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Abstract: Wind turbines are rotating machines which are subjected to non-stationary conditions
and their power depends non-trivially on ambient conditions and working parameters. Therefore,
monitoring the performance of wind turbines is a complicated task because it is critical to construct
normal behavior models for the theoretical power which should be extracted. The power curve is
the relation between the wind speed and the power and it is widely used to monitor wind turbine
performance. Nowadays, it is commonly accepted that a reliable model for the power curve should
be customized on the wind turbine and on the site of interest: this has boosted the use of SCADA
for data-driven approaches to wind turbine power curve and has therefore stimulated the use of
artificial intelligence and applied statistics methods. In this regard, a promising line of research
regards multivariate approaches to the wind turbine power curve: these are based on incorporating
additional environmental information or working parameters as input variables for the data-driven
model, whose output is the produced power. The rationale for a multivariate approach to wind
turbine power curve is the potential decrease of the error metrics of the regression: this allows
monitoring the performance of the target wind turbine more precisely. On these grounds, in this
manuscript, the state-of-the-art is discussed as regards multivariate SCADA data analysis methods
for wind turbine power curve modeling and some promising research perspectives are indicated.

Keywords: wind energy; wind turbines; power curve; SCADA data; multivariate regression; data-
driven models

1. Introduction

Modern horizontal-axis wind turbines are complex machines which are subjected to
non-stationary conditions; therefore, monitoring their performance is a complicated task
which has attracted a wide debate in the scientific literature.

Typically, the manufacturer of a wind turbine provides standards for the behavior of
the machine, basing on field test in a controlled environment: these are expressed in the
form of curves for the thrust coefficient and for the power coefficient. Unfortunately, in
real-world applications, the aerodynamics and the machine design are useful only within
a certain extent because the environmental conditions to which the wind turbines are
subjected can be remarkably different with respect to the reference. Furthermore, there are
relevant issues related to the quality of the measurements, because the standard is the use
of cup anemometers mounted behind the rotor span and the undisturbed wind speed is
estimated through a nacelle transfer function. It is a consolidated evidence that the nacelle
transfer function is affected by turbulence intensity, wind shear, atmospheric stability and
other environmental factors [1,2].

The power curve of a wind turbine is fundamental to understand its performance
because it is given by the measured relation between the wind speed and the output power,
which can be visualized through a simple two-dimensional scatter plot. The method
most commonly employed for visualizing power curves has been codified in the IEC [3]
guidelines. These substantially consist of the so called binning method, which is based on
averaging the measured power in wind speed intervals of 0.5 or 1 m/s.
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Given the ith wind speed bin, the average wind speed for the bin is computed as

v̄i =
1
Ni

Ni

∑
j=1

vi,j (1)

and the average power for the bin is computed as

P̄i =
1
Ni

Ni

∑
j=1

Pi,j (2)

where vi,j is the normalized measured wind speed of the jth data set in the ith wind speed
bin, Pi,j is the normalized measured power output of the jth data set in the ith wind speed
bin and Ni is the population of the ith wind speed bin. In Figure 1, an example of a power
curve of a 2 MW wind turbine from an industrial wind farm (owned by ENGIE Italia) is
reported, in the form of scatter plot and of IEC power curve.
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Figure 1. Example of scattered power curve and IEC power curve.

A relevant issue regarding the analysis of power curves through the binning method is
that the comparison of the same wind turbine models in different sites is questionable. On
the grounds of the above considerations regarding nacelle anemometers, the power curves
of two wind turbines of the same model, which are placed in different environments, can
appear to be different and it is complicated to argue if this is due to different performance
or to uncontrollable environmental effects. This matter of fact is exemplified by Figure 2,
where the power curve is reported for two wind turbines of the same model (Vestas V52)
which are placed in different environments: one is moderately (TI ' 12% at the order of
8–9 m/s) and one is highly turbulent (TI ' 18% at the order of 8–9 m/s).

Despite this, by the point of view of customization of performance analysis, the power
curve obtained through the binning method is a step forward with respect to design
specifications, because it is a benchmark which can be constructed for each wind turbine
in each site. Therefore, in wind energy practice the attitude has grown to customize
the performance monitoring by constructing normal behavior models which refer to a
particular wind turbine in a particular site. In this regard, the turning point has been the
development and the widespread diffusion of SCADA control systems, storing (typically
with ten minutes of sampling time) a vast set of environmental, operational, thermal
and electrical measurements. SCADA data represent a powerful information source,
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but to monitor reliably the performance of wind turbines it is necessary to elaborate the
environmental and operational data at disposal and to construct a normal behavior model,
i.e., a benchmark for comparing against the measured power.
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Figure 2. Example of power curve for a moderate turbulence and a high turbulence site, Vestas V52
wind turbine.

