which is three grades below N40UH. Thus, operating at the classic
knee point K degenerates a magnet forever to a lower grade, so is unacceptable.

• 5% offset (D). This demagnetization point D was suggested in IEC 60404-8-1 [25,67] as
one that tolerates 5% Br loss. However, consider the N50H magnet with Br of 1.40 T. A
5% loss reduces it to Br′ of 1.33 T. Table 1 shows that this is the Br for N42H, which
is three grades below N50H. Thus, operating at the demag point D degenerates a
magnet forever to a lower grade, so is unacceptable.

• 2% offset. This does not degenerate some magnets (for example, it reduces the 1.25 T Br
of N35UH to 1.226 T. It is larger than the 1.15 T Br for a lower grade N33UH. Therefore,
it will not degenerate this magnet). However, consider N52H with Br of 1.42 T Br. The
2% loss reduces it to Br′ of 1.39 T. This is Br for N50H, which is one grade below N52H.
Thus, operating at this 2% loss the knee point can degenerate some magnets forever to
a lower grade, so is unacceptable.

• 0.5% offset. This also does not degenerate a magnet, so it may seem to be acceptable.
However, for N28EH with Br of 1.05 T, it amounts to 0.005 T, which is close to the
measurement noise floor. However, at present, manufacturing a grade to such tight
tolerances is nearly impossible. Specifying such tight tolerance will only increase
their cost. Furthermore, tests by Allcock [68] revealed that most magnets suffer
from a 0.4% Br long-term irreversible loss (LTIL). Therefore, specifying a 0.5% offset
is unacceptable.

2.3. Rationale for 1% Offset

In this section, we present additional rationale to show that a 1% offset is the best
option to define the knee point.

2.4. Grade Spacing

The standards subdivide the Neo magnets into about 10 grades. The Br of the low-
est/highest grade N28/N55 is 1/1.5 T. Therefore, as one changes from the lowest grade to
the highest, Br increases by 0.5 T. Since 10 grades fit into this 0.5 T span, they are spaced at
about 0.05 T.

Table 1 below shows the spacing of conventional grades in greater detail. (It excludes
the recent dysprosium-free ‘case hardened’ magnets which concentrate neodymium on the
surface and refine the grain to reduce cost [69]). It shows that the grades in the 30–40 MGOe
range are spaced at 0.05 T, while those in the 40–54 MGOe range are spaced at ~0.02 T.
Thus, the smallest grade spacing is 0.02 T.

Therefore, to prevent a magnet from degenerating to a lower grade, the x% loss must
be smaller than this smallest grade spacing of 0.02 T. Note that 0.02 T is 1.3% (~1%) of the
largest Br of 1.5 T. Therefore, x = 1% offset is the best option to define the knee point k that
prevents degeneration of a magnet to a lower grade.

2.5. Example

Figure 5a shows the B(H) curve and the return path (blue line) of grade N50H at
its knee point k. In it, the red dotted line refers to the B(H) curve of the next lower grade
N48H. It shows that the blue line is above the red dotted line. This indicates that, during
the return path, the N50H residual flux density reduces from Br of 1.247 T to Br′ of 1.234 T.
However, this is still greater than the 1.222 T residual flux density of the lower grade N48H.
This establishes that operating a magnet up to its knee point k will not degenerate it to a
lower grade.
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Table 1. Conventional grades of neodymium magnets and their residual flux densities Br.
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Figure 5. (a) The knee point k will not degenerate the magnet to a lower grade. (b) The classic knee point K will degenerate the
magnet to a four grades lower magnet.

Figure 5b shows the B(H) curve and the return path (blue line) of the same grade
N50H, but now operating at its classic knee point K. In it, the red dotted line refers to the B(H)
curve of N40H, which is four grades lower. It shows that the return blue line is below the
red dotted line. This indicates that, during the return path, the N50H residual flux density
now reduces from Br of 1.247 T to Br′ of 1.122 T. This is less than the 1.134 T residual flux
density of N40H. This establishes that operating a magnet up to its classic knee point K will
degenerate it to a lower grade.

3. Demag Flux Density

To prevent confusion, we rename the flux density Bk at the knee point k as the
demagnetization flux density or simply demag flux density herein. Bk signals the onset of
excessive demagnetization of magnets. It is similar to that of yield strength σy—which
signals the onset of plastic or yielding of metals. Therefore, it is a key property of magnets.

