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Abstract: In this paper, we consider the problem of selecting the most efficient optimization algo-
rithm for neural network approximation—solving optimal control problems with mixed constraints.
The original optimal control problem is reduced to a finite-dimensional optimization problem by
applying the necessary optimality conditions, the Lagrange multiplier method and the least squares
method. Neural network approximation models are presented for the desired control functions,
trajectory and conjugate factors. The selection of the optimal weight coefficients of the neural network
approximation was carried out using the gravitational search algorithm and the basic particle swarm
algorithm and the genetic algorithm. Computational experiments showed that evolutionary optimiza-
tion algorithms required the smallest number of iterations for a given accuracy in comparison with
the classical gradient optimization method; however, the multi-agent optimization methods were
performed later for each operation. As a result, the genetic algorithm showed a faster convergence
rate relative to the total execution time.

Keywords: optimal control problem; evolutionary optimization; neural network approach

1. Introduction

Currently, there are many computer modeling problems that require reduction to the
class of optimal control problems (OCP) to automate the process of finding a solution,
as well as to reduce the complexity of calculations. The most common tool for solving
such problems is numerical methods, including the apparatus of artificial neural networks
(ANN). The advantage of ANN is the ability to construct a solution in the form of a func-
tional dependence with high accuracy [1,2]. At the same time, the use of other numerical
optimization methods requires the subsequent interpolation of the discrete solution, which,
in turn, imposes an additional error. In addition, the efficiency of using the neural network
approach for solving the OCP is expressed in the possibility of obtaining a solution not
only satisfying the necessary optimality conditions, but also smoothness conditions.

In the study [3], A. Nazemi and R. Karami presented the main stages of solving OCP
with mixed constraints. Based on the optimal Karush–Kuhn–Tucker conditions, the authors
constructed a function for calculating the error and formulated a nonlinear optimization
problem, in which neural network approximations are defined for the state function,
control, and Lagrange multipliers. For the obtained scheme of dynamic optimization of the
weight coefficients of the neural network solution, the analysis of stability and convergence
is carried out.

The most relevant application of the neural network approach is in cases where the
solution of optimal control problems does not have an analytical solution [4] or the type of
analytical solution cannot be determined directly [5,6]. In addition, the approach under
study does not require the search for the optimal ratio of the step size along the axes under
consideration, in contrast to finite-dimensional methods [7].

In the study [8], the authors T. Kmet and M. Kmetova considered the use of ANN
for solving an OCP with a free end time and constraints on control and phase trajectory.
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Note that the construction of the corresponding nonlinear programming problem was
carried out on the basis of neural network control using adaptive criticism. The proposed
approach demonstrated the effectiveness in the field of optimal management of photosyn-
thetic production and confirmed the relevance of the introduction of an adaptive critical
system approach.

The authors of the study [9], F. Kheyrinataj and A. Nazemi, presented a numerical
method for solving the OCP with fractional delay, which implements nonlinear polynomial
expansions in a neural network with an adaptive structure. The developed neural network
approach has demonstrated its effectiveness in many specific examples.

The presented neural network solutions, as well as other modifications of the ANN for
solving the OCP [10–12], can be combined and the main advantage can be highlighted—the
presentation of the problem solution as continuous over the entire domain of definition,
while the rest of the numerical methods allow you to find values directly at discrete
points and require interpolation to calculate the values between them [13]. In addition,
with an increase in the number of partitions of the original domain of definition [14]
and the dimension of the problem [15], as a rule, the computational complexity does not
increase significantly.

In this paper, we consider the computational features of the neural network approach
to solving optimal control problems using various methods of evolutionary optimization.
This paper describes the structure of a neural network solution that satisfies the Kreinovich
theorem and corresponds to a hole-layer perceptron, and also presents a general scheme for
optimizing its parameters. This area of research is relevant, since the use of evolutionary
algorithms in many applied areas [16–19] has made it possible to increase the efficiency of
finding optimal values even in the case of analyzing functions that have many local optima
or do not have a clear global optimum.