For this reason, several studies in the literature have been devoted to the improvement
of the data-driven regression between wind speed and power. A comprehensive review
about wind turbine power curve modeling is given in [4]. Several aspects have been
addressed as regards the mismatch between nominal and real-world power curves [5]: the
effect of the wind direction [6], in relation to the terrain and wind farm layout, of the wind
shear and vertical wind profile [2], or of the turbulence intensity [7]. Currently, it is therefore
widely accepted that the power curve of a wind turbine is strongly site-dependent [8].

Despite the above awareness, the most employed approach for the improvement of
wind turbine power curve analysis consists of the optimization of the data-driven model [9],
using the wind speed (possibly adjusted for taking into account ambient conditions)
as input and targeting the power production as output. In the author’s opinion, this
approach has an intrinsic limitation because it consists of finding a line of best fit from
a two dimensional data points dispersion (as can be appreciated also from the simple
example of from Figure 1). The power extracted by a wind turbine for given average wind
speed (measured by an anemometer placed behind the rotor center) can vary considerably.
For example, if the rotor size increases [10], the wind speed measurement at the center of
the rotor might be an insufficient information for quantifying with precision the amount of
power which will be extracted. In general, the power of a wind turbine has a multivariate
dependence on ambient conditions and working parameters (as, for example, rotor speed
and blade pitch), which can be expressed [11] in Equation (3):

P =
1
2

πR2ρv3Cp(β, λ). (3)

In Equation (3), P is the produced power, depending on the rotor radius R, the air
density ρ, the wind speed v and the power factor Cp, which depends on the blade pitch
angle β and the tip-speed ratio λ (or, in other words, the rotational speed ω). Due to
environmental effects which are uncontrollable in the absence of further sensors in addition
to the SCADA systems, it can happen that a wind turbine responds with a slightly different
blade pitch angle or rotational speed to the same average wind speed (measured on
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10 min time basis). Therefore, the general idea of multivariate approaches to wind turbine
performance monitoring is incorporating further information, in addition to the wind
speed, in the normal-behavior model for the power.

In this regard, it should be mentioned that there are other operation curves, which
are instructive for the analysis of wind turbine performance. For example, in [12,13],
the wind speed–blade pitch curve of wind turbines (Figure 3) is analyzed using Support
Vector Regression and the results are compared against the binning method. In [14], two
fundamental operation curves are analyzed through Gaussian process methods, which
are the wind speed–blade pitch and the wind speed–rotor speed (Figure 4) curves. Other
important operation curves, which have been addressed, for example, in [15,16], are the
rotor speed–power (Figure 5), the generator speed–power (Figure 6) and the blade pitch–
power curves (Figure 7): examples are reported using the same data set as for Figure 1
(courtesy of ENGIE Italia).
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Figure 3. Example of scattered wind speed–blade pitch curve.
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Figure 4. Example of scattered wind speed–rotor speed curve.
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From Figures 3 and 4, it arises that, as the wind intensity increases from cut-in, at first
the rotational speed increases and the blade pitch is held practically fixed: in this regime,
the wind turbine operates by regulating the rotor speed on the grounds of the torque
exerted on the rotor, in order to attain the maximum possible aerodynamic efficiency. For
higher wind speed (but below rated power), the logic of the control changes because the
rotor speed saturates and the wind turbine operates in partial aerodynamic load, which is
regulated by varying the blade pitch. Despite that it is typical that the region from cut-in to
rated power is overall indicated as Region 2 of the power curve, it should be noticed that
in general these two different control regions can be individuated and it makes sense to
distinguish the variable rotor speed with respect to the variable blade pitch control region:
for this reason, in [15,16], the nomenclature Region 2 and Region 2 1/2 is adopted.
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Figure 5. Example of scattered power–rotor speed curve.
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Figure 6. Example of scattered power–generator speed curve.
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Figure 7. Example of scattered power–blade pitch curve.

