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Abstract: Autonomous underwater vehicle is an effective tool for humans to explore the ocean. It can
be used for the monitoring of underwater structures and facilities, which puts forward more accurate
and stable requirements for the system operation of the autonomous underwater vehicle. This
paper studies the system and structural design, including the parameter identification design and
control system design, of a novel autonomous underwater vehicle called “Arctic AUV”. The dynamic
mathematical model of the “Arctic AUV” was established, and the system parameter identification
method based on the multi-sensor least squares centralized fusion algorithm was proposed. The
simplification of the mathematical model of the robot was theoretically derived, and the online
parameter identification and motion control were combined, so that the robot could cope with the
influence of the arctic water velocity and external turbulence. Based on the hybrid control scheme of
adaptive PID and predictive control, the accurate motion control of the “Arctic AUV” was realized.
A prototype of “Arctic AUV” was developed, and system parameter identification experiments
were carried out in indoor pool water. Hybrid adaptive and predictive control experiments were
also carried out. The validity of the parametric design method in this paper was verified, and by
comparative experiment, the effect of the control method proposed in this paper was better than the
traditional method.

Keywords: autonomous underwater vehicle (AUV); Arctic AUV; mathematical model; system
parameter identification; control scheme

1. Introduction

Autonomous underwater vehicle (AUV), compared to other types of underwater
vehicle platforms, has the advantages of high autonomy and wide detection range. It has
been widely used in marine environment observation, marine resource investigation, and
marine security, in addition to other fields, and it is an underwater core system platform
for human beings to understand the ocean, from offshore to deep sea. AUV is a typical
representation of the underwater unmanned system platform. With the rapid development
of artificial intelligence and other cutting-edge technologies, the intelligent research of the
unmanned system has gradually gained attention worldwide [1–3]. Since the advent of the
first AUV in the 1950s, people have been trying to combine various intelligent methods with
the AUV system platform to improve the autonomy and intelligence of its operation [4,5].

Although current research on autonomous underwater vehicles has made significant
achievements, some autonomous underwater vehicles still have insufficient movement and
precision control [6–9], such as autonomous underwater vehicles used for docking with
the other underwater objects [10,11] or the precise tracking of a target, or the underwater
vehicles that require continuous long-distance navigation, etc. [12,13]. This makes it im-
possible for underwater vehicles to successfully complete certain tasks. The improvement
of the motion and control accuracy of the underwater vehicle depends on the accuracy of
the parameters obtained from the identification of the vehicle dynamics model. Therefore,
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research concerning the parameter identification and control of the AUV dynamic model is
of great significance to the development of the AUV field.

A variety of methods and algorithms are used in the nonlinear systems identification
of AUV [14–17]. Mirzaei M. considered the identification of the AUV under the condition
of high-speed motion and planning force. The identification process was divided into two
stages of planning and non-planning for identification, and the identification results were
significantly improved [18]. Martin proposed the total least squares (TLS) offline identifi-
cation algorithm for the parameters of the AUV dynamic model by comparing the mean
absolute error between the measured data of motion velocity and the numerical simulation
data for six different six-degrees of freedom coupled nonlinear finite dimensional mod-
els [19]. Zhou proposed a time domain identification algorithm based on genetic algorithm
and applied genetic algorithm (GA) to the identification of hierarchical systems [20]. In
order to better express the target equation of system identification in biological evolu-
tion, Santos used a genetic programming (GP) tree structure to describe the problem and
adopted this method to identify the mathematical relationship between the intake port and
the exhaust port of the poppet valve. Applying the GP method to the structure selection
problem of system identification can automatically modify the structure and composition
of the gene expression tree and then identify the nonlinear tube system [21]. Gandomi
proposed a new method to study the nonlinear model interaction problem of classical
regression identification by using polygenic genetic programming method and tested it in
complex structural engineering problems, such as, for example, verification [22].

Adaptive control has also attracted the attention of many researchers [23–28]. Fossen
researched the early nonlinear control problems of underwater vehicles. Focusing on the
problem that the linear velocity of the underwater robot cannot be obtained, he designed a
nonlinear observer to estimate the state of the linear velocity and used the three degrees of
freedom model of AUV to display the design of the adaptive control law of convergence
and robustness [29,30]. Santhakumar used model reference adaptive control to track and
control the underwater vehicle control system. The proposed adaptive control method
estimated the unknown parameters online and compensated them into the system, so that
the influence of manipulator work on the underwater vehicle system could be estimated
through adaptive control [31]. Valladarez studied the joint dynamic operation problems
caused by the cooperation between underwater vehicles and divers. In order to accurately
control the underwater robots, it is vital that the vehicle model be described correctly, how-
ever, vehicle configuration under the influence of uncertain factors, can lead to difficulties
obtaining the accurate model, so he used model reference adaptive control to study the
heave control of the hovering underwater vehicle system [32].