Note that the evolutionary algorithms not only allow us to obtain well-interpreted
results, but also quite simply combine with other methods [20–22]. At the same time, these
algorithms do not provide a strict finding of the optimal solution in a finite time and require
adjustment of the parameters of the models used [23–25]. Thus, evolutionary algorithms
are heuristic, that is, the accuracy and rigor of the solution do not prevail over the feasibility.
In this regard, the use of this type of optimization methods in solving applied problems
requires a more detailed analysis.

In this regard, this study is aimed at studying the computational features of the
neural network approach to solving optimal control problems with mixed constraints
using evolutionary optimization algorithms: the genetic algorithm, the gravitational search
algorithm, and the basic particle swarm algorithm. Thus, this paper is devoted to the study
of the neural network approach to solving optimal control problems and optimizing the
structure of the functional representation by evolutionary algorithms in order to analyze
their efficiency and convergence rate. This paper contains examples of optimal control
problems that have an analytical solution and allow us to evaluate the convergence of the
algorithms under study.

The rest of the paper is organized as follows: Section 2 describes a formal mathematical
formulation of the optimal control problem with mixed constraints. Section 3 presents
a neural network model for approximating the optimal control problem, as well as a
description of the studied evolutionary algorithms for optimizing the neural network
solution. In Section 4, the practical implementation of the presented algorithms is presented
and the results are evaluated.

2. Necessary Optimality Conditions for OCP with Mixed Constraints

Consider the general formulation of the optimal control problem corresponding to the
Bolza problem with mixed constraints. Let us introduce function x : [t0, t1]→ Rn, n ≥ 1 ,
which describes the development of a certain system. Function x(t) is called a state variable
(or trajectory) satisfying the continuity condition.
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Note that for the system at the initial moment of time the state is known:

x(t0) = x0 (1)

We will assume that the further dynamics of the system depends on some partic-
ular choice (or strategy) at each moment of time and this strategy is given by function
u : [t0, t1]→ U ⊂ Rk, k ≥ 1 . A fixed set U in Rk is called a control set, and function u(t) is
called a control function.

Based on the fact that u(t) determines the development of the system, the dynamics
of the state variable will take the form:

.
xi(t) = gi(t, x(t), u(t)), i = 1, . . . , n (2)

where g : [t0, t1]× Rn × Rk → Rn and function g belongs to the space of continuously
differentiable functions g ∈ C1([t0, t1]×Rn+k).

We say that a piecewise continuous function u : [t0, t1]→ U is an admissible control
for (1)–(2) if there is a unique solution to this ordinary differential equation, defined on
[t0, t1], and solution x(t) is called the trajectory corresponding to control u(t).

In addition, for each system, control constraints can be described in one way or another.
Within the framework of this study, it is assumed that there are mixed constraints for the
system, simultaneously linking control and a state variable:

ci(t, x(t), u(t)) ≤ 0, i = 1, . . . , p (3)

Let function f : [t0, t1]× Rn+k → R describe variable costs (or operating costs, vari-
able payments, etc.). Let the values of t0, t1 be fixed.

Consider the set C of admissible controls and define the quality criterion J(ω) as follows:

J(ω) =

t1∫
t0

F(t, x(t), u(t))dt + Φ(t1, x(t1))→ min (4)

which describes the variable costs over the entire time interval and the trajectory constraints
at the end of the time interval. Suppose that functions F and Φ also belong to the space of
continuously differentiable functions, i.e., F ∈ C1([t0, t1]× Rn+k) and Φ ∈ C1(Rn).

The optimal control problem (1)–(4) is a Bolza problem with mixed constraints, a free
right end of the trajectory, and a fixed end time.

One of the most effective approaches to solving problems in optimal control theory is
the Lagrange multiplier method. This method consists in reducing the original OCP to the
solution of the problem of minimizing the corresponding Lagrange function:

L(t, x(t), u(t), λ(t), λ0, µ(t)) = −λ0F(t, x(t), u(t)) + λ(t)g(t, x(t), u(t)) + µ(t)c(t, x(t), u(t)). (5)

where λ0 ∈ R, λ(t) ∈ Rn, µ(t) ∈ Rp.
Then, based on the necessary optimality conditions, it can be argued that the opti-

mal control u∗(t), the corresponding trajectory x∗(t), and the Lagrange multipliers must
satisfy [3]:

• The dynamics of the state variable;

.
x∗i = gi, i = 1, ..., n; (6)