On the grounds of Equation (3) and Figures 3–7, it therefore arises intuitively that
knowing, for example, the blade pitch and the rotor speed in addition to the wind speed
could be helpful for predicting how much power the wind turbine should extract. This
means that the normal behavior model for the performance of a wind turbine should
preferably employ more than one input variable (wind speed). By this point of view,
the power of the target wind turbine should be modeled as function of a set of multiple
covariates, which can be environmental variables or working parameters.

Multivariate data-driven modeling of wind turbine power curves is somehow at its
early stages in the scientific literature, but in the author’s opinion is particularly promising.
In particular, there are several aspects which are at the scholar’s discretion and deal with
the type of employed data (SCADA and/or meteorological), the model structure and the
input variables. There are no consolidated standards about these aspects and the objective
of this manuscript was to summarize neatly the state-of-the-art in the literature and try to
summarize meaningful guidelines.

Furthermore, the main innovative aspects of the test case analysis proposed in Section 3
regard the exploitation of the SCADA data sets at disposal. Similarly to [17] and differently
with respect to the standard in the literature (see Section 2), the minimum, maximum
and standard deviation of the main measurements are included as possible covariates,
in addition to the average values. It is shown in Section 3 that, in light of this approach,
the error metrics diminish considerably and it is possible to explore a further innovative
direction, which is the formulation of a model excluding the most important input variable
(the wind speed). The rationale for this analysis is the fact that it is well-known that nacelle
anemometers might be affected by several kinds of bias [18]. A reliable model for the
power curve which uses only operation variables might therefore be more robust.

The structure of this manuscript is therefore the following: in Section 2, a detailed
literature review is provided about the existing studies on multivariate wind turbine
power curve modeling, with particular attention to the model type and the selected input
variables. Basing on this analysis, in Section 3, perspectives for future research about this
topic are proposed through a test case analysis and a summary of the findings is furnished
in Section 4.

2. Multivariate Wind Turbine Power Curve Models

As indicated in Section 1, the main open points as regards multivariate wind turbine
power curve modeling are:
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• The selection of the data sources;
• The selection of the input variables;
• The selection of the model structure.

In chronological order, the first study dealing with a multivariate approach to wind
turbine power curve is given in [19]. Univariate and multivariate models for the power
of wind turbines are compared and the multivariate models employ wind direction and
ambient temperature in addition to the wind speed. Several model structures are explored,
which are cluster center fuzzy logic, maximum layer perceptron neural network, k-nearest
neighbors, adaptive neuro-fuzzy interference model. In [19], the employed data source is
the SCADA system of each test case wind turbine and no additional sensors (meteorological,
for example) are considered. The selection of the input variables is reasonable because the
ambient temperature is related to the air density ρ in Equation (3) through the ideal gas
law, while the fact that the power curve of wind turbines often display clear directional
effects is a matter of fact which is well known to wind energy practitioners.

In [20], the selected data-driven model is an additive multivariate conditional kernel
density estimation model. The structure is additive, such that the resulting model is
scalable and can easily incorporate further input variables, and the selected kernel function
is univariate Gaussian. The employed data are SCADA and meterological and two test
cases are analyzed: for the former, 7 possible covariates (wind speed, wind direction,
air density, humidity, turbulence intensity, two estimates of wind shear) have been used
and for the latter test cases the covariates are 5 (wind speed, wind direction, air density,
turbulence intensity, one estimate of wind shear). In [20], the covariates are added once at
a time to a baseline constituted by wind speed and wind direction, in order to investigate
how the error metrics change. The air density is the most important further input variable,
but the error metrics of the regression diminish as well with the addition of each covariate.
It should be noticed that in [20], data from met masts are employed, in addition to those
coming from the SCADA control systems of the target wind turbines. Another important
aspect of [20] is the incorporation of the air density in the model: this has been addressed
also in further studies, as for example [21]. Actually, the IEC guidelines recommend to take
into account the effect of air density by renormalizing the wind speed, as can be argued
from Equation (3) and indicated in Equation (4):

vc = v

(
ρ

ρre f

) 1
3

, (4)

where vc is the corrected wind speed, v is the estimate of undisturbed wind speed pro-
vided by the wind turbine nacelle anemometer, ρ is the air density measured on site,
ρre f = 1.225 kg/m3 is the air density in standard conditions. In [21], the effect of wind
speed renormalization of Equation (4) has been compared against the use of a Gaussian
process non-parametric model in which the air density is included as a black box input and
it arises that this latter choice is more convenient because the error metrics of the power
curve model diminish.