Figure 6 shows a simplified representation of the demagnetization curves of a magnet
(for Arnold’s N52M grade) [70]. It highlights that the residual flux density Br and the
demag flux density Bk define the usable segment (green) of a magnet. It also shows that,
with increasing temperature, Bk increases sharply while Br decreases mildly. Therefore,
the rate at which a magnet’s usable range narrows with temperature is defined more by
Bk than Br. This confirms that Bk is a key property of the magnet. Such a clutter-free
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demagnetization plot often provides a better insight as to how temperature impacts the
usable range (conventional demagnetization curves cluster B(H) curves with J(H) curves,
obscuring the usable range, see Figures 1–3).
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At present, all manufacturers of steel list the yield strength of all metals they produce.
Similarly, it is hoped that all manufacturers of magnets will list the demag flux density
Bk for their magnets. Just as the ASTM E8 spec helped widespread use of ‘yield strength’
σy, incorporating the ‘demag flux density’ Bk into international standards will enable its
widespread use.

The key properties (Br, Bk) characterize the torque capability and heat resistance of the
magnet, respectively. These metrics are valued by a motor designer. Therefore, they form
the optimal cost basis for magnets.

Currently, engineers manually use the read Bk′ to compute the demagnetized volume
fraction. However, as already shown, such manually read values can be imprecise. Instead,
using the demag flux density Bk determined by the 1% offset method proposed herein will
avoid such errors, resulting in more precise demagnetized volume fractions.

The demag flux density definition presented herein helps designers find an optimum
tradeoff between performance degradation and the cost of the magnet. It is a better cost
metric than HK (as B changes more rapidly than H in the knee). The eDrive systems by
Magna Motors utilize it in their design, thereby resulting in a less expensive and more
reliable drive system for future transportation mass market.

Recently, a new and comprehensive magnet property database by Rao [70] listed the
coordinates (Hk, Bk) of the knee point k for all magnets produced worldwide. The demag
flux density Bk included therein simplifies the task of accurate estimation of demagnetized
volume fractions to limit performance degradation of electric vehicles.

The demag flux density maps presented in the next section allow one to examine
how Bk varies with temperature and grade. This, in turn, shortens the process of selec-
tion of an optimal magnet that meets specific severe-duty performance requirements of
electric vehicles.
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4. Demag Flux Density Map

A demag flux density map displays the demag flux density Bk of all grades and tem-
peratures. Figure 7 shows such a map for a specific manufacturer, over 120 to 180 ◦C. The
grade corresponding to a point can be read off from Table 1. For example, the N33M-N52M
curve has 9 points ranging from N33M to N52M, the 7th point refers to N48M, and its Bk at
120 and 150 ◦C is 0.7 and 0.85 T. Note that some curves are non-monotonic. This may be
due to irregular grade spacing, inherent measurement noise, manufacturer variations, etc.,
which will be investigated in the future.
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Such a plot can be used to determine the demag flux density offered by any grade at
a specific temperature of interest. For example, it shows that N30SH offers a demag flux
density of 0.32 T at 150 ◦C. It shows that a typical 0.7 T Bk requirement is met by the N48M
grade at 120 ◦C or the N35M grade at 150 ◦C.

Such a plot can also be used to reduce the cost of magnets. For example, it shows
that, by reducing the magnet temperature from 180 to 150 ◦C, one can replace an expen-
sive N42UH grade with a less expensive N35SH grade. Both magnets have the demag
flux density Bk of 0.38 T, which indicates that both deliver the same severe-duty perfor-
mance. Therefore, this plot demonstrates how cooling a magnet can save significant costs
of magnets.

5. Conclusions

It is well known that, at high temperatures, rare earth magnets will be demagnetized
excessively if operated below a knee point on the B(H) curve. In this paper, we define the
knee point k as one where the B(H) curve intersects with a parallel line that is offset by 1% Br.
We showed herein that operating above such knee point k protects it from degenerating
to a lower grade forever. The paper, therefore, recommends using this newly defined
knee point k to prevent the degradation of magnets to a lower grade when simulating the
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severe-duty short circuit performance of traction motors. Data on this knee point k are
available in the comprehensive PMAG database recently developed by MagWeb.

The respective demag flux density Bk is a key property of a magnet that signals the
onset of excessive demagnetization. Listing it by manufacturers or incorporating it into
international standards will help engineers better protect the magnets from degrading to a
lower grade during the operation. Moreover, it helps them discover the right manufacturer
who offers a better grade (with an optimal demag flux density Bk) for their application
and cost reference. This helps in the selection of optimal magnets for traction motors in
electric vehicles.

At present, the classic knee point field HK of a magnet (on a J(H) curve where a
magnet can lose 10% Br) is popularly used to negotiate the price of the magnets. This
paper, however, shows that this metric can overprice a magnet. Instead, it shows that the
demag flux density Bk of a magnet (at the operating temperature) is a better cost metric as
it prevents a magnet from degenerating to a lower grade. Using Bk rather than HK (to price
the magnets) would be a milestone for future procurement strategies and the specification
of magnets for traction motors in electric vehicles.
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