• Conditions of stationarity with respect to x and u, respectively:

.
λ
∗
i = − ∂F

∂xi
−

n

∑
i=1

∂gi
∂xi

λi −
p

∑
l=1

∂cl
∂xi

µl , i = 1, ..., n; (7)
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∂F
∂us

+
n

∑
i=1

∂gi
∂us

λi +
p

∑
l=1

∂cp

∂us
µl= 0, s = 1, ..., k; (8)

• Additional non-rigidity conditions;

µl · cl = 0, l = 1, ..., p; (9)

• Nonnegativity condition;
µl ≥ 0, l = 1, ..., p; (10)

• Mixed constraints;
cl ≤ 0, l = 1, ..., p; (11)

• Initial conditions;
x∗i (t0) = x0i, i = 1, ..., n; (12)

• Transversality conditions;

λ∗i (t1) = λ∗0 ·Φxi (t1, x∗(t1)), i = 1, ..., n. (13)

To simplify the solution of this system, we write down constraints (6)–(8) in an
equivalent form. To do this, we introduce the concept of an NCP function that satisfies the
nonlinear complementarity problem (NCP):

ϕ(a, b) = 0⇔ a ≥ 0, b ≥ 0, ab = 0. (14)

To do this, we introduce the concept of the perturbed NCP-function of the Fischer–
Burmeister:

ϕε
FB(a, b) = (a + b)−

√
a2 + b2 + ε, ε→ 0+. (15)

Using the perturbed NCP-function ϕε
FB(a, b), we transform conditions (6)–(8) into

equality-type constraints in the form:

ϕε
FB(µl ,−cl) = 0, ε→ 0+, i = 1, p. (16)

Thus, the initial OCP is reduced to the problem of nonlinear optimization (6)–(8),
(12)–(13), (16), which must be solved by means of neural networks. Consider the pro-
cess of building a neural network model that approximates the solution to a nonlinear
optimization problem.

3. Building a Neural Network Structure for Solving OCP

We represent the functional approximation as a sum of two parts based on two
facts. The first term contains no tunable parameters and satisfies the initial or boundary
conditions. The second term uses one output direct neural network with adjustable
parameters and input signals.

It should be noted that in the second case, the weighting coefficients are adjusted,
taking into account the minimization problem and are constructed so as not to contribute
to the initial or boundary conditions. Based on these facts and using the neural networks,
functional approximations of solutions for the phase trajectory, Lagrange multipliers and
control for the system (6)–(8), (12), (13), and (16) can be defined as follows:

xT = x0 + (t− t0)nx,
λT = − ∂Φ

∂xiT

∣∣∣
t1

+ (t− t1)nλ,

µT = nµ,
uT = nu.

(17)
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where functions nx, nλ, nµ, nu have a structure:
nx = ∑I

i=1 vi
xσ(zi

x), zi
x = wi

xt + bi
x

nλ = ∑I
i=1 vi

λσ(zi
λ), zi

λ = wi
λt + bi

λ

nµ = ∑I
i=1 vi

µσ(zi
µ), zi

µ = wi
µt + bi

µ

nu = ∑I
i=1 vi

uσ(zi
u), zi

u = wi
ut + bi

u

(18)

The described structure (18) corresponds to a neural network with a single hidden
layer. The input signals x, passing through the neurons of the network and multiplying
by their weight coefficients

→
w, eventually form a single weighted feature ∑i = ∑

j
w(0)

ij xj.

The weighted trait ∑i is further transformed using the activation function (some nonlinear
converter) and forms the ANN output for the neuron on the next layer σ(∑i) (Figure 1). At
the output layer, the values of the neurons are multiplied by the weight coefficients of the
next layer w(1)

i , and the response (the output of the ANN) is considered to be the resulting
weighted sum.

Figure 1. The structure of an artificial neural network for solving the OCP.

Thus, the function N(t,
→
p ) has the form:

N(t,
→
p ) =

n

∑
i=1

w(1)
i σ

(
m

∑
j=1

w(0)
ij tj + bi

∗

)
,

where m is the number of neurons on the input layer, n is the number of neurons on the
next layer.