In [22], data from SCADA control systems of wind turbines are employed for uni-
variate and multivariate power curve modeling. The multivariate models employ wind
direction, yaw error, blade pitch and rotor speed in addition to the wind speed. It is
interesting to notice that the yaw error γ is included in the input: from aerodynamic
considerations [23], it is expected that γ influences the power extraction through a cos3

correction to the power factor Cp (Equation (3)). Further studies actually indicated that the
dependence of the power P on the yaw error is more appropriately given by a cosp law,
with p closer to 2 rather than 3 [24]. Furthermore, studies based on SCADA data analysis
support [25,26] that, when considering the dynamic yaw error affecting the real-world
operation of a wind turbine, indeed the correction is more complicated than an overall
factor for all the power curve span and depends on the operation region of the wind
turbine, but there is no doubt about the fact that the yaw error negatively affects the power
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extraction, because, for given wind speed, the torque diminishes as the yaw error increases.
Six model structures are analyzed in [22]: random forest regression, extremely randomized
trees, stochastic gradient boosted regression trees, k-nearest neighbors, the IEC curve [3],
logistic fitted by differential evolution. An important result of [22] is that, using tree-based
methods, the importance of the covariates has been ranked and it arises that the wind
speed explains at least the 97% of the variance of the power. It is interesting to notice that
by adding covariates which explain less than 3% of the variance of the output, the error
metrics diminish remarkably.

In [27], data from SCADA control systems of wind turbines and from wind farm met
mast are employed for constructing a model having six input variables, which are wind
speed, air density, turbulence intensity, wind direction and yaw error. The model type is
multi-layer perceptron neural network.

In [28], a minimal set of input variables (wind speed and wind direction) is employed
for a multivariate model for wind turbine power curves. The model structure is a fast
Gaussian process regression for the filter stage and artificial neural network for the final
modeling on the filtered data. The results are compared against several other models and
the proposed combination performs better. The mean absolute error is of order of 1.5% of
the rated power of the test wind turbines.

In [29], Gaussian process models for multivariate wind turbine power curves are
contemplated, using only SCADA data and no additional meteorological sensors. The
dependence on air density is taken into account through the IEC recommendation of
Equation (4) and the input variables which are added to the models are blade pitch or rotor
speed or both. It arises that the higher improvement of the error metric, with respect to the
baseline univariate curve, is obtained when the rotor speed is included. Furthermore, the
inclusion of the rotor speed makes the distribution of the residuals closer to Gaussian. The
order of magnitude of the obtained mean absolute error is 1% of the rated power of the test
cases wind turbines.

In [30], multivariate models including air density, blade pitch angle, rotor speed and
wind direction are analyzed. Six models are compared critically and are based on wind
power equation, concept of power curve, response surface methodology and artificial
neural network.

In [5], multi-layer perceptron neural networks are employed to model a multivariate
power curve which considers 12 meteorological input variables: wind speed, air density,
humidity, atmospheric pressure, air temperature, wind direction, turbulence percentage
of wind speed, turbulence percentage of wind direction, wind speed gust ratio, wind
specific power.

In [31], an ensemble of polynomial models for multivariate wind turbine power
curve is constructed. Several innovative aspects are addressed: for example, it has been
investigated if the error metrics diminish if the regression for the power of a wind turbine
potentially includes the wind speeds measured at the other wind turbines in the farm.
An automatic features selection is set up starting from a large set of possible covariates,
including several environmental measurements, operation parameters and sub-component
temperatures. Furthermore, agglomerative hierarchical clustering is performed on the
multi-dimensional data set and the most profitable disposition is dividing the data in
two clusters, which quite fairly resembles the different logic of the control system of the
wind turbine depending on the wind intensity (substantially, Region 2 and Region 2 1/2 as
indicated in [15]).

In [32], multivariate power curve models are implemented by including ambient
temperature, wind direction and blade pitch as additional input variables. The model
structure is given by radial basis function neural network and the network parameters are
determined through an innovative training procedure (tabu search non-symmetric fuzzy
means). The performance of the selected model is compared against several other model
structures, as symmetric fuzzy means, multi-layer perceptron, cubic spline, parametric and
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the proposed model has the lowest error metrics. The mean absolute error is in the order of
1.5% of the rated power of the considered test cases turbines.

