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Abstract: In this study, the iron losses of high flux density concentrated winding-type interior
permanent magnet synchronous motors for three different magnet shapes (single-V, single-flat, and
dual-delta) and rotor structures are analyzed and compared. Iron loss is analyzed using the classical
Steinmetz equation (CSE) based on the frequency separation approach using the iron loss material
table, and each rotor type is compared. In addition, to validate the hysteresis loss for each rotor type,
two additional analyses are performed. In the methods considered, the number of minor loops is
counted, and the area is calculated based on DC bias. The eddy current loss is compared using two
approaches: CSE base frequency separation and the homogenization method considering the skin
effect. This study primarily focuses on the comparison of relative iron losses based on different rotor
topologies instead of absolute comparisons.

Keywords: concentrated IPMSM; iron losses; eddy current losses; hysteresis losses

1. Introduction

In the conventional loss separation concept [1–3], the total power loss can be expressed
as the sum of three independent terms, considering the harmonic and rotational fluxes.
However, in many cases, the magnetic flux waveform in the laminated core of an electri-
cal machine is not sinusoidal, and the hysteresis loop contains many minor loops [4–7].
Therefore, iron loss separation concepts [1–3] are insufficient for electric machines with
high flux saturation.

In this study, three hysteresis losses were compared. The first hysteresis loss is the
frequency separation method [1–3], the second method involves counting the number of
minor loops, and the third method involves calculating the size of the minor loop based
on DC bias. Eddy current losses were compared between the two methods. The first
method is based on the loss separation concept [1–3], whereas the second analysis method
is based on homogenization considering the skin effect. In general, a three-dimensional
finite element method (FEM) analysis is required to consider the skin effect. However,
using magnetic flux density data obtained from a magnetic field strength test is sufficient
for a two-dimensional (2D)-FEM analysis. Therefore, in this study, the JMAG 2D FEM tool
was used to perform iron loss analyses of inner permanent magnet synchronous motors
(IP-MSMs) comprising high-saturation automotive air conditioner refrigerant compressors.

As shown in Figure 1, the IPMSM for driving an electric refrigerant compressor
can perform cooling through the cold refrigerant directly through the motor; however,
it is a typical high saturation magnetic flux density electric machine. This is because
the inner permanent magnet rotor structure is applied to ensure high reliability, and a
concentrated winding stator with low flow resistance and low power loss is used to achieve
high volumetric efficiency in the compression part. Therefore, the proposed three iron loss
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analysis methods and three different rotor structures were compared with each other to
compare the new iron loss analysis characteristics, and the rotor type with the lowest loss
in the same concentrated winding stator structure can be determined.
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layer flat-shape magnet rotor. 

Figure 1. The schematic of the eco-friendly automotive AC refrigerant compressor.

The detailed specifications of the concentrated winding-type IPMSMs for driving the
A/C refrigerant compressor are as follows: number of slots in the stator, 12 slots; magnetic
wire specification, 28 turns; stator core shape outside diameter, 96 mm; length, 37 mm.
The three magnet shapes for comparison were single-V, single-flat (F), and dual-delta (D)
magnets. The magnet area for every pole (30.73 mm2) was identical. The main operation
points were 6540, 4905, 3270, and 1635 rpm with a 24 A phase current, and the expected
torque was approximately 7.0. Figure 2 presents the structure of the concentrated windings
of the IPMSMs with three types of rotor structures. Figure 3a illustrates a comparison of the
induced voltages of the three different rotor shapes with identical concentrated winding
stators without an input current at 1000 rpm. Figure 3b shows a fast Fourier transform (FFT)
comparison of the frequency domain. The differential of the back electro-motive forces of
the three magnet rotor shapes was lower than 0.25%. This is similar to the FFT results.
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2. Iron Loss Calculation
2.1. First Iron Method

The CSE is a traditional method for calculating iron loss (1). However, it is constrained
to account for all losses in a real laminated magnetic core. The modified Steinmetz equation
(MSE) was modified based on the Bertotti model to reconcile this observed discrepancy.
The MSE is still a typical and extensively used method for calculating iron loss; however, it
requires additional fitting methods. The MSE is expressed as shown in Equation (2) [2,3]:

Pf e = Phys + Peddy = ahys f
∨
B2 + beddy f 2

∨
B2 (1)

Pf e = Phys + Peddy + Pexs = ahys f
∨
B2 + beddy f 2

∨
B2 + cexs f 1.5

∨
B1.5 (2)