In this paper, a novel autonomous underwater vehicle called “Arctic AUV” is devel-
oped and its structure is designed. At the same time, the dynamic mathematical model of
the “Arctic AUV” is established. On this basis, the system parameter identification method
based on the multi-sensor least square centralized fusion algorithm is proposed, and the
hybrid control scheme based on adaptive PID and predictive control is used to realize
the accurate motion control of the “Arctic AUV”. The validity of the proposed system
identification and control scheme is verified by the motion experiments of indoor pool and
open water under different modes.

2. Structure Design of the “Arctic AUV”

The “Arctic AUV” is a novel autonomous underwater vehicle that can carry a variety
of measuring equipment to monitor the marine environment under the Arctic ice. It
can not only operate under remote control, but it can also operate autonomously in a
pre-programmed way. Figure 1 is the physical display of the “Arctic AUV”.
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the weight in the air is 280 kg, the depth of operation is 100 m. “Arctic AUV” has the 

functions of depth setting, height setting, orientation, and positioning. In the autono-
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sensor equipment carried by the Arctic AUV include: a TCM electronic compass, a DVL 

flow rate measurement sensor, OCTANS inertial navigation sensor, and a depth gauge. 

The “Arctic AUV” is capable of autonomous navigation under moving sea ice. 

The main purpose of the Arctic AUV is to detect the hydrological parameters of the 

Arctic and the shape of the sea ice in the water. According to the requirements of the 

detection task, the sensor arrangement of the Arctic AUV is different from that of the 

traditional underwater vehicles. Many sensors are arranged on the top of the robot, 

which can easily collect the data under the ice. In addition, in order to prevent the sea ice 

from colliding with the sensors, an anti-collision device is installed on the top of the ro-

bot. 

  

Figure 1. The physical display photo of the “Arctic AUV”.

The structure of the “Arctic AUV” is shown in Figure 2. The “Arctic AUV” has six
propellers driven by brushless DC motors. Six thrusters are arranged as follows: two
horizontal main thrusters are responsible for the forward and steering motion of the
vehicle; two horizontal channel thrusters are responsible for the lateral movement of the
vehicle, and two vertical thrusters are responsible for the heave movement of the vehicle.
With this thruster arrangement, the AUV system can achieve four degrees of freedom
(DOF) motion: forward or backward, side-shift, steering, and heave.

Machines 2021, 9, x FOR PEER REVIEW 3 of 21 
 

 

 

Figure 1. The physical display photo of the “Arctic AUV”. 

The structure of the “Arctic AUV” is shown in Figure 2. The “Arctic AUV” has six 

propellers driven by brushless DC motors. Six thrusters are arranged as follows: two 

horizontal main thrusters are responsible for the forward and steering motion of the ve-

hicle; two horizontal channel thrusters are responsible for the lateral movement of the 

vehicle, and two vertical thrusters are responsible for the heave movement of the vehicle. 

With this thruster arrangement, the AUV system can achieve four degrees of freedom 

(DOF) motion: forward or backward, side-shift, steering, and heave. 

2 meters

0.6 meters

0.7 meters

 

Figure 2. Schematic diagram of “Arctic AUV” structure. 

The design size of the “Arctic AUV” is: 2 m (length) × 0.6 m (width) × 0.7 m (height), 

the weight in the air is 280 kg, the depth of operation is 100 m. “Arctic AUV” has the 

functions of depth setting, height setting, orientation, and positioning. In the autono-

mous mode, both directional and fixed-point navigation missions can be carried out. The 

sensor equipment carried by the Arctic AUV include: a TCM electronic compass, a DVL 

flow rate measurement sensor, OCTANS inertial navigation sensor, and a depth gauge. 

The “Arctic AUV” is capable of autonomous navigation under moving sea ice. 

The main purpose of the Arctic AUV is to detect the hydrological parameters of the 

Arctic and the shape of the sea ice in the water. According to the requirements of the 

detection task, the sensor arrangement of the Arctic AUV is different from that of the 

traditional underwater vehicles. Many sensors are arranged on the top of the robot, 

which can easily collect the data under the ice. In addition, in order to prevent the sea ice 

from colliding with the sensors, an anti-collision device is installed on the top of the ro-

bot. 

  

Figure 2. Schematic diagram of “Arctic AUV” structure.

The design size of the “Arctic AUV” is: 2 m (length) × 0.6 m (width) × 0.7 m (height),
the weight in the air is 280 kg, the depth of operation is 100 m. “Arctic AUV” has the
functions of depth setting, height setting, orientation, and positioning. In the autonomous
mode, both directional and fixed-point navigation missions can be carried out. The sensor
equipment carried by the Arctic AUV include: a TCM electronic compass, a DVL flow rate
measurement sensor, OCTANS inertial navigation sensor, and a depth gauge. The “Arctic
AUV” is capable of autonomous navigation under moving sea ice.

The main purpose of the Arctic AUV is to detect the hydrological parameters of the
Arctic and the shape of the sea ice in the water. According to the requirements of the
detection task, the sensor arrangement of the Arctic AUV is different from that of the
traditional underwater vehicles. Many sensors are arranged on the top of the robot, which
can easily collect the data under the ice. In addition, in order to prevent the sea ice from
colliding with the sensors, an anti-collision device is installed on the top of the robot.