In [33], several model structures and input variables selections for multivariate wind
turbine power curve modeling are analyzed. The three types are principal component linear
regression, Support Vector Regression with Gaussian kernel and feed-forward artificial
neural network. The baseline input variables selection is constituted by wind speed
(renormalized with ambient temperature) and blade pitch and the possible additional
covariates are rotor speed, yaw error and an internal sub-component temperature. The
main innovation of [33] as regards input variables selection is analyzing the possibility of
using a sub-component temperature in the multivariate power curve.

In [17], three test cases of practical interest are analyzed: Senvion MM92, Vestas V90
and Vestas V117 wind turbines, sited in southern Italy and owned by the ENGIE Italia
company. The peculiarity of [17] is that a vast set of possible covariates is included and the
most appropriate for the regression are individuated through a sequential features selection
algorithm employing a Support Vector Regression with Gaussian kernel. In general, the
result is that the set of selected covariates is larger than the standard in the literature (order
of 10) and the selection depends on the technology of the wind turbines: for the Senvion
MM92, the pitch control is electric and the most important covariates are those related to
the rotor speed control; for the Vestas wind turbines, the pitch control is hydraulic and the
most important covariates are related to the pitch control.

The model structures, the data sources, the input variables selection (in addition to
the wind speed) for the above cited studies are summarized in Table 1. In Table 1, the
best results are reported for each study. It should be noticed that it is not straightforward
to compare the results of the various works because they are not reported in a standard
form; in some studies, the MAE is selected as error metric, others report the RMSE and
some report both. In most manuscripts, the absolute values of the error metrics have been
provided and these have been reported in Table 1 upon normalization to the rated power
of the test case wind turbines. This has been done in order to compare more clearly the
various results. Nevertheless, in some studies, no information about the rated power has
been provided and therefore it has not been possible to normalize. Therefore, an important
aspect arising from an in-depth literature review is that it would be appreciable to report
the results in a form which is clearly understandable and comparable to other studies: the
error metrics should be normalized or, if not, the essential information about the size of the
test case wind turbines should be provided.

From the analysis of the results in Table 1, several considerations arise.

• There is no particular added value in employing meteorological mast data in addition
to SCADA data. Furthermore, it should be noticed that the presence of this kind of
data is not guaranteed for most operating wind farms.

• There is an evident added value when including the most important operation vari-
ables (like blade pitch or rotor speed) in the multivariate models.

• Linear and polynomial models are likely too simplistic. Highly non-linear models
are preferable, but there is no particular evidence of the superiority of one type. In
general, artificial neural networks, Support Vector Regression with Gaussian kernel
and Gaussian process regressions seem to be adequate.

• The regression problem is likely complicated by increasing rotor size. In [17], the same
kind of method is tested on three real-world wind turbines (Senvion MM92, Vestas
V90 and Vestas V117) and the highest error (normalized to the rated) occurs for the
Vestas V117 wind turbine, which is 3.45 MW against 2 MW of the other test cases.

• The use of sub-component temperatures as regressors of the multivariate model
has not been much explored, but it looks promising. It should be noticed that the
temperature sensors in a wind turbine are numerous and it is unlikely that they fail
simultaneously; therefore, their use for compensating lack of reliable wind speed
measurements in case of anemometer bias is interesting.
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• The test cases in [17] indicate that different input variables are selected by an Auto-
matic Features Selection, depending on the type of wind turbine control (for example,
electric pitch vs. hydraulic pitch).

• Summarizing the above points, the most important ingredients for a good multivariate
power curve regression in the author’s opinion are a vast data set, including numerous
possible covariates, and the use of a non-linear model, for which the relevant features
can be selected automatically.

Table 1. Summary of model structures, data sources, input variables selection (in addition to the wind speed) and results
for the literature about multivariate wind turbine power curve.

