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Abstract: The requisite of direct-on-line (DOL) starting for various applications in underground
mines subjects the rotor bars of heavy-duty squirrel cage induction motors (SCIMs) to severe stresses,
resulting in sustained fault in the rotor bars, unlike the applications where mostly reduced voltage
starting is preferred. Furthermore, SCIMs working in underground mines are also affected by
unforeseen frequency fluctuations. Hence, the paper proposes a discrete wavelet transform (DWT)-
based broken rotor bar detection scheme using the stator current analysis of SCIM when subjected to
a frequency regulation (±4% of 50 Hz supply) in steady-state, as prevalent in underground mines.
In this regard, the level-seven detailed coefficient obtained by the DWT-based multi-resolution
analysis of stator current corresponding to the healthy rotor is compared with that of the faulty
rotor to extract the necessary features to identify the fault. Further implementation of the proposed
scheme is done using artificial neural network (ANN)-based pattern recognition techniques, wherein
both feed-forward backdrops and cascaded forward backdrop type ANNs have been used for fault
pinpointing based on the feature extraction results obtained from DWT. The scheme is developed
and analysed in MATLAB/Simulink using 5.5 kW, 415 V, 50 Hz SCIM, which is further validated
using the LabVIEW-based real-time implementation.

Keywords: condition monitoring; discrete wavelet transforms; multi-resolution analysis; broken
rotor bar; induction motor; frequency regulation

1. Introduction

Pervasive applications, low cost, reasonably small size, ruggedness, and low main-
tenance requirement have made induction motor (IM) the mainstay of industrial prime
movers. However, IMs are subjected to undesirable stresses, resulting in various faults,
which may become catastrophic and severely hamper the production if not detected in
incipient stages. Therefore, condition monitoring is indispensable for increasing machine
availability, reducing consequential damage, and improving operational efficiency [1–3].

Of the various undesirable stresses that the IM is subjected to, a broken rotor bar is the
most frequent fault that squirrel cage induction motors (SCIMs) encounter in underground
coal mine scenarios. This is due to thermal, magnetic, residual, dynamic, mechanical, and
environmental stresses arising from overload, supply unbalance, sparking, unbalanced
magnetic pull, electromagnetic noise, vibration, manufacturing defects, unbalanced shaft
torque, centrifugal forces, loose laminations, contamination, and abrasion [4–8]. Moreover,
the rotor bars of heavy-duty SCIMs are stressed thermally and mechanically pertaining to
the direct-on-line (DOL) start for various applications in underground coal mines, unlike
their applications for serving other industrial needs, wherein mostly reduced voltage
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starting is preferred [9,10]. Hence, the detection of rotor bar cracks under a supply fre-
quency regulation is exceptionally crucial for the machine’s satisfactory working in the
underground coal mines to minimise unwanted downtime.

Condition monitoring is primarily based on transient and steady-state analysis [11–25].
Traditional methods for monitoring the rotor health under steady-state conditions in-
clude the fast Fourier transform (FFT) based analysis of stator current [11], mechani-
cal vibration [12], axial leakage flux [9], and rotor speed [13]. One of the significant
drawbacks of these schemes [9,11–13] is their non-applicability to non-stationary signals
since FFT is incapable of providing simultaneous time-frequency spectrum analysis [14].
Hence, [9,11–13] the fault detection process is miscarried under a frequency regulation,
which is a widespread phenomenon in any practical application. Furthermore, another
technique is short-time Fourier transform (STFT), which has been in relative use for possible
monitoring of non-stationary current and vibration signals. However, STFT suffers from a
major drawback in which it severely affects the resolution of the signal. This is due to the
fact that the window length of the STFT remains constant throughout the time duration of
the signal [14]. The discrete wavelet transform (DWT)-based techniques effectively analyse
different spectrums under both the steady-state and start-up transient of an IM, thus estab-
lishing DWT-based techniques’ suitability over the FFT- and STFT-based techniques for the
rotor fault detection in SCIM [10].

Several cage fault detection techniques based on wavelet transform (WT) have been
used recently [16–25]. The WT-based cage fault detection scheme of soft starter operated
motors in the transient state is reported in [16], whereas [17] proposes a spectrum ‘synth’
technique for the detection of the cage and bearing faults in IM. Furthermore, the authors
of [18] have analysed the motor start-up current using the wavelet approximation signal
that isolates a characteristic component in the case of a broken rotor bar. Authors [19,20]
also highlight outer cage fault detection schemes for double cage IM in the transient
regime and the drawbacks associated with traditional techniques. All these WT-based
methods [16,18–20] overcome the primary disadvantage of FFT, i.e., non-applicability in
transient state. The rest of the literature [21–25] are situation-centric approaches. Such as the
continuous WT-based rotor fault detection scheme [21], recursive wavelet packet technique,
and directed acyclic graph support vector machines, which are employed to classify
various IM faults [22]. The impact of axial cooling ducts, analysis of texture characteristics,
feature extraction, and pattern classification using DWT-based techniques for the rotor
fault detection in IM are discussed in [23–25]. These WT-based approaches discussed so far
have not reported their applicability for non-stationary signals in a steady state.