3. The Mathematical Model of “Arctic AUV”

The establishment of the “Arctic AUV” motion model is the premise of studying
the motion control of the “Arctic AUV”. The underwater vehicle is a complex nonlinear
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dynamic system that can also be affected by the external environment. Therefore, not only
the dynamic characteristics of the vehicle itself, but also the interference factors of the
external environment should be considered when building the motion model of the “Arctic
AUV”. In this paper, the mathematical model of the AUV is established, and various
interference forces and torques of the AUV are analyzed, which lays a foundation for the
design of the controller in the following sections.

In this paper, an underwater vehicle model based on the Newton–Euler equation is
adopted. In order to analyze the kinematics and dynamics of the underwater vehicle, two
coordinate systems need to be established: the inertial coordinate system E− ξηζ and the
vehicle carrier coordinate system O-xyz [28]. The relationship between the two coordinate
systems is shown in Figure 3, and the vehicle carrier coordinate system is usually chosen.
The kinetic equation can be established. Since the inertia law can only be applied to the
inertial coordinate system, it is necessary to transform the dynamic equation of the vehicle
carrier coordinate system into the inertial coordinate system.
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According to the Newton–Euler motion equation of the rigid body in the fluid,
the 6-DOF dynamics model of the AUV in the vehicle carrier coordinate system can
be described as [3]:

M
.
v + C(v)v + D(v)v + g(η) = τ (1)

In the equation, mass, and inertia matrix M includes rigid body mass and inertia
matrix MRB and hydrodynamic additional mass matrix MA, as M = MRB + MA.

The Coriolis and centripetal force matrix C(v) of the AUV includes a rigid body cen-
tripetal force matrix CRB(v) and a Coriolis-like force matrix CA(v) caused by an additional
mass inertial matrix MA, namely:

C(v) = CRB(v) + CA(v) (2)

The fluid resistance includes the drag force and lift force of the AUV. At low speed,
the lift force is ignored, and the drag force is retained to the quadratic term, then the fluid
resistance matrix is:

D(v) = diag
{

DL + DQ
∣∣v∣∣} (3)

DL and DQ are linear and quadratic resistance coefficients respectively, which can be
expressed as:

DL = diag
{

Xu Yv Zw Kp Mq Nr

}
(4)

DQ = diag
{

Xu|u| Yv|v| Zw|w| Kp|p| Mq|q| Nr|r|
}

(5)

g(η) is the restoring force (moment) vector generated by gravity and buoyancy,
g(η) ∈ R6×1; τ is the force (moment) vector generated by the propeller,τ ∈ R6×1. J(η)
transforms the linear (angular) velocity vector in the vehicle carrier coordinate system into
the corresponding vector in the inertial coordinate system. All coefficients in Equations (4)
and (5) are listed in Table 1.
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Table 1. All coefficients in Equations (4) and (5).

Coefficient Means of the Coefficient Coefficient Means of the Coefficient

Xu
Forward hydrodynamic coefficient

caused by velocity u Xu|u|
Forward hydrodynamic coefficient

caused by velocity u2

Yv
Lateral hydrodynamic coefficient

caused by velocity v Yv|v|
Lateral hydrodynamic coefficient

caused by velocity v2

Zw
Vertical hydrodynamic coefficient

caused by velocity w Zw|w|
Vertical hydrodynamic coefficient

caused by velocity w2

Kp
Rolling hydrodynamic moment coefficient

caused by angular velocity p Kp|p|
Rolling hydrodynamic moment coefficient

caused by angular velocity p2

Mq
Trim hydrodynamic moment coefficient

caused by angular velocity q Mq|q|
Trim hydrodynamic moment coefficient

caused by angular velocity q2

Nr
Turning bow hydrodynamic moment

coefficient caused by angular velocity r Nr|r|
Turning bow hydrodynamic moment

coefficient caused by angular velocity r2

The roll angle of the AUV is too small to control. The underwater vehicle is symmet-
rical at about three sections; Coriolis and centripetal force can be ignored at low speed.
Assume that gravity is equal to buoyancy, i.e., W = G. Therefore, the dynamic model of the
AUV can be simplified as:

M
.
v + D(v)v + g(η) = τ (6)

MRB = diag
{

m 0 m 0 0 Iz
}

(7)

MA = diag
{

X .
u 0 Z .

w 0 M .
p N.

r

}
(8)

D(v) = diag
{

Xu + Xu|u||u| 0 Zw + Zw|w||w| 0 Mq + Mq|q||q| Nr + Nr|r||r|
}

(9)

In the motion coordinate system, the coordinate of the gravity center of the underwater
vehicle is rG = [ 0 0 0 ]

T the coordinate of the buoyancy center is rB = [ 0 0 −BGz ],
So the center of buoyancy is also on the Oz axis. Here is BGz = zg − zb

g(η) = [ 0 0 −BGz 0 −WBGz sin(θ) 0 ]
T (10)

The combined force of the gravity and buoyancy of the underwater vehicle only affects
its movement in the direction of the heave freedom. Moreover, when the underwater
vehicle is completely immersed in water, the buoyancy, which is generated by the water on
the underwater vehicle, is greater than the gravity experienced by the underwater vehicle.
It can ensure that when the underwater vehicle works underwater, it can rely on positive
buoyancy to float on its own, in case of failure.