The task is to select the optimal parameters of the ANN in such a way that the
approximated function (17) satisfies the system (6)–(8), (16) with some error. The parameters
of the ANN are the number of neurons in the input and output layers, their weight
coefficients, and the activation function used.

The selection of the optimal weight coefficients of the ANN can be carried out using the
algorithm of back propagation of the error, for which it is necessary to create an appropriate
optimization problem.

We represent the system of Equations (6)–(8), (16) as an optimization problem: we
divide the time interval [t0, t1] into q equal parts by points ti = t0 + i · ∆t, then, based on
the least squares method, we have the following formulation of the problem:

min
y

E(y) =
1
2

q

∑
h=1
{E1(th, y) + E2(th, y)+E3(th, y) + E4(th, y)}, (19)
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where y = (wx, wλ, wµ, wu, bx, bλ, bµ, bu, vx, vλ, vµ, vu)
T and

E1(th, y) =
n
∑

i=1
[

.
xh

T i − gi]
2
,

E2(th, y) =
n
∑

i=1
[

.
λ

h
T i +

∂Fh
T

∂xT i
+

n
∑

i=1

∂gh
T i

∂xT i
λh

T i +
p
∑

l=1

∂ch
T l

∂xT i
µh

T l ]
2

,

E3(th, y) =
k
∑

s=1
[

∂Fh
T

∂uT s
+

n
∑

i=1

∂gh
T i

∂uT s
λh

T i +
p
∑

l=1

∂ch
T l

∂uT s
µh

T l ]
2

,

E4(th, y) =
p
∑

l=1
[ϕε

FB(µT l ,−cT l)]
2, ε→ 0+.

(20)

The finite-dimensional optimization problems (19) and (20) makes it possible to
use various solution methods and select weight coefficients with a given accuracy for
constructing a neural network approximation.

Thus, the ANN weighting coefficients are updated by optimizing the error function
(19) by the error backpropagation algorithm, which can be schematically represented
according to Figure 2.

Figure 2. Schematic representation of optimization of a neural network solution.

3.1. General Optimization Scheme for A Neural Network Solution

Figure 2 shows a flowchart of a neural network solution (NNS) optimization process,
and its specific steps are presented in Algorithm 1.

Algorithm 1 Optimization of a NNS.

Input: NNS,ε1, ε2
Output: y∗

1 put i = 0;
2 initialize weight coefficients yi = (wx, wλ, wµ, wu, bx, bλ, bµ, bu, vx, vλ, vµ, vu)

T ;
3 calculate the values of the optimized function E(yi);

4 update weight coefficients yi+1 = (w̃x, w̃λ, w̃µ, w̃u, b̃x, b̃λ, b̃µ, b̃u, ṽx, ṽλ, ṽµ, ṽu)
T

;
5 calculate the values of the optimized function E(yi+1);
6 if ||E(yi+1)||≤ ε1 or ||E(yi+1)− E(yi)||≤ ε2 then

go to step 7;
else yi = yi+1, i = i + 1 and go to step 4;

7 Return y∗ = yi+1.
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Thus, the efficiency of the neural network solution search depends on the algorithm
used to update and optimize the weight coefficients. This study analyzes the accuracy and
convergence rate of a neural network approach with various evolutionary optimization
algorithms: a genetic algorithm, a population gravity search algorithm, and a basic particle
swarm algorithm. The constructed neural network approximations by various optimization
methods are compared with the gradient descent algorithm.

3.2. Genetic Optimization Algorithm

Genetic algorithms search for the solution space of a function using simulated evolu-
tion, i.e., the survival of the most complex strategy. At the same time, the fittest individuals
of any population tend to reproduce and survive until the next generation, thereby improv-
ing subsequent generations. However, lower individuals may accidentally survive and
also reproduce.

Research has shown that genetic algorithms solve linear and nonlinear problems by
exploring all areas of the state space and exponentially exploiting promising areas through
mutations, crossovers, and selection operations applied to individuals in a population. A
more complete discussion of genetic algorithms, including extensions and related topics, is
presented in [26].

The genetic algorithm used in this study is shown in Figure 3.

Figure 3. Basic structure of genetic algorithm.

To apply this algorithm, we define a population of size S as a set of different weights
of the neural network approximation.

The fitness function for each set of ANN weights is the minimized error function (19)
and (20), which ensures the fulfillment of the necessary optimality conditions.