Moreover, all these DWT-based approaches are complex and computation-intensive.
Furthermore, many researchers have dedicated the artificial neural network (ANN) in
the recent past towards the design of an effective fault detection algorithm [26–29]. The
works done in [26,27] deploy convolutional neural networks with an inherent adaptive
design for the fusion of feature extraction and classification phases of the fault detection
into a single learning body. Furthermore, the authors of [28] concentrate on stator winding
fault detection using a fuzzy detection system. Moreover, a comprehensive review of
ANN-based techniques used to detect bearing damage and broken rotor bars is presented
in [29]. Herein, vibration signals are used for feature extraction, followed by a hybrid
feature reduction technique. It is evident from the recent research that while some of the
works employ FFT for feature extraction, which makes it non-applicable in a transient
state, the rest of the work uses the hybrid method on ANN, which is likely to make the
computational process highly cumbersome. This, in turn, is likely to make the algorithm
execution feature more sluggish.

Furthermore, the excessive use of instrumentation system based filter banks, spectrum
analysers, and fuzzy logic approaches make the schemes used in the past highly computa-
tion intensive and cumbersome [11–25]. This is highly undesirable in certain hazardous
work environments such as underground mines.
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Hence, the present work’s objective is to propose a simple DWT-based SCIM cage
fault detection scheme robust to supply the frequency regulation in underground coal
mines. The multi-resolution analysis (MRA) of motor line current signal is employed in the
proposed fault detection scheme for the feature extraction using stator current signatures.
In this regard, the drawbacks of FFT-based analysis are also examined. The work shows
that with the choice of proper mother wavelet and sampling frequency, it is possible to
detect the rotor bar crack even by analysing the level-seven detailed coefficient (i.e., [d7])
of DWT under a steady-state frequency regulation. Furthermore, a three-layer ANN of
both feed-forward backdrop type and cascade forward backdrop type is examined using
different algorithms to design an effective and fast ANN using pattern recognition and
curve fitting. The proposed study is carried out in MATLAB/Simulink using 5.5 kW
SCIM. The LabVIEW-based real-time implementation is also done as a validation of the
proposed fault detection scheme. This proposed approach’s execution requires a minimum
instrumentation system compared to the schemes and algorithms used in the available and
presented literature [11–25], which is highly desirable for the scheme’s reliable working
under dusty and hazardous mine environments.

2. Modelling of Rotor Bar Crack Fault

This section presents the rotor bar crack fault simulation for variable frequency fed
SCIM using the winding function model.

2.1. Winding Function Theory-Based Modelling of SCIM

The winding function theory [30] considers that both stator and rotor consist of
multiple inductive circuits coupled together, and the current in each circuit is assumed to
be an independent variable. Figure 1a shows the current distribution in the rotor loops.
The overall machine model can be represented as:

Stator voltage : [VS] = [RS][Is] +
d
dt

[ϕs] (1)

Rotor voltage : [0] = [Rr][Ir] +
d
dt

[ϕr] (2)

Stator flux : [ϕS] = [Ls][Is] + [Lsr][Ir] (3)

Rotor flux : [ϕr] = [Lsr][Is] + [Lr][Ir] (4)

Electromagnetic torque : Tem = [Is]
T
[

d
dθr

Lsr

]
[Ir] (5)

Elements of inductance matrices are : Lij =

(
µ0lr

g

)∮ 2π

0
NI(θr,ϕ)NJ(θr,ϕ)dϕ (6)Machines 2021, 9, x FOR PEER REVIEW 5 of 19 
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Figure 1. Simulation and modelling of SCIM: (a) Current distribution in rotor loops using the winding function theory, 
and (b) block diagram of MATLAB/Simulink model of variable frequency voltage fed SCIM. 
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For sinusoidal distribution of stator windings, the winding functions for the three
phases are given as:

Na(θr,ϕ) =
Ns

2p
cos(pϕ) (7)

Na(θr,ϕ) =
Ns

2p
cos
(

pϕ− 2π
3

)
(8)

Na(θr,ϕ) =
Ns

2p
cos
(

pϕ +
2π
3

)
(9)

where the effective number of turns of the stator winding is NS = 4
πNKdKpKs and the

actual number of turns of windings is NS1 = pNtspNspp.
For the rotor, the winding function of each rotor loop can be written as:

Nk(θr,ϕ) =


−αr

2π , 0 < ϕ < θk
1 −

(
αr
2π
)
, θk < ϕ < θk +1

−αr
2π , θk +1 < ϕ < θk

(10)

Based on the above winding function theory, the final expressions of the inductances
for stator and rotor circuits are given as:

La = Lb = Lc =

(
Ns

2p

)2(πµ0Lr
g

)
= Lms (11)

Lab = Lbc = Lca = −
(

Ns

2p

)2(πµ0Lr
2g

)
= −Lms

2
(12)

Lkk =

(
µ0Lr

g

)(
1 − αr

2π

)
αr (13)

Lk1.........ki = −2π
(
µ0Lr

g

)
αr

2 (14)

Lak = Lm cos(p(θr + (k − 1)αr + δ)) (15)

Lbk = Lm cos
(

p(θr + (k − 1)αr + δ)− 2π
3

)
(16)

Lbk = Lm cos
(

p(θr + (k − 1)αr + δ) +
2π
3

)
(17)

The fault detection analysis as carried out in the preceding sections is done using the
winding function model of SCIM.

2.2. Modelling of SCIM Subjected to Frequency Regulation

In practice, the supply frequency varies within 49.2–50.3 Hz (i.e., roughly by ±1.5%
from 50 Hz, as mentioned in the Central Electricity Authority 2010 amendment). In this
work, ±4% (worst case) regulation in the nominal frequency is generated by a slowly
varying sine wave of frequency 5 Hz and amplitude 2 V in each of the three phases to
generate a non-stationary supply (Figure 1b).

This three-phase, 415 V, non-stationary voltage is fed to the 5.5 kW SCIM as designed
in MATLAB/Simulink using the winding function theory. The winding function theory is
used to design SCIM in the present work pertaining to the simpler nature of the winding
function model compared to the other existing models such as the d-q model. This shall
make the computation process less complex. The scaled-down (1/1000) phase-a current
spectrum (ia), in accordance with the prospective ratings of the spectrum analyser, is used
for the proposed cage fault detection scheme.
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2.3. Modelling of Rotor Bar Crack

An occurrence of a broken/cracked rotor bar causes variation in the rotor core’s
magnetic properties pertaining to the changes in the air-gap properties. This upsurge
of the magnetic flux linkages in the rotor bar has affected part of the machine’s definite
loading. This additional flux induces eddy currents in the rotor slots [8,14]. Consequently,
the machine flux becomes asymmetrical, resulting in an introduction of fault resistance
in the rotor circuit, affecting the motor line current spectrum [5]. The incremental rotor
resistance (Rinc) with the number of cracked bars can be mathematically expressed as [31]:

Rinc =
nb(

N
3

)
− nb

(2N1)
2

N
3

Rb (18)

In practice, the contiguous number of cracked bars (nb) is considerably small compared
to the number of rotor bars (N). Hence, (1) can be approximated as [32,33]:

Rinc =
3nb
N

(2N1)
2

N
3

Rb (19)

Since nb<<N and the machine are not run in the underground mining setup, it is sent
for maintenance as soon as even one damaged bar is detected, hence, (2) is quite applicable
for the modelling of cracked rotor bars in the present work.

3. Simulation Results

The present section deals with the FFT, DWT, and ANN results obtained using the
designed simulation model.

3.1. FFT-Based Analysis

The crack in the rotor bar is ultimately reflected as side-band frequencies around the
principal slot harmonics in the stator current spectrum. These are given as [34]:

flsb = f1(1 − 2s)Hz (20)

fusb = f1(1 + 2s)Hz (21)

Otherwise, the side-band frequencies (fsb) around the higher-order slot harmonics can
be obtained as [35]:

fsb = f1

{
k
p
(1 − s)± s

}
Hz, where,

k
p
= 1, 2, . . . . (22)

MCSA using FFT is done on the phase-a current signal in MATLAB/Simulink in the
following sub-sections [36].

3.1.1. Choice of Sampling Frequency

It is observed that the 6.25 kHz sampling frequency generates prominent side-bands
(12) around the principal slot harmonics. Hence, initially, the 6.25 kHz sampling frequency
is chosen for the FFT analysis of the phase current. However, it is presented later that the
sampling frequency varying in the range of 6.1–6.35 kHz provides similar results.