According to the above simplified formulas, the dynamics model of the AUV in three
degrees of freedom directions can be obtained. In the motion coordinate system, the
dynamics model of the AUV with a single degree of freedom is:

(Iz + N.
r)

.
r + Nrr = τN (11)

(m− Z .
w)

.
w− Zww−W = τz (12)

(Iy −M .
q)

.
q−Mqq + WBGzθ = τM (13)

The horizontal course loop of the AUV can be described by Equation (11). The depth
control of the “Arctic AUV” is carried out in the following way: the vertical inclination of
the AUV is controlled by a horizontal rudder, and the depth of the AUV is changed by the
forward velocity and the longitudinal inclination. At this time, the vertical velocity in the
vehicle body coordinate system is very small.

In the form of second order Nomoto model:
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Heading loop:
τ

.
r + r = Ku(t− Td),

.
ϕ = r (14)

τ is the time constant, K is the steady state gain. Td is the delay time. The Laplace transform:

rs

us
=

K
τs + 1

e−Tds,
ϕs

rs
=

1
s

,
ϕs

us
=

1
s

K
τs + 1

e−Tds (15)

Depth loop:
τ

.
w + w = Ku(t− Td),

.
z = w (16)

τ is also the time constant, K is also the steady state gain. Td is the delay time. The
Laplace transform:

rs

us
=

K
τs + 1

e−Tds,
z

ws
=

1
s

,
z
u
=

1
s

K
τs + 1

e−Tds (17)

τ
.
q + q = Ku(t− Td),

.
z = w (18)

Then:
q
u
=

K
τs + 1

e−Tds,
θ

q
=

1
s

(19)

θ

u
=

1
s

K
τs + 1

e−Tds (20)

The time constant τ and the steady state gain K are the main parameters that affect the
transient and steady state characteristics of the control system. In the process of designing
the control system, these two parameters have a decisive influence on the controller
parameters. These two parameters are very important to the design of the control system
and the online adjustment of the controller parameters.

4. “Arctic AUV” System Identification

In the previous section, the dynamic model of the underwater vehicle was established
and simplified through theoretical analysis, but there are still some parameters that need
to be determined in the dynamic model. The determination of these parameters can be
accomplished by parameter identification of the dynamic model of the underwater vehicle.
The higher the accuracy of the identified parameters, the more accurate the dynamic model
will describe the underwater vehicle’s motion state.

The purpose of system identification is to estimate the unknown parameters of the
model under a certain error criterion, based on the measurement information provided by
the process. The principle is shown in Figure 4.
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In order to obtain the estimated value θ̂ of model parameters θ, generally, the method
of gradual approximation is adopted. At time k, the output of the model at that time is



Machines 2021, 9, 109 7 of 20

calculated according to the estimated parameters at the previous time, that is, the process
output forecast value:

ẑ(k) = φT(k)θ̂(k− 1) (21)

Calculate the forecast error:

z̃(k) = z(k)− ẑ(k) (22)

Process output value:
z(k) = φT(k)θ(k) + e(k) (23)

z(k) and φ(k) is measurable, bring z̃(k) into the identification algorithm, under a
certain criterion condition, calculate the estimated value θ̂ of the model at time k, and
iterate continuously with the new model parameters until the criterion function converges
to a predetermined minimum value.

In order to improve the accuracy of the parameter estimation of the dynamic model
of the underwater vehicle and enable the identification algorithm to perform real-time
calculations, this paper proposes a total least squares algorithm fusion algorithm based
on the multi-sensor fusion data fusion, and on this basis, through theoretical derivation
multi-sensor fusion based online identification algorithm of underwater vehicle dynamics
model parameters.

The model structure adopted by the least square method is:

A(q−1)Y(k) = B(q−1)U(k) + C(q−1)E(k) (24)

where Y(k) and U(k) represent the output and input of the process, E(k) is an uncorrelated
random noise sequence with a mean value of 0.