The optimal set of ANN weighting parameters is such that the error of the approxima-
tion function is equal to the given computational accuracy.

The mutation operation is performed as a change in some weight by a random set
of values.

The crossing of one set of weight coefficients with another is determined using one-
point crossing over.
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Selection (selection of the best individuals in the population) is carried out by preserv-
ing a certain percentage of the best individuals in the new generation.

The optimization process will go on until the specified computation error is reached.

3.3. Basic Particle Swarm Algorithm

The main idea of the particle swarm algorithm [27,28] is to move the population of
possible solutions in the direction of the best found position of the particles (solution). This
algorithm belongs to the class of multi-agent methods.

Algorithm 2 Basic Particle Swarm Algorithm.

Input: NNS, the size of the neighborhood σ < N, the values of the maximum influence
ϕ1,max and ϕ2,max, as well as the maximum speed vmax
Output: b

1 initialize a random population of individuals {xi}, i ∈ [1, N], as well as the n-element
velocity vector of each individual {vi}, i ∈ [1, N];

2 calculate the best position for each individual so far : bi ← xi, i ∈ [1, N] ;
3 if ||E(bi)||≤ ε then

to step 13;
else put i = 0 and to step 3;

4 put Hi ← {σ the nearest neighbors for xi};
5 put hi ← argminx{ f (x) : x ∈ Hi} ;
6 generate a random vector ϕ1, where ϕ1 ∈ U[0, ϕ1,max];
7 generate a random vector ϕ2, where ϕ2 ∈ U[0, ϕ2,max];
8 calculate vi ← vi + ϕ1 ◦ (bi − xi) + ϕ2 ◦ (hi − xi) ;
9 if |vi|< vmax then

adjust the speed vi ← vivmax/|vi|;
10 calculate xi ← xi + vi ;
11 calculate bi ← argminx{ f (xi) : f (bi)} ;
12 if i < N then

put i = i + 1 and go to step 4;
else go to step 3;

13 Return b = argmin{ f (bi), i = 1, N}.

At the initial moment of time, the particles are located chaotically throughout the
space and contain a randomly specified velocity vector. For each particle located at a certain
point, the value of the fitness function is determined and compared with its best location,
as well as the best location relative to the entire population.

At each iteration, the direction and value of the particle velocity is corrected, relying
on the approach to the best point among a given number of neighbors, as well as on the
approach to the global optimum point. The proposed method is aimed at the fact that after
a finite number of iterations, a larger number of particles will be located near the most
optimal point. The particle swarm algorithm is shown in the flowchart in Figure 4, and its
specific steps are shown in Algorithm 2.
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Figure 4. Basic structure of particle swarm algorithm.

3.4. Gravitational Search Algorithm

Similarly to the previous method, the gravitational search algorithm [29,30] moves
the population of possible solutions; however, the direction of movement is set based
on the relationship of particles according to the principles of the laws of gravity and
mass interaction.

The gravitational search algorithm (Figure 5) uses two laws:

1. The law of gravitation: each particle attracts others and the force of attraction between
two particles is directly proportional to the product of their masses and inversely
proportional to the distance between them. Note that, unlike the Universal Law of
Gravitation, the square of the distance is not used, which provides the numerical
algorithm with more efficient results.

2. Law of motion: the current speed of any particle is equal to the sum of the part of
the speed at the previous moment of time and the change in speed, which is equal
to the force with which the system acts on the particle, divided by the inertial mass
of the particle.
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Figure 5. Basic structure of gravitational search algorithm.

The gravity search algorithm is presented in Algorithm 3.
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Algorithm 3 Gravitational Search Algorithm.