Ref. Model Data Input Variables Error

[19]

Cluster center fuzzy logic
ANN

k-nearest neighbors
Adaptive neuro-fuzzy

interference model

SCADA Wind direction
Ambient temperature

NMAE: 1.9%

[20]
1 Additive kernel density

SCADA
+

Met mast

Wind direction
Air density
Humidity

Turbulence intensity
Wind Shear 1
Wind Shear 2

NRMSE: 34.9%

[20]
2

Additive kernel density
SCADA

+
Met mast

Wind direction
Air density

Turbulence intensity
Wind Shear 1

NRMSE: 15.9%

[22]

Random forest
Extremely randomized trees

Stochastic gradient
regression trees

k-nearest neighbors
Binning method

5-parameters logistic

SCADA
Wind direction

Yaw error
Blade pitch

Rotor speed

MAE: 59 kW

[27] ANN
SCADA

+
Met mast

Wind direction
Air density

Turbulence intensity
Yaw error

MAE: 15.3 kW

[28]
Gaussian process

+
ANN

SCADA Wind direction NMAE: 1.34%

[29]
1 Gaussian process SCADA

Air density
Blade pitch NMAE: 1.64%

[29]
2 Gaussian process SCADA

Air density
Rotor speed NMAE: 1.13%

[29]
3

Gaussian process SCADA
Air density
Blade pitch
Rotor speed

NMAE: 1.07%

[30]
Least squares
Cubic spline

ANN
Response surface

SCADA
Air density
Blade pitch
Rotor speed

NRMSE: 0.96%
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Table 1. Cont.

Ref. Model Data Input variables Error

[5] ANN
SCADA

+
Met mast

12 meteo variables NRMSE: 2.41%

[31] Polynomial LARS SCADA

Wind direction
Turbulence intensity

Ambient temperature
Rotor speed
Blade pitch
Yaw error

18 internal temperatures

NRMSE: 1.71%

[32]
Radial basis ANN

+
Tabu search

SCADA
Wind direction

Ambient temperature
Blade pitch

NMAE: 1.28%

[33]
Principal component linear

Support vector
Feedforward ANN

SCADA

Ambient temperature
Blade pitch
Rotor speed

1 internal temperature

NMAE: 1.27%

[17] Support vector SCADA
Blade pitch
Rotor speed

Generator speed
NMAE: 0.87–1.39%

3. Discussion and Perspectives

In this section, an example of multivariate regression, featuring innovative consid-
erations, is reported in its essential aspects for the test case wind farm of Figure 1. Two
years of data have been provided for this study, courtesy of the ENGIE Italia company.
The outliers [34] have been removed using a procedure similar to [17]. The average wind
speed–blade pitch curve is computed and, for each wind speed measurement, an absolute
deviation of the measured blade pitch with respect to the average higher than 2◦ is used to
discriminate anomalous behavior.

The model structure is Support Vector Regression with Gaussian kernel and the
selected input variables are wind speed, rotor speed, generator speed and blade pitch. The
rationale for the selection of these input variables is given by the following considerations:

• From Equation (3), it arises that the power factor is a function of the blade pitch and
of the tip speed ratio, which is equivalent to the rotational speed.

• From the discussion of Table 1, it arises that the operation variables, in particular blade
pitch and rotor speed, are the most effective additional covariates for a multivariate
power curve model.

• It has been decided to include the generator speed in the set of input variables
because in [15,35] it has been observed that the aging of generator efficiency can affect
remarkably the amount of power which is extracted. Wind turbines of the same model
can produce different power for the same generator speed. Therefore, it reasonable to
add this covariate to the regression.

The above selection is similar to those operated, for example, in [17,29,33,36] and can
be considered a baseline model. Interesting modifications to this model will be discussed
later on.

The model hyperparameters have been optimized using a procedure similar to [37],
which is a useful reference as regards the use of SVR regressions in wind energy appli-
cations. The model is called 30 times, with different hyperparameter set ups, and 5-fold
cross validation is performed [38]. At each model call, the SVR parameters are changed
randomly and these are the [37] box constraint, the kernel scale and ε. The model set up
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resulting in the best objective function (which is the log of 1 plus cross-validation loss)
is selected.

The above steps can be summarized in general through a flow chart (Figure 8) describ-
ing the suggested procedure:

• Remove outliers;
• Select a model type;
• Select input variables through Automatic Features Selection algorithms or basing on

user’s experience or objectives (as in this case);
• Optimize the set up of the model;
• Train the model;
• Validate the model by predicting the output, given the input variables, on a test

data set;
• Analyze the goodness of the regression through appropriate error metrics.

Figure 8. Flowchart of a multivariate wind turbine power curve regression.

Figure 9 reports the simulated and measured curves for the validation data set. From
the Figure, it can be qualitatively appreciated that a multivariate approach allows simulat-
ing reliably the dispersion of a real-world power curve. The goodness of the regression
can be quantified through the most commonly employed error metrics, such as the MAE
and RMSE.