A(q−1) = 1 + a1q−1 + · · ·+ ana q−na

B(q−1) = b1q−1 + · · ·+ bnb q−nb

C(q−1) = 1 + c1q−1 + · · ·+ cnc q−nc

(25)

The augmented least squares method tries to identify the noise model:

θ = [a1, · · · , ana , b1, · · · , bnb , c1, · · · , cnc ] (26)

ϕ(k) = [−y(k− 1), · · · ,−y(k− na), u(k− 1), · · · , u(k− nb), e(k− 1), · · · e(k− nc)]
τ (27)

Since noise is unknowable, this paper uses the corresponding estimator instead:

ê(k) = y(k)− ϕτ(k)θ̂(k− 1) (28)

So:

ϕ(k) = [−y(k− 1), · · · ,−y(k− na), u(k− 1), · · · , u(k− nb), ê(k− 1), · · · ê(k− nc)]
τ (29)

In this way, an augmented least squares recursive algorithm with forgetting factor λ
can be written:

θ̂(k) = θ̂(k− 1) + L(k)[y(k)− ϕτ(k)θ̂(k− 1)] (30)

L(k) = P(k− 1)ϕ(k)[ϕτ(k)P(k− 1)ϕ(k) + λ]−1 (31)

P(k) = [I − L(k)ϕτ(k)]P(k− 1)/λ (32)

where, P(k) is called the covariance matrix and 0 < λ ≤ 1 is the constant value forgetting
factor. When λ = 1, it is the general least square method (LS). The algorithm has good
convergence properties.
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In the multi-sensor system of an underwater vehicle, the to-be-identified model of a
single sensor can be written as follows:

Zi = Hiθ + ei(t) (33)

where, ei(t) = vi(t) + d1vi(t − 1) + d1vi(t − 2) + . . . + dnvi(t − n), i in the upper right
corner is the measurement value of the i sensor among the N sensors, make zi(t) = τi

ξ(t),

zi(t) = [zi(1)zi(2), . . . , zi(t)]T , and:

Hi(t) =


ξ i(1) ξ i(1) ξ i(1) ξ i(1)
ξ i(2) ξ i(2) ξ i(2) ξ i(2)

...
ξ i(t) ξ i(t) ξ i(t) ξ i(t)

 (34)

Then the solution in the sense of augmented least squares is:

∧
θ

i

ELS = ((Hi)
T

Hi)
−1

(Hi)
T

Zi (35)

Make H(t) = [(H1(t))T
(H2(t))T . . . (HN(t))T

],Z(t) = [(Z1(t))T
(Z2(t))T . . . (ZN(t))T

], then
the multi-sensor augmented least squares centralized fusion can be written as:

∧
θELS = (HT H)

−1
HTZ (36)

5. Control Scheme Design of the “Arctic AUV”

The previous article analyzes and derives the system identification. In this section,
the adaptive control scheme of the “Arctic AUV” is designed from the perspective of
engineering application. Using the hierarchical idea, the controller is divided into three
layers: the coordination and management layer, the adaptive layer, and the control layer.
The coordination and management layer monitor the status of the system at all times,
performs fault diagnosis procedures, and immediately makes adjustment strategies in
the event of instability or some institutional failures; the adaptive layer implements the
identification procedures, filters the measurement data, and determines the validity of the
identification results; the control layer is responsible for the solution of the control law. The
system structure is shown in Figure 5.
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The operation process of the control system is shown in Figure 6. The data measured
by the sensor is first removed and filtered to remove the sensor outliers and high-frequency
environmental interference; the fault diagnosis program judges whether the system is
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faulty based on the measurement data and historical data, and if there is a fault, it will go
to the fault emergency system. The system identification procedure recursively identifies
the model parameters of the system, judges the effectiveness of the identification results
according to the discrimination criteria, and uses the obtained model parameters to tune
the controller parameters. If the identification results are invalid, the system will execute
the control law that was tuned last time.
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6. Self-Tuning Control Algorithm of “Arctic AUV”

“Arctic AUV” adopts self-tuning PID control to solve the problem of time-varying
parameters. Self-tuning PID control combines PID control and parameter identification.
The adjustment of PID parameters is set by the parameters obtained by system identification
and pre-designed performance indicators.

This paper obtains the model parameters of the system through the method of system
identification and combines the identification parameters and the tuning of PID parameters
to form a self-tuning PID control. First, the PD control rate is given:

u = Kp(ψd − ψ)− Kd
.
ψ (37)

The control system structure is shown in Figure 7.
The differential control term here does not use error differentiation but speed feedback.

The advantage of this is that the closed-loop system will reduce a zero point and the
transient performance is good. The closed-loop system equation is:
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Gp =
KpK

τs2 + (KKd + 1)s + KpK
e−Tds =

KpK/τ

s2 + (KKd + 1)s/τ + KpK/τ
e−Tds (38)
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The undamped natural frequency is denoted by wn, and the damping coefficient is
denoted by ζ.

wn
2 =

KpK
τ

(39)

2ζwn =
KdK + 1

τ
(40)

It can be deduced from this:

Kp =
wn

2τ

K
(41)

Kd =
2ζwnτ − 1

K
(42)

It can be seen that Kp and Kd are related to the time constant τ of the system, the
steady-state gain K, and the desired response characteristics. The controller can be designed
according to the expected performance indicators and the characteristic parameters of the
underwater vehicle, but the τ and K of the “Arctic AUV” is changing during the navigation
process. The identification method is as follows:

yk = −a1yk−1 − a2yk−2 + b1uk−1−d (43)

θ̂k+1 = θ̂k + Kkα(k)(yk+1 − qk+1θk) (44)

α(k) =
{

1, |yk+1 − qk+1θk|> ∆
0, |yk+1 − qk+1θk|≤ ∆

(45)

τ =
T

− log(a2)
(46)

K =
1
T

b1

1− a2
(47)

Using the identified τ and K parameters, the PID controller can be corrected in
real time, so that the output response of the system always conforms to the designed
response characteristics.