Input: NNS, N is the maximum number of particles in the system, ε is small constant
Output: p∗

1 initialize a random of the system (a population is a set of different pairs of weighting factors)

S =
{

p1
i , p2

i , . . . , p3
i
}N

i=1, initialize ξi are random variables uniformly distributed from zero
to one;

2 for i = 1:N do
calculate the value of the fitness function f (pi);

end
3 update the gravitational constant, best and worst particles, and masses

for i = 1 : N do
Mai(t) = Mpi(t) = Mii(t) = Mi(t) =

mi(t)
∑N

j=1 mj(t)
;

mi(t) =
f (pi)−max

j=1,N
f (pj)

min
j=1,N

f (pj)−max
j=1,N

f (pj)
;

end
4 calculate the value of the gravitational constant :

G(t) = G0
eβt , β > 0;

5 calculation of the resulting force in different directions :
for i = 1 : N do

for j = 1 : N do
if j ! = i then

Fij(t) = G(t) Mpi(t)×Maj(t)
||pi ,pj||+ε

(pj(t)− pi(t));

Fi(t)+ = ξiFij(t)
end

end
6 calculation of accelerations and speeds :

for i = 1 : N do
ai(t) = Mii(t);
vi(t + 1) = (ς1, ..., ςn)

T × vi(t) +
Fi(t)
ai(t)

;
end

7 updating the positions of particles (pairs of weighting factors) :
for i = 1 : N do

pi(t + 1) = pi(t) + vi(t + 1).
end

8 p∗ = argmin{ f (pi), i = 1, N}
9 if ||E(p∗)||≤ ε then

go to step 10;
else go to step 2;

10 Return p∗.

All the optimization algorithms proposed in this study have various advantages and
disadvantages presented in Table 1. Due to the fact that the investigated optimal control
problem has been transformed into an equivalent problem of nonlinear optimization of a
function of many variables, it is impossible to unambiguously identify the most efficient of
the algorithms based on theoretical assumptions.
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Table 1. Comparative analysis of optimization algorithms.

Optimization Methods Advantages Disadvantages

Gradient descent
+ easy implementation;
+ applicable to any loss function.

− getting stuck in local optimum;
− slow convergence.

Genetic algorithm

+ can be used to optimize functions
that do not directly depend on
arguments;

+ does not require additional
information;

+ high productivity.

− too large value of the mutation
parameter reduces the probability
of finding the exact global
optimum.

Gravity search

+ in practice, the method is more
accurate than genetic algorithms;

+ high convergence rate.

− lengthy calculations;
− low accuracy of optimization of

multi-modal functions;
− functions of exit from local optima

are not provided.

Particle swarm optimization

+ simplicity and the ability to quickly
modify the algorithm;

+ high convergence rate.

− lengthy calculations;
− low accuracy;
− functions of exit from local optima

are not provided.

4. Computational Experiments

Earlier in our research, we showed that the application of the neural network approach
to solving optimal control problems demonstrates good results for the OCP with the
Lagrange function linear with respect to the control. An analysis of the application of
various optimization algorithms for neural networks for solving linear OCPs showed that
the evolutionary optimization algorithm uses the least number of iterations to achieve a
given accuracy.

Within the framework of this study, we will consider the class of quadratic optimal
control problems and analyze the behavior of the considered optimization methods in
this case. In addition, within the framework of this study, an example of the OCP for which
algorithms are stuck at a local optimum of the considered algorithms falling into the local
extremum of the optimized function is given, for linear OCPs.

Example 1. The Quadratic OCP. Consider a particular OCP with a quadratic functional with
respect to a control of the form:


J(ω) =

∫ 1
0 u2(t)dt− x(1)→ min,

.
x(t) = x(t) + u(t),
−2 ≤ u(t) ≤ −0.4,

x(0) = 0.

(21)

Let us compose the Lagrange function corresponding to problem (21):

L(t, x, u, λ, λ0, µ) = λ0u2(t) + λ(t)(x(t) + u(t)) + µ1(t)(u(t) + 0.4) + µ2(t)(u(t)− 2). (22)

The corresponding optimization problem (21) has the form:

min
y

E(y) =
1
2

q

∑
h=1
{E1(th, y) + E2(th, y)+E3(th, y) + E4(th, y)}, (23)

where y = (wx, wλ, wµ, wu, bx, bλ, bµ, bu, vx, vλ, vµ, vu)
T and
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E1(y) =
q
∑

i=1
[

.
xi − xi − ui]

2
,

E2(y) =
q
∑

i=1
[

.
λ

i
+ λi]

2
,

E3(y) =
q
∑

i=1
[λi − 2ui + µi

1 − µi
2
]2,

E4(y) =
q
∑

i=1
[ϕε

FB(µ
i
1, 2− ui)]

2
+

q
∑

i=1
[µi

2,−0.4− ui]
2, ε→ 0+.