Given the measurements Y(X) for the validation data set and the model estimates
f (X), the residuals are defined in Equation (5):

R(X) = Y(X)− f (X). (5)
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The MAE is defined in Equation (6):

MAE =
1
N ∑|R(X)|, (6)

where N is the number of samples in the validation data set. The RMSE is defined in
Equation (7):

RMSE =

√
∑(R(X)− R̄)2

N
, (7)

where R̄ is the average residual in the validation data set.
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Figure 9. Example of scattered power curve and simulated power curve through a Support Vector
Regression (using average wind speed, rotor speed, generator speed, blade pitch).

The MAE and RMSE for the example reported in Figure 9 are 20.1 kW and 36.3 kW,
respectively. The MAE is of order of 1% of the rated power.

From the discussion in Section 2, it arises that the rotor speed is a very important
covariate for wind turbine power monitoring. Actually, in the literature, the concept of
rotor equivalent wind speed has been formulated [39,40] for addressing the issue of the
effect of the wind shear on wind speed measurements. This idea, as discussed also in
Section 1, originates from the fact that nacelle anemometers are affected by several critical
points affecting the quality of the measurement [18]. They are placed behind the rotor span
and a nacelle transfer function reconstructs the undisturbed flow, but this depends heavily
on ambient conditions. The rotor speed instead is regulated only on the grounds of the
torque which is exerted on the rotor; therefore, despite that the rotor practically acts as a
low-pass filter cutting high-frequency fluctuations and therefore potentially eliminating
information, the rotor speed can be considered a reliable probe of on-site conditions.

In this perspective, a more radical interpretation can be conceived. It could be desirable
to formulate multivariate models which do not employ nacelle anemometer measurements
and to compensate using working parameters. This is challenging because, as discussed
in [22], the wind speed explains up to 97% of the variance of the power, but the preliminary
results obtained for this study are promising. The performed test consists of considering
the same case as above and the same regression type, but the input variables are only
the rotor speed, the generator speed and the blade pitch, without the wind speed. The
obtained MAE is 21.7 kW and the RMSE is 40.2 kW (summarized in Table 2). Remarkably,
the error metrics increase only in the order of 10% with respect to the regression including
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the wind speed in the input variables. This development is particularly interesting because,
also in light of the discussion related to Figure 2, this kind of model could potentially be
more reliable for comparing the performance of wind turbines of the same model which
are placed in different sites.

As arises from the review in Section 2, there have been several attempts in the literature
at formulating input variables selections for wind turbine multivariate power curve models.
Nevertheless, it should be noticed that the SCADA data sets are in general under exploited
because they contain several dozens of measurement channels, which could in principle be
employed. As observed for example in [19], a modern SCADA data set of a wind turbine
contains an order of 150 measurement channels and there is no reason why there has been
so little exploration about it. Some interesting considerations have been proposed for
example in [31,33] about the use of internal temperatures as covariates for wind turbine
power curves, but they are substantially early stages analysis. Up to now, the selection of
the working parameters has been typically performed basing on considerations similar
to Equation (3). The most selected operation variables are rotor speed, blade pitch and
possibly the yaw error.

In the author’s opinion, an interesting aspect regards the fact that it should be noticed
that the SCADA control systems record and store average, minimum, maximum and
standard deviation of each channel in the sampling time (which typically is ten minutes).
All the studies cited in Section 2 except [17] use only the average values as covariates, but
the use of minimum, maximum and standard deviation could be helpful for improving the
regression. This issue has been addressed recently in [16] for the rotor speed, generator
speed and blade pitch curves and it arises that the error metrics diminish of approximately
one third if one employs as input for the regression also minimum, maximum and standard
deviation of the independent variables. This perspective should be investigated in depth
as well for multivariate wind turbine power curve modeling. For the purposes of this
study, the same test case as above has been analyzed using the same kind of regression
and selecting as input variables average, minimum, maximum, standard deviation of wind
speed, rotor speed, generator speed, blade pitch. The achieved error metrics (Table 2) are
12.1 kW of MAE and 22.3 kW of RMSE. It is approximately one third less than the metrics
for the regression which employs only the average values. It should be noticed that these
error metrics, although obtained in a preliminary study, are lower with respect to all the
results reported in Section 2 for models employing only SCADA data, because the MAE is
approximately 0.5% of the rated power and the AEP is estimated with a precision in the
order of 0.3%: this supports the usefulness of this approach to multivariate wind turbine
power curve modeling.