Due to the existence of environmental interference, the underwater vehicle will have
steady-state errors during navigation. In order to eliminate the steady-state error, it can be
compensated by adding an integral link. Take the control law as:

u = Kp(ψd − ψ)− Kd
.
ψ + K′i

t∫
0

(ψd − ψ)dt (48)
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K′i =
{

Ki (ψ− ψd) ≤ η

o (ψ− ψd) > η
(49)

The integral coefficient adopts the anti-saturation method, and η is the error band that
needs to be adjusted. Here Ki parameter is selected as:

Ki =
wn

10
Kp (50)

In order to improve the robustness of the system, a robust compensation term is added
to the control law:

u = Kp(ψd − ψ)− Kd
.
ψ + K′i

t∫
0

(ψd − ψ)dt + T (51)

T =

{
Ktsig(e) e

.
e > 0

0 e
.
e < 0

(52)

The magnitude of the robust compensation term affects the robustness of the system.
If a large, fixed value is selected to ensure the stability of the system under the maximum
interference, the output of the controller will be very large or even saturated. Here, it is
automatically adjusted according to the value of the PD controller. ε is the design parameter:

Kt = ε
∣∣∣Kp(ψd − ψ)− Kd

.
ψ
∣∣∣ (53)

The purpose of the robust compensation item is to produce a control quantity when e
.
e

is greater than zero, so that e
.
e < 0 is generated.

In addition, “Arctic AUV” also uses predictive PID controller structure diagram,
shown in Figure 8. The controller includes: PID control module, recognizer, predictor, and
supervisory controller. The role of the supervisory controller is to judge the effectiveness
of system identification and prediction, and only run the response algorithm when it is
judged to be effective. The system operation process is that the PID control method is
adopted after the system is started. The identifier and the predictor work at the same
time. According to the parameter validity criterion, when the predictor output is valid, the
predictive PID control is adopted, and when the identifier output is valid, the self-tuning
PID control is adopted.
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7. Experiments
7.1. System Identification of “Arctic AUV”

This section uses the mathematical models and system identification methods of
the previous chapters to identify the parameters of the “Arctic AUV”. The identification
experiment consists of two parts: offline identification and online identification. The offline
identification method is to record the operation data of the “Arctic AUV” through the
pool experiment, and then analyze and identify the data to obtain the model parameters.
Offline identification is mainly to obtain the model parameters of the “Arctic AUV” and
use these parameters to analyze the system and design the controller. The method of online
identification is to embed the identification algorithm into the “Arctic AUV” controller to
identify the model parameters of the system in real time. Online identification is mainly
used for adaptive control.

The focus of this paper is the heading loop and depth loop of the “Arctic AUV”. The
following are the experiments on the heading loop and depth loop of the “Arctic AUV”
from two aspects of offline and online identification.

7.1.1. Offline Identification of “Arctic AUV”
Parameter Identification of Heading Loop

During the experiment, the heading loop adopts the PID controller, and the parameters
are Kp = 10, Kd = 20, Ki = 0. Figure 9 shows the heading angle and control curve recorded
by the experiment.

Machines 2021, 9, x FOR PEER REVIEW 13 of 21 
 

 

H
ea

d
in

g
 a

n
g
le

(°
) 

Time(s) 
 

Time(s) 

C
o

n
tr

o
l 

q
u

a
n

ti
ty

 

 
(a) (b) 

Figure 9. Experiment results of open-loop identification in horizon plane. (a) heading angle data; (b) control quantity 

data. 

Determination of delay time d: the delay time of the system is the minimum of the 

variance of the residual variance. Table 2 shows the variance of the corresponding re-

siduals when d is taken at different values. 

Table 2. Identification errors of V(n) for heading loop with different delay time parameter d. 

Delay Time d 0 1 2 3 4 5 6 7 8 9 

Residual variance 

V(n) 
0.0745 0.0737 0.0724 0.0721 0.0710 0.0712 0.0704 0.0708 0.0707 0.0715 

It can be seen from Tables 2 and 3 that when the delay time parameter is d = 6, the 

variance of the residual error of identification is the minimum. As the sampling time is 

0.5 s, the delay time of the heading angle loop is 3 s. The identification results obtained at 

this time are: 1a   −1.8615, 2a   0.8615, 1b   0.0020,    3.3531, K   0.0286. The 

mathematical model of the heading loop is: 

30.0286 1
( )

3.3531 1

sG s e
s s




 (54) 

Table 3. Identification results of   and k for heading loop with different delay time parameter d. 