(24)

We define functional approximations of the neural network taking into account the
boundary conditions in the form:

x = t · nx,
u = nu,
λ = −1 + (t− 1)nλ,
µ1 = nµ1 ,
µ2 = nµ2 .

(25)

Let us compare the results of the neural network approach of finding a solution to
the OCP using various methods for optimizing weight coefficients. The initial data for the
implementation of the algorithms are presented in Table 2.

Table 2. Variable algorithm parameter values.

Algorithm Parameters Value

Genetic algorithm

N_t—number of split points (10, 50, 100, 200, 400)
size—number of individuals in the population (400, 500, 600, 800, 1000)

pcross—percentage of individuals not subject to crossbreeding (0.5, 0.55, 0.6, 0.65, 0.7)
pmut—percentage of individuals subject to mutation (0.1, 0.15, 0.2, 0.25, 0.3)

Particle swarm optimization

N_t—number of split points (10, 50, 100, 200, 400)
Size—maximum number of particles in the system (50, 100, 150)

c0, c1—accelerations (0.5, 1.5)
w—inertia weight 0.75

Gravity search

N_t—number of split points (10, 50, 100, 200, 400)
Size—maximum number of particles in the system (50, 100, 150)

G0—gravitational constant 100.0
Alpha—coefficient of regulation of the monotony of the gravitational

constant 20.0

Figure 6 shows neural network solutions to the optimal control problem (21). Figure 7
shows graphs of errors (deviations of functional approximations from the analytical solu-
tion) over the entire time interval along the phase trajectory and control, respectively. The
calculated errors of the target functional of the neural network approximation, as well as
the values of the additive error of the optimal pair are presented in Table 3.

Table 3. Computing characteristics of methods of optimization of neural network approximation.

Algorithm Count E(y) ∆J(u) ∆
¯
x ∆

¯
u

Gradient descent 45,981 0.0101829 0.0004729 0.0109726 0.2697622
Genetic algorithm 10,316 0.0347283 0.0039726 0.0286430 0.1952428

Gravity search 12,532 0.0811294 0.0089354 0.1294026 0.1962571
Particle swarm
optimization 13,941 0.1952745 0.0298056 0.2197037 0.1681095
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Figure 6. Neural network solution for OCP.

Figure 7. (a) Phase variable error; (b) Control error.

The results of the study showed that to achieve a given accuracy, the gradient descent
algorithm requires the largest number of iterations Count = 45, 981, but this method allows
achieving better accuracy for the phase trajectory and functional.

The genetic algorithm (Count = 10, 316) has the lowest convergence time among the
considered methods for solving OCP (21). In this case, the accuracy of the solution E(y)
differs from the gradient algorithm in the second order.

The results of the evolutionary gravity search algorithm showed comparable results
in terms of accuracy, but the number of iterations Count = 12, 532 required to achieve
it is greater than the genetic algorithm. The basic particle swarm algorithm did not get
the specified accuracy (E(y) = 0.1952745) and hit the local optimum for the number of
iterations Count = 17, 941.

Note that the view of the deviation graphs of the neural network approximation for
various optimization methods confirms that the gradient descent algorithm and the genetic
algorithm showed better calculation accuracy. The least accurate functional approximation
of the phase trajectory is constructed using the particle swarm algorithm and has an
average deviation of the phase trajectory ∆x ≈ 0.2197037. These function values are the
best result of the approximation model approximation (25) obtained experimentally for
the PSO method. The results obtained can be explained by the disadvantage of the PSO
algorithm in the absence of procedures for exiting local optima, as well as the complexity
of selecting the algorithm parameters.

Thus, for a given OCP, multi-agent methods require less iteration for convergence;
however, the particle swarm algorithm did not achieve the specified computational accu-
racy and fell into a local optimum.
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In addition, the multi-agent gravity search and particle swarm methods show the
longest execution time for iteration, but the overall convergence rate of the algorithms is
less than the gradient descent algorithm. The genetic algorithm showed the highest rate of
convergence in terms of the total execution time of the algorithm (see Table 4).

Table 4. Computing machine time costs of neural network approximation optimization methods.