3.1.2. Analysis of Stationary Current Signal Using FFT

Figure 2a shows a scaled-down phase current signal of 5.5 kW SCIM with one bar cage
fault under constant frequency (50 Hz) and full load torque (35 Nm). Figure 2b shows the
corresponding FFT spectrum, which illustrates the presence of dominant fault side-bands
(flsb and fusb appearing at 45 and 54 Hz, respectively) with 3.49 and 3.65% amplitudes w.r.t
fundamental (i.e., 50 Hz). According to (14), dominant fault side-band magnitudes Alsb
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and Ausb must occur within 45–47 and 53–55 Hz, respectively, depending on the 3–5%
variation in the machine slip. Therefore, MCSA using FFT produces precise and expected
outcomes under a constant frequency operation.
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Similar tests have also been carried out with the motor, subjected to a stationary
supply frequency, operating at 50% of rated load torque (i.e., 17.5 Nm), and the results
obtained are similar to those obtained when the motor is running at a rated load torque.

3.1.3. Analysis of Non-Stationary Current Signal

In practice, the supply frequency does not remain constant. Moreover, it keeps varying
by ±1.5% (approx.) around the fundamental frequency (50 Hz in the present case), resulting
in a non-stationary current waveform. The Simulink model generates a typical scaled-down
non-stationary phase-a current under a full load torque with ±4% frequency regulation
(worst case) (Figure 1b) and is shown in Figure 3a.
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Figure 3b shows the corresponding FFT-based amplitude spectrum of the non-stationary
phase current (Figure 3a) when fed to a SCIM under a cage fault operating at a rated load
torque. Since no prevailing fault side-band amplitudes exist in Figure 3b as per (14) hence, the
cage fault under such circumstances cannot be detected using the FFT analysis. This demands
an alternative solution to detect the cage fault of SCIM under a frequency regulation in a
steady state. The following sub-sections present the DWT-based MRA of motor line current
spectrum. Moreover, similar tests have also been carried out with the motor, subjected to a
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non-stationary supply frequency, operating at 50% of rated load torque (i.e., 17.5 Nm), and
the results obtained are similar to those obtained when the motor is running at the rated
load torque.

3.2. DWT-Based MULTI-Resolution Analysis

The discrete wavelet transform (DWT)-based multi-resolution analysis (MRA) [37]
decomposes a signal X[n] into several sub-bands known as detailed and approximated
signals, with each corresponding to different frequency bands as [31]:

X[n] = ∑
j
[an]φj[n] +

L −1

∑
n =1

∑
j
[dn]ψn,j[n] (23)

where φ and ψ are the scaling function and mother wavelet, respectively, and n is the
discrete sample number. In addition, [an] and [dn] are the approximated and detailed
coefficients, respectively that correspond to different frequency bands (in the present work)
depending upon the scaling function and the mother wavelet defined as:

φj[n] = 2L/2φ(2n − j) [i.e., scale of ‘2’ which is shifted by ‘j’ samples] (24)

Ψj[n] = 2L/2Ψ
(

2Ln − j
) [

i.e., scale of ‘2L’, also shifted by ‘j’ samples
]

(25)

The MRA of the electrical signal can provide coincident information on the presence
of a certain frequency component in the spectrum and the time of its occurrence. Therefore,
the DWT-based MRA can be effectively used as an online condition monitoring tool.

3.2.1. Choice of Sampling Frequency for DWT Analysis

The frequency bands corresponding to the detailed and approximated signals at each
level obtained using MRA are contingent upon the sampling frequency and the maximum
number of decomposition levels. The corresponding frequency bands can be obtained as
[0,2−(L +1)] and [2−(n +1)Fs, 2− nFs], respectively [31].

Table 1 shows the numerical values of the frequency bands of the detailed and approx-
imated signals for different sampling frequencies.

Table 1. Frequency bands of [dn]/[an] for various sampling frequencies [31].

[dn]/[an]
Sampling Frequency Fs (Hz)

6100 6150 6200 6250 6300 6350

d1 1525–3050 1537–3075 1550–3100 1562–3125 1575–3150 1588–3175
d2 762–1525 769–1537 775–1550 781–1562 788–1575 794–1588
d3 381–762 384–769 388–775 390–781 394–788 397–794
d4 191–381 192–384 194–388 195–390 197–394 198–397
d5 95–191 96–192 97–194 98–195 97–197 99–198
d6 48–95 48–96 48–97 49–98 49–98 49–98
d7 24–48 24–48 24–48 25–49 25–49 25–49
d8 12–24 12–24 12–24 13–25 13–25 13–25
a8 0–12 0–12 0–12 0–13 0–13 0–13

As observed from Table 1, the desired side-band frequencies (i.e., 45–47 and 53–55 Hz
as per (14)) in the line current spectrum for SCIM under cage fault lie in different detailed
coefficients, i.e., [d7] and [d6] coefficients, respectively. This corresponds to the sampling
frequencies in the range of 6100 to 6350 Hz. Isolation of fault frequency components in
different detailed coefficients is highly desirable in contention with ambiguity-less fault
detection. In practice, the sampling frequency may not remain fixed due to the sampler’s
variation of parameters. Hence, the analysis reveals that any sampling frequency within the
specified range is suitable for the proposed fault detection scheme’s satisfactory execution.
However, in the present work, a 6250 Hz sampling frequency is used.
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3.2.2. Choice of Mother Wavelet and Number of Decomposition Levels