Delay Time d 0 1 2 3 4 5 6 7 8 9 

Time constant   12.6707 9.0612 8.0483 6.0900 5.0281 4.1363 3.3531 2.8541 2.2858 1.9509 

Steady state gain k 0.0660 0.0454 0.0504 0.0390 0.0360 0.0288 0.0286 0.0250 0.0246 0.0228 

Figure 10 shows the comparison curve between the identified output data and the 

actual data. 
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Determination of delay time d: the delay time of the system is the minimum of the
variance of the residual variance. Table 2 shows the variance of the corresponding residuals
when d is taken at different values.

Table 2. Identification errors of V(n) for heading loop with different delay time parameter d.

Delay Time d 0 1 2 3 4 5 6 7 8 9

Residual variance V(n) 0.0745 0.0737 0.0724 0.0721 0.0710 0.0712 0.0704 0.0708 0.0707 0.0715

It can be seen from Tables 2 and 3 that when the delay time parameter is d = 6, the
variance of the residual error of identification is the minimum. As the sampling time is 0.5 s,
the delay time of the heading angle loop is 3 s. The identification results obtained at this
time are: a1 = −1.8615, a2 = 0.8615, b1 = 0.0020, τ = 3.3531, K = 0.0286. The mathematical
model of the heading loop is:

G(s) =
0.0286

3.3531s + 1
1
s

e−3s (54)



Machines 2021, 9, 109 13 of 20

Table 3. Identification results of τ and k for heading loop with different delay time parameter d.

Delay Time d 0 1 2 3 4 5 6 7 8 9

Time constant τ 12.6707 9.0612 8.0483 6.0900 5.0281 4.1363 3.3531 2.8541 2.2858 1.9509
Steady state gain k 0.0660 0.0454 0.0504 0.0390 0.0360 0.0288 0.0286 0.0250 0.0246 0.0228

Figure 10 shows the comparison curve between the identified output data and the
actual data.
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Figure 10. Identification results of heading control loop.

7.1.2. Parameter Identification of Depth Loop

During the experiment, the depth loop adopts PID controller, and the parameters
are Kp = 60, Kd = 40, Ki = 0. Figure 11 shows the depth and control curve of the
experimental record.
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Due to the effect of positive buoyancy, the model of the depth loop of the underwater
vehicle is slightly different from that of the heading loop:

Ds

us + g
=

1
s

K
τs + 1

e−Tds (55)
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us is the thruster control quantity, g is the residual buoyancy force, u f is the resultant
force in the vertical plane, u f = us + g. The resultant force u f should be calculated before
parameter identification. The key is to calculate the residual buoyancy of the underwater
vehicle. The adopted method is to take the average value of the output data of the control
quantity in the stability section of the depth closed-loop control to analyze the residual
buoyancy of the vehicle. Figure 12 shows the output curve of depth control quantity
obtained from the pool experiment.
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Figure 12. Input value of vertical propellers for depth control.

As can be seen from the depth control quantity, the control quantity has a direct
current component to overcome the buoyancy force on the vehicle carrier when it is stable.
The averaged data in the stationary section is U = 55.062, which is the same unit as the
control quantity Tz in the vertical plane. The arrangement of the vertical propeller is shown
in Figure 13.
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Figure 13. Fixing chart of the vertical propellers.

U = 55.062 corresponds to a propeller thrust of 0.32 kg. The combined thrust of the
two propellers is 0.27 kg. The “Arctic AUV” has a positive buoyancy of 2.7 N.

Applying the Z transformation to Ds
u f

(sampling period is T):

Dz

u f
=

K(1− e−T/τ)z−1−d

1− (1 + e−T/τ)z−1 + e−T/τz−2 (56)

Writing it as a discrete time series:

Dk = (1 + e−T/τ)Dk−1 − e−T/τ Dk−2 + K(1− e−T/τ)(uk−1−d) (57)

Writing it in general terms for a second order system:

yk = −a1yk−1 − a2yk−2 + b1(uk−1−d) = −a1yk−1 − a2yk−2 + b1uk−1−d
a1 = −(1 + e−T/τ), a2 = e−T/τ , b1 = K(1− e−T/τ)

τ = T
− log(a2) , K = b1

1−a2

(58)
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Determination of delay time d: the delay time of the system is the minimum of the
variance of the residual error. Table 4 shows the variance of the corresponding residuals
when d is taken at different values.

Table 4. Identification errors of V(n) for depth loop with different delay time parameter d.

Delay Time d 0 1 2 3 4 5 6 7 8 9

Residual variance V(n) 0.0020 0.0029 0.0026 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0023

It can be seen from Tables 4 and 5 that when the delay time parameter of the identi-
fication model is d = 0, the residual variance of identification is the minimum. Since the
sampling time is 0.5 s, the delay time of the depth loop is 0 s. The identification result is as
follows: a1 = −1.3651, a2 = 0.3653, b1 = 0.0013, τ = 0.4965, K = 0.0042.