On the grounds of this result, it is straightforward to investigate the quality of the
regression which excludes the wind speed from the input variables but employs average,
minimum, maximum and standard deviation of rotor speed, generator speed and blade
pitch. The achieved MAE is 14.3 kW (0.7% of the rated power) and the RMSE is 25.2 kW
(Table 2). Additionally in this case, even if the most important covariate (wind speed)
has not been used, the error metrics in units of the rated power are lower with respect
to the results reported in Table 1. Finally, the results for the regressions discussed in this
Section have been normalized to the rated power, in order to facilitate comparison with
other studies, and reported in Table 2.

Table 2. Input variables selection and error metrics for the discussion test case.

Input Variables NMAE (%) NRMSE (%)

Wind speed (Avg.)
Blade pitch (Avg.)
Rotor speed (Avg.)

Generator speed (Avg.)

0.98 1.77
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Table 2. Cont.

Input Variables NMAE (%) NRMSE (%)

Blade pitch (Average)
Rotor speed (Average)

Generator speed (Average)
1.05 1.96

Wind speed (Avg., Min., Max., Std. Dev.)
Blade pitch (Avg., Min., Max., Std. Dev.)
Rotor speed (Avg., Min., Max., Std. Dev.)

Generator speed (Avg., Min., Max., Std. Dev.)

0.59 1.08

Blade pitch (Avg., Min., Max., Std. Dev.)
Rotor speed (Avg., Min., Max., Std. Dev.)

Generator speed (Avg., Min., Max., Std. Dev.)
0.69 1.22

4. Summary

The present manuscript has been devoted to mainly three objectives:

• Summarize the rationale for SCADA-based power curve analysis in wind energy
practice and support the use of multivariate approaches;

• Review and discuss in detail the literature regarding data-driven multivariate wind
turbine power curve analysis;

• Given the above points, analyze a test case in order to furnish innovative perspectives
on the topic.

The main result from the analysis of the literature is that the state-of-the-art regarding
multivariate wind turbine power curve analysis is focused on the use of working parame-
ters (as, for example, blade pitch or rotor speed) as further input variables in addition to
the wind speed. Actually, it results that meteorological mast data are often unavailable in
real-world practice and, most importantly, these kinds of data do not give a remarkable
added value: this likely happens because, as supported for example also in [41], the wind
flow in operating wind farms might likely be so complex that adding several high-quality
meteorological measurements, but concentrated at one point, is not that useful for power
curve analysis.

Given this, the main contribution of this study to the topic is the observation that
SCADA data sets typically include an order of approximately 150 measurement channels
and there has been little exploration about them in the context of multivariate wind turbine
power curve analysis. The test case discussed in Section 3 indicates that a straightforward
improvement of multivariate power curve regression can consist of the inclusion of mini-
mum, maximum and standard deviation of the main covariates, in addition to the average
values. Another interesting consideration regards the fact that sub-component tempera-
tures can likely be very useful covariates because typically they have high correlation with
the output power.

The results of a previous study by the author [17] indicate that Automatic Features
Selection algorithms, starting from a large set of possible covariates, select different in-
put variables depending on the technology of the wind turbine and on the model type.
Therefore, general recommendations can be formulated for a successful multivariate wind
turbine power curve regression:

• Use highly non-linear models, like ANN, SVR, GP.
• Start from the vastest set of covariates which is considered potentially meaningful.
• Possibly employ Automatic Features Selection for individuating the most appropriate

input variables.

On one hand, multivariate models with a large set of input variables represent an
evident complication with respect to the simple wind speed–power curve. Nevertheless,
the pros are several because data-driven models employing working parameters and
possibly sub-component temperatures can be used not only for more precise performance
monitoring, but also for the interpretation of possible anomalies. This more general
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objective calls for the development of innovative SCADA data analysis methods [42],
which in the author’s opinion represent a very fruitful research direction.
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The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
IEC International Electrotechnical Commission
GP Gaussian Process
NMAE Normalized Mean Absolute Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
NRMSE Normalize Root Mean Square Error
NWP Numerical Weather Prediction
RMSE Root Mean Square Error
SCADA Supervisory Control And Data Acquisition
SVR Support Vector Regression
TI Turbulence Intensity
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