The choice of a suitable mother wavelet is a crucial aspect of the proposed DWT-based
fault detection scheme. It is done by computing the correlation coefficients of a particular
mother wavelet with the signal of interest [38]. It has been observed that the correlation
coefficients as calculated for ‘db41’ with a stationary current signal and ‘sym34’ with a
non-stationary current signal are 0.87 and 0.90, respectively, which are closest to unity in
comparison to the other mother wavelets. Hence, ‘db41’ is used to analyse the stationary
current signal, whereas ‘sym34’ is used to analyse the present work’s non-stationary
current signal.

Further, the number of maximum decomposition levels for the proposed scheme can
be obtained as [39]:

L ≥
log
(

Fs
f1

)
log 2

+ 1 (26)

L = nf + 2 (27)

Based on (26) and (27), it is found that each of ‘dB41’ and ‘sym34’ with the 8th level
of decomposition is sufficient to carry out MRA of both the stationary and non-stationary
current signals, respectively.

3.2.3. Analysis of Stationary and Non-Stationary Current Signals by DWT for a Motor
operating at Variable Load

Figure 4 shows the approximated and detailed coefficients for the 8th level decompo-
sition of the phase-a current signal of stationary and non-stationary natures under both the
healthy and faulty cases when the motor is operating at a rated load torque (i.e., 35 Nm).
The analysis reveals that [d1]-[d5], [d8], and [a8] do not contain any substantial ripple
in any case (Figure 4a–d), since the magnitudes of the other fault side-band frequencies
around the other higher-order slot harmonics are progressively smaller and hence, are not
reflected in [d1]-[d5], while [d8] and [a8] represent the low-frequency bands (less than the
fundamental frequency).

Hence, these coefficients are not of great concern in the process of fault detection. On
the contrary, the presence of significant undulations, as shown in Figure 4b,d, correspond
to the frequency bands of 49–97 and 24–48 Hz, respectively, as per Table 1 under the
faulty cage. Hence, it is established that the upper and lower side-band frequencies
(54 and 45 Hz) around the principle slot harmonics (50 Hz) of line current spectrum lie
in [d6] and [d7], respectively, during the cage fault. The amplitudes of variations in such
cases are appreciably higher than those for the healthy cases, as shown in Figure 4a,c due
to the presence of both the upper side-band and principal slot harmonics. Furthermore,
Figure 4a,c shows the nonexistence of any variation of [d7], which indicates the absence of
the lower side-band frequency around the principle slot harmonic under the healthy motor
condition. In contrast, the variation as reflected in [d6] is similar (having lesser magnitude)
to the faulty one (Figure 4b,d) owing to the presence of principal slot harmonics only.

Finally, there is a distinct difference in both the nature and amplitude of [d7] for the
healthy and the faulty conditions of the SCIM (Figure 4). Therefore, the point-to-point
standard deviation of [d7] is considered for the fault detection algorithm’s edifice in the
present work.
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3.3. ANN-Based Analysis

It is evident from the results obtained in Section 3.2 that the instantaneous values
of [d7] detailed coefficient are a good indicator of the broken/cracked rotor bar damage.
Hence, the instantaneous values of the [d7] detailed coefficient are used for the training of
the ANN. A three-layered ANN having 10 neurons in each layer is designed in the present
work. Two types of ANN are designed and tested in the present work using cascaded
forward backdrop and feed-forward backdrop-based designs, as shown in Figure 5a,b,
respectively [14,27,29,31,40–45].
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Figure 5. Artificial neural network design based on (a) cascaded forward backdrop and (b) feed-forward backdrop
based design.

ANN training is done using four different algorithms: Bayesian Regulation, Polak-
Ribiere Restarts, Gradient Descent with momentum and adaptive learning rate, and finally,
Levenberg Marquardt algorithm. The pattern recognition technique is used to identify
broken rotor bars using the value of coefficients of correlation (R) of curve fitting between
the input and the target values. The main motive behind using the pattern recognition-
based curve fitting technique is that it is one of the most trivial ways of identifying a curve
pattern. Furthermore, the drastic difference in the nature of the curve corresponding to
a faulty induction machine to that corresponding to a healthy induction machine makes
the process of pattern recognition all the more effective. Moreover, the use of epochs to
check the point of convergence is in direct contention with the fast detection of faults that
is indispensible w.r.t. for the process of fault detection, as it helps minimise the damage of
an induction machine due to prolonged subjection to a prospective fault. Figure 6 shows
the pattern recognition-based curve fitting diagram for the different algorithms using the
cascaded forward backdrop type of ANN.
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Marquardt Algorithm.