Table 5. Identification results of τ and k for depth loop with different delay time parameter d.

Delay Time d 0 1 2 3 4 5 6 7 8 9

Time constant τ 0.4965 0.3393 0.2569 0.3684 0.4274 0.4280 0.4252 0.4193 0.4274 0.4371
Steady state gain k 0.0042 0.0090 0.0070 0.0028 3.333 × 10−4 8.013 × 10−4 0.0022 0.0024 5.777 × 10−4 −0.0020

The mathematical model of the depth loop is:

G(s) =
0.0042

0.4965s + 1
1
s

(59)

Figure 14 shows the comparison curve between the identified output data and the
actual data.
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7.1.3. Online Identification of “Arctic AUV”

The online identification parameters are mainly used to adjust the coefficient of
the controller, so the effectiveness of the parameters is very important. In this section,
the validity of the online identification method is verified by experiments. Water flow
interference is added during the experiment. A covariance resetting method is used to
avoid covariance matrix overflow or singularity in the process of identification. The results
of identification experiment are shown in Figures 15 and 16.

It can be seen from the identification curve that in the first half of the period, because
the AUV did not go into the water, the parameters identified at this time were wrong.
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After the AUV entered the water, the identification parameters converged most of the
time, however in the transition stage, or when the disturbance was relatively large, the
identification parameters were wrong. It is necessary to judge the validity of the parameters
to determine whether the parameters identified can be used for AUV control in practical
engineering applications.
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Figure 16. Online Identification. (a) parameter identification K, τ; (b) Validity judgment (1 means valid, 0 means invalid).

7.2. Self-Tuning PID Control Experiment

The self-tuning PID control is applied to the heading control loop of “Arctic AUV”.
Since the adaptive control algorithm uses online identification to adjust the parameters of
the controller, according to the analysis in the previous section, when the identification
parameters are not accurate, the controller needs to switch to the PID controller with fixed
parameters. Here, the parameters of the PID controller are p = 15, D = 0, and I = 0. Target
heading angles were set at 123◦ and 223◦. Figure 17 shows the experimental response curve.

At first, the system identification could not converge to the true value, and the heading
angle oscillation was serious. However, when the true value of the parameters are identified,
the parameters of the controller are adjusted according to the designed indexes and the
control effect reaches the expected design index. In order to verify the robustness of the
system, water flow interference and pull rope interference are added to the system. When
the identification has an error, the system automatically switches to the fixed parameter PID
controller, and then automatically switches to the adaptive controller after the identification
convergence. The validity of the self-tuning PID controller is verified by experiments.
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Figure 17. Experiment result of adaptive PID Control in horizon plane.

The above analysis of the “Arctic AUV” system identification deduced that the system
has a delay of 3 s, the use of fixed parameters of the PID control effect is not ideal, and the
adaptive predictive PID control can be applied to the heading control loop. The control
cycle is 0.5 s, therefore the predicted step size is 6 steps. Target heading angles are 223◦,
123◦ and 313◦, with flow interference, and sailing speed of 1 knot. The experimental results
are shown in Figure 18.
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Figure 18. Experiment result with adaptive predictive PID control method.

In order to demonstrate the effectiveness of the algorithm, the step response of the
adaptive predictive PID control is compared with the response of the traditional PID control
under the same parameters. Figure 19 shows the response curve with ordinary PID control.
Figure 20 shows the response curve of sampling prediction PID control.
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Figure 19. Step Response of traditional PID Controller. (a) heading; (b) controlled quantity.

It can be seen from the curve that the adaptive predictive PID control effect is obviously
better than the fixed parameter PID control. Of course, for the delay problem of the
underwater vehicle, we should first start from the nature of the problem and find a method
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to reduce the delay. When the delay problem cannot be fundamentally solved, the adaptive
predictive PID control method will be considered.
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The experimental results show that the mathematical model established in this paper
can reflect the motion state of the “Arctic AUV” more truly, so it is of great significance to
study the manoeuvrability and adaptive control of the “Arctic AUV”. Both the self-tuning
PID control and adaptive sliding mode control have good control effects, fast responses,
no overshoots or steady state errors, a smooth change of control quantity, and no obvious
chattering phenomenon, etc. Only in the case of strong interference will the output of the
system identifier be severely affected. The experiment verifies the robustness of the control
algorithm in this case.

8. Conclusions

This paper takes the “Arctic AUV” control in a complex ocean environment as the
starting point for research, then a large number of theoretical derivation and experimental
verification are carried out from two aspects of system parameter identification and motion
control, and the mathematical model of the “Arctic AUV” is established. The relationship
between the mathematical model of system identification and the physical variable of the
vehicle is derived. The influence of the complex ocean environment on the control of the
underwater vehicle is analyzed, and the hybrid scheme of self-correcting PID control and
predictive control is applied to the control of the “Arctic AUV”. The heading loop and
depth loop of the “Arctic AUV” are identified, and the validity of the model is verified
by experiments.
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