Algorithm TimeIt Time

Gradient descent 1.582092474 72,746.1939
Genetic algorithm 3.195061662 39,350.3794

Gravity search 5.603621509 53,413.7201
Particle swarm optimization 5.162834727 46,160.9052

Thus, for quadratic optimal control problems, as well as for linear ones, the genetic
optimization algorithm showed the fastest rate of convergence relative to the total execution
time of the algorithm. However, for linear optimal control problems, the number of
iterations Count required to achieve the specified accuracy was approximately 2 times less.

Example 2. Stuck algorithms at the local optimum.

In order to check how an increase in the dimension of the optimal control problem
affects the convergence and accuracy of the resulting solution, we investigate the following
problem. Consider a two-dimensional problem with respect to the trajectory of optimal
control with mixed constraints of the form:

J(ω) =
3∫

0
2x1(t)dt→ min

.
x1(t) = x2(t),.
x2(t) = u(t),
|u(t)| ≤ 2,
x1(t) ≥ −7,

x1(0) = 2, x(0) = 0.

. (26)

The corresponding optimization problem (26) has the form:

min
y

E(y) =
1
2

q

∑
h=1
{E1(th, y) + E2(th, y)+E3(th, y) + E4(th, y)

}
, (27)

where y = (wx, wλ, wµ, wu, bx, bλ, bµ, bu, vx, vλ, vµ, vu)
T and

E1(y) =
q
∑

i=1
[

.
xi

1 − xi
2]

2
+

q
∑

i=1
[

.
xi

2 − ui]
2
,

E2(y) =
q
∑

i=1
[

.
λ

i
1 + 2− µi

3]
2
+

q
∑

i=1
[

.
λ

i
2 + λi

1]
2
,

E3(y) =
q
∑

i=1
[λi

2 + µi
1 − µi

2
]2,

E4(y) =
q
∑

i=1
[ϕε

FB(µ
i
1, 2− ui)]

2
+

q
∑

i=1
[µi

2,−2− ui]
2
+

q
∑

i=1
[µi

3, 7 + xi
1]

2, ε→ 0+.

(28)

Figure 8 shows neural network solutions obtained using various optimization meth-
ods. The calculated values of the additive error of the optimal pair of neural network
approximation are presented in Table 5.



Machines 2021, 9, 102 16 of 18

Figure 8. (a) Analytical solution; (b) Neural network solution.

Table 5. Computing characteristics of methods of optimization of neural network approximation.

Algorithm ∆
¯x1 ∆

¯x2 ∆
¯u

Gradient descent 202.07342431 304.51482502 302.32155329
Genetic algorithm 203.26250408 317.43769457 302.27943816

Gravity search 215.19872669 319.05872786 303.42128037
Particle swarm optimization 232.72998470 325.55120591 286.98811501

An increase in the dimensionality in this OCP along the phase trajectory and conjugate
variables led to the fact that the considered evolutionary algorithms, as well as the gradient
descent algorithm, fell into the local optimum of the minimized function.

5. Conclusions and Future Work

An analysis of the application of various optimization algorithms for neural network
solution of optimal control problems showed that evolutionary function optimization
algorithms use the least number of iterations to achieve a given accuracy, but finding the
exact global minimum is difficult and requires significant computing resources;

Multi-agent methods of gravity search and swarm of particles show the longest
execution time for iteration. For quadratic optimal control problems, as well as for linear
ones, the genetic optimization algorithm showed the fastest rate of convergence relative to
the total execution time of the algorithm. However, for linear optimal control problems,
the number of iterations required to achieve the specified accuracy was approximately two
times less.

Among evolutionary algorithms, the basic algorithm for optimizing a swarm of
particles turned out to be less resistant to hitting a local optimum. The results obtained
can be explained by the disadvantage of the PSO algorithm in the absence of procedures
for exiting local optima, as well as by the complexity of the selection of the algorithm
parameters. In addition, the algorithm of gravitational search and swarm of particles, when
implemented, requires lengthy computations of iteration due to the need to recalculate
many parameters.

Following from this research, it is planned to study a wider range of multi-agent opti-
mization methods and genetic algorithms, their various modifications, and also to apply the
results obtained in the framework of solving applied problems in various scientific fields.
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