It is seen from Figure 6 that the maximum value of the coefficient of correlation
is achieved for Bayesian Regulation. However, the choice of the apt algorithm for the
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proposed ANN cannot be made based solely on the value of the coefficient of correlation.
Another critical factor in the selection of the algorithm is the epoch value of mean square
error. The value of the mean square error for the different algorithms is shown in Figure 7.
It is seen from Figure 7 that the mean square error reaches the minimum value at the
earliest on Epoch 5 for the Lavenberg-Marquardt algorithm.
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Based on the results obtained in Figures 6 and 7, it is inferred that both the Bayesian
Regulation and Levenberg-Marquardt algorithm give highly satisfactory results in the
present work. Furthermore, a similar test is done using the feed-forward backdrop type
ANN, and the results are compiled in Figures 8 and 9 for the curve fitting diagram and
mean square diagram, respectively.
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It is seen from Figures 8 and 9 that both Bayesian Regulation and Levenberg-Marquardt
algorithm give highly satisfactory results both in terms of the values of coefficient of corre-
lation and the mean square error values. The values of mean square errors and coefficient
of correlation for the different algorithms are further tabulated in Table 2.

Table 2. Values of mean square errors and regression for the different algorithms.

Correlation Coefficient Value (R) Mean Square Error Epoch Value

Cascaded Forward
Backdrop

Feed-Forward
Backdrop

Cascaded Forward
Backdrop

Feed-Forward
Backdrop

Bayesian Regulation 0.95127 0.94955 6 8
Polak-Ribiere Restarts 0.945 0.95373 24 5
Gradient Descent with

momentum and
adaptive learning rate

0.94557 0.95264 231 233

Levenberg-Marquardt 0.94935 0.94925 5 5

It is clear from the values encapsulated in Table 2 that the best results in terms of
coefficient of correlation, mean square error, and epoch value are obtained using the
Levenberg-Marquardt algorithm. Moreover, it is also seen that the obtained values are
better in the case of the cascaded forward backdrop type of ANN than compared to the
feed-forward backdrop type of ANN. Hence, the cascaded forward backdrop type ANN
with Levenberg-Marquardt algorithm is used in the present work for the detection of
broken rotor bars using pattern recognition and curve fitting.

3.4. Modelling of DWT-Based Fault Detection Scheme

Figure 10 shows the scheme representative of both the simulation model and experi-
mental setup for DWT- and ANN-based cage fault detection of SCIM.
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A three-phase, 415 V, 50 ± 1.5% Hz non-stationary source is fed to the SCIM. The
scaled-down (1/1000) current of phase-a (ia) is used for MRA in the simulation study. In
addition, ‘dB34’ is used for scrutinising stationary signals in the ‘wavelet analysis’ block.
The point-to-point standard deviation of [d7] obtained from the ‘wavelet analysis’ block is
compared with the pre-fed values of the standard deviation of [d7] obtained by analysing
the healthy motor state in the ‘comparator’ block. The standard deviation of [d7] obtained
from the motor with a faulty cage running in real-time is consistently higher than that
of the motor in a healthy state, which indicates the presence of a fault. Furthermore, the
instantaneous values of the [d7] detailed coefficient are fed to the ‘ANN’ block, wherein
the cascaded forward backdrop-based design has been adopted, and the execution is done
using the Levenberg-Marquardt algorithm. The value of the coefficient of correlation (R)
obtained from the ANN block is fed to a comparator block which checks whether the
value of R value is more than 0.94. A value greater than 0.94 indicates damaged rotor bars,
whereas a lesser value indicates a healthy rotor bar. This is justified based on the values
obtained in Table 2.

4. Real-Time Validation

This section details the real-time validation of the proposed cage fault detection
scheme in the LabVIEW-based SCIM laboratory prototype.

4.1. LabVIEW-Based Laboratory Prototype

The LabVIEW-based laboratory prototype for cage fault detection of 5.5 kW, three-
phase, 415 V, 4 pole SCIM (Appendix A) is shown in Figure 11. The motor line current
is sensed in the sensing module using LEM current sensors (0–5 A). This line current is
filtered, discretised, and further digitised using an A/D converter in the data acquisition
card (11–30 V (dc), 30 W) for feeding into the LabVIEW interface. The real-time code
corresponding to Figure 10 is generated in LabVIEW. The cage fault detection algorithm
is implemented using the acquired data. A sampling frequency of 6.2 kHz and ‘sym34’
mother wavelet (since the supply frequency constantly regulates by ±1.5%, making the
current signal non-stationary) are used to implement the fault detection algorithm.

Machines 2021, 9, x FOR PEER REVIEW 15 of 19 
 

 

mother wavelet (since the supply frequency constantly regulates by ±1.5%, making the 
current signal non-stationary) are used to implement the fault detection algorithm. 

 
Figure 11. Experimental setup for the validation of the proposed fault detection scheme. 

4.2. Results of Fault Detection 
Figure 12 shows the experimental results obtained by the LabVIEW-based SCIM la-

boratory prototype to validate the simulation study. Moreover, the real-time signals are 
inherently non-stationary in nature due to the supply frequency regulation ±1.5% (ap-
prox.). Hence, the experimental validation for SCIM at the rated load torque (35 Nm) sub-
jected to only the non-stationary signal at an operating sampling frequency of 6.2 kHz is 
presented. 

 

Am
pl

itu
de

 (d
B)

 
(a) (b) 

Figure 12. The [d7] coefficient for SCIMs operating at a rated load torque obtained using the LabVIEW-based laboratory 
prototype under (a) healthy state, and (b) faulty state. 

Figure 12a shows the variation in the [d7] coefficient for SCIMs operating at a rated 
load torque under healthy conditions. The [d7] components in these cases show signifi-
cantly lesser variations from the pre-fed values, a characteristic of the healthy machine. 
Furthermore, Figure 12b shows the [d7] coefficient for SCIMs operating at a rated load 
torque having broken rotor bars. It is evident that the deviation of the [d7] coefficient is 
much greater than those shown in Figure 12a. 

Figure 11. Experimental setup for the validation of the proposed fault detection scheme.

4.2. Results of Fault Detection

Figure 12 shows the experimental results obtained by the LabVIEW-based SCIM
laboratory prototype to validate the simulation study. Moreover, the real-time signals
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are inherently non-stationary in nature due to the supply frequency regulation ±1.5%
(approx.). Hence, the experimental validation for SCIM at the rated load torque (35 Nm)
subjected to only the non-stationary signal at an operating sampling frequency of 6.2 kHz
is presented.
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Figure 12. The [d7] coefficient for SCIMs operating at a rated load torque obtained using the LabVIEW-based laboratory
prototype under (a) healthy state, and (b) faulty state.

Figure 12a shows the variation in the [d7] coefficient for SCIMs operating at a rated
load torque under healthy conditions. The [d7] components in these cases show signifi-
cantly lesser variations from the pre-fed values, a characteristic of the healthy machine.
Furthermore, Figure 12b shows the [d7] coefficient for SCIMs operating at a rated load
torque having broken rotor bars. It is evident that the deviation of the [d7] coefficient is
much greater than those shown in Figure 12a.

Furthermore, Figure 13 shows the curve fitting-based pattern recognition diagram of
ANN for the detection of broken rotor bars.

Machines 2021, 9, x FOR PEER REVIEW 16 of 19 
 

 

Furthermore, Figure 13 shows the curve fitting-based pattern recognition diagram of 
ANN for the detection of broken rotor bars. 

  
(a) (b) 

Figure 13. ANN-based pattern recognition diagram for the detection of broken rotor bars using the stator current for SCIM: 
(a) With broken rotor bars and (b) without broken rotor bars. 

The value of correlation coefficients for the SCIM in the faulty case is at 0.9536, and 
that for the healthy case is at 0.69, which further goes on to validate the proposed fault 
detection scheme (Figure 10). 

5. Conclusions 
The cage fault detection at an incipient juncture results in reducing the unwanted 

downtime of the drive system, especially in the underground mines. This paper proposes 
a two-tier approach using the DWT-based MRA of motor line current and ANN to detect 
the rotor bar crack for SCIMs operating under a supply frequency regulation, which is a 
common phenomenon in the Indian industrial scenario which leads to the presence of 
non-stationary signals as sources for the SCIM. The rigorous analysis in MATLAB/Sim-
ulink ensures that even the level-seven detailed coefficient [d7] alone is sufficient to detect 
the rotor bar crack provided the analysing mother wavelet and working sampling fre-
quency are selected accurately. In the present work, it is found that ‘db41’ is suitable for 
analysing the stationary current signal, whereas ‘sym34’ is the proper choice for the non-
stationary current signal in the MRA. Furthermore, it is also observed that the use of cas-
caded forward backdrop type ANN using the Levenberg-Marquardt algorithm gives 
highly satisfactory results for the process of fault detection. 

Moreover, pattern recognition and curve-fitting make the proposed scheme simplis-
tic, robust, and less erroneous. The scheme is further validated by a real-time implemen-
tation on a LabVIEW-based 5.5 kW SCIM laboratory prototype. The proposed scheme is 
also robust to the ± 2% (approx.) sampling frequency variation from the operating fre-
quency. Implementing this proposed approach requires a minimum instrumentation sys-
tem that is highly desirable for the scheme’s reliable working under dusty and hazardous 
mine environments. 

Author Contributions: Conceptualization, A.K.S., A.S.H.; methodology, A.K.S., A.S.H., M.B. and 
P.C.; software, A.K.S., A.S.H.; validation, A.K.S., A.S.H., M.B. and P.C.; formal analysis, A.K.S., 
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The value of correlation coefficients for the SCIM in the faulty case is at 0.9536, and
that for the healthy case is at 0.69, which further goes on to validate the proposed fault
detection scheme (Figure 10).

5. Conclusions

The cage fault detection at an incipient juncture results in reducing the unwanted
downtime of the drive system, especially in the underground mines. This paper proposes
a two-tier approach using the DWT-based MRA of motor line current and ANN to detect
the rotor bar crack for SCIMs operating under a supply frequency regulation, which is a
common phenomenon in the Indian industrial scenario which leads to the presence of non-
stationary signals as sources for the SCIM. The rigorous analysis in MATLAB/Simulink
ensures that even the level-seven detailed coefficient [d7] alone is sufficient to detect the
rotor bar crack provided the analysing mother wavelet and working sampling frequency
are selected accurately. In the present work, it is found that ‘db41’ is suitable for analysing
the stationary current signal, whereas ‘sym34’ is the proper choice for the non-stationary
current signal in the MRA. Furthermore, it is also observed that the use of cascaded forward
backdrop type ANN using the Levenberg-Marquardt algorithm gives highly satisfactory
results for the process of fault detection.

Moreover, pattern recognition and curve-fitting make the proposed scheme simplistic,
robust, and less erroneous. The scheme is further validated by a real-time implementation
on a LabVIEW-based 5.5 kW SCIM laboratory prototype. The proposed scheme is also
robust to the ±2% (approx.) sampling frequency variation from the operating frequency.
Implementing this proposed approach requires a minimum instrumentation system that is
highly desirable for the scheme’s reliable working under dusty and hazardous mine envi-
ronments.
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Nomenclature

Symbol Description
s Slip of the machine (%)
f1 Supply frequency (Hz)
p Number of pole pairs
Ωr Rotor speed (rad/s)
Rb,Lb Rotor bar resistance (Ω), inductance (H)
Rinc Increase in rotor resistance (Ω)
Re, Le End-ring resistance (Ω), inductance (H)
N1 Turn number of one stator winding
N Total number of rotor bars
Nb Contiguous number of cracked bars
fsb Higher-order slot harmonics
[Vs][Ir] Stator voltage, rotor loop current matrices
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[Rr][Lr] Rotor resistance, inductance matrices
Φs, Φr Total flux linkages of stator and rotor winding
θr Angular rotor position
Φ Particular point along the air-gap
l Effective length of the motor
Ntsp, Nspp Number of turns/slot/phase, number of slots/pole/phase
Nk (θr, ϕ) Winding function of rotor windings
La, Lb, Lc, Lab, Lbc, Lca Elements of [Ls]
Lk1 . . . . . . Lkk Elements of [Lr]
Lak, Lbk, Lck Elements of [Lsr]
θk Angular position of bar ‘k’
Alsb, Ausb Lower, upper fault side-band amplitude (%)
va, vb, vc Voltages of phase-a, phase-b, phase-c (V)
ia, ib, ic Currents of phase-a, phase-b, phase-c (A)
Fs Sampling frequency (Hz)
t Time (s)
L Number of decomposition levels
nf Detailed coefficient containing 50 Hz
flsb, fusb Lower, upper side-band frequency (Hz)
[Is] Stator current vector
[Rs] Stator winding resistance matrix
[Ls] Stator winding inductance matrix
[Lsr] Stator to rotor mutual inductance matrix
Tem, TL Electromagnetic, load torques (Nm)
J Rotor inertia (Kg-m2)
F Coefficient of friction
µ0 Permeability of air
r Air-gap average radius (mm)
Ns, Ns1 Effective, the actual number of turns of the stator winding
g Air-gap length (mm)
N1 (θr, ϕ), Nj (θr, ϕ) Winding function of circuit I and J
Kp, Kd, Ks Pitch, distribution, skew factors
Na, Nb, Nc Winding function of stator windings
αr Angle between any two adjacent bars

Appendix A. Motor Parameters

Parameters Ratings

Shaft power 5.5 kW
Rated voltage 415 V
Frequency 50 Hz
Synchronous speed 1500 rpm
Stator resistance/phase 1.83 Ω
Stator inductance/phase 0.0074 H
Rotor resistance referred to stator/phase 1.26 Ω
Rotor inductance referred to stator/phase 0.007 H
Mutual inductance 0.198 H
Number of stator slots 36
Number of rotor slots 28
Number of poles 4
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