The MSE is a function of flux density and frequency. It is configured with static
hysteresis losses Phys, dynamic eddy current losses Peddy, and excess losses Pexs, with their
corresponding coefficients ahys, beddy and cexs, respectively. Moreover, f is the frequency,

and
∨
B is the maximum flux density.
In this study, the first iron loss method was based on electromagnetic FEM tools

that use the specimen’s iron loss input data. This approach is based on sinusoidal flux
conditions using the frequency separation method, and the CSE is fundamental. In other
words, iron loss can be classified into two losses: Peddy and Phys. This former iron loss
method is easy, fast, and simple to calculate based on the FFT. However, it can be used to
calculate the overall loss for all flux harmonics. The sum of the total iron losses is calculated
as the sum of Peddy and Phys, as shown in Equations (3) and (4) [8]:

Peddy =
nelem

∑
e=1

[
N

∑
k=1

beddy(|Bk|, fk)· f 2
k

]
×Ve (3)

Phys =
nelem

∑
e=1

[
N

∑
k=1

ahys(|Bk|)· fk

]
×Ve (4)

where fk and Bk are the frequency and amplitude of the magnetic flux density of k orders,
respectively; nelmen is the number of elements; Ve is the element volume; ahys and beddy
are the coefficients of Phys and Peddy, respectively.
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Figure 4a shows the measured iron loss data at two point-frequencies, which were
used for other frequency loss estimations. Figure 4b shows the frequency-separation
method. In this graph, Pf e/ f can be simplified and interpolated, as shown in Equation (5):

Pf e

f
= ahys(B) + beddy(B, f ) f (5)
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2.2. Second Iron Loss Method

The first method, i.e., the FFT frequency separation method, is simple; however, the
minor loop effect caused by harmonics is not considered. Hence, by considering the
dynamic hysteresis model, the minor loop effect and excess losses can be considered [5–7].
Therefore, the second iron loss calculation method is used to calculate the additional Phys
separately, as shown in Equation (6) [8]:

Phys =
nelem

∑
e=1

[
f

nloop

∑
l=1

aloop(|Bl |)
]

(6)

where nloop is the number of loops, Bl the l-th loop for each component of the magnetic
flux density, and aloop the coefficient of the magnetic flux density.

2.3. Third Iron Loss Method

Calculations for Peddy in the first and second methods were used in the estimation
method based on limited high-frequency experimental measurements, even when discrep-
ancy was observed. This is due to the skin effect (Fsk) of the magnetic steel sheet surfaces.
Equation (7) expresses the eddy current loss considering the skin effect [9]:

Ped_Fsk =
1
6

σπ2d2
n

∑
k=1

f 2
k

[( ∨
Ba

x,k

)2

+

( ∨
Ba

y,k

)2
]
·Fsk(λk) (7)

Here, d (z-plane) is the material thickness, w (x-plane) the width, l (y-plane) the length,

and µ a constant; fk contains k frequencies with amplitudes
∨

Ba
x,k and

∨
Ba

y,k of the average
induction. The skin effect comprises Fsk factors, which are functions of the ratio λk of d and
δk (skin depths depend on frequency). The skin effect can be summarized as follows and is
represented as shown in Equations (8) and (9) [9]:

Fsk =
3

λk

sinhλk − sin λk
cosh λk − cos λk

(8)

λk =
d
δk

(9)

Summary of skin effect:

(1) The skin effect increases with frequency.
(2) The decrease in permeability owing to saturation increases the skin depth and in-

creases the eddy current loss.
(3) The flux saturation induces harmonic eddy currents.
(4) A greater rotation magnetic flux results in a higher saturation and smaller harmonics

for the magnetic field and eddy current.

In the third iron loss calculation, Peddy is calculated using the eddy current distribution
via the homogeneous method considering the skin effect. In addition, Phys is calculated
using the area of all loops calculated using the play model, which considers the minor loop
DC bias. In the hysteresis loss of the second iron loss, a minor loop can be considered, but
the loop size based on the DC bias cannot be considered.

Figure 6a shows the flux density at different (12 A and 24 A) input currents of the stator
end-teeth and the rotor surface in the time frame. Figure 6b shows the B–H loop at that
time. Although the alternating flux density on the surface of the rotor was smaller than that
of the stators, the B–H loop was much larger than the stator. This DC bias and large loops
are characteristic of the IPMSM rotor structure; hence, they should be considered [10,11].



Machines 2021, 9, 74 6 of 10Machines 2021, 9, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 6. (a) End teeth flux density with 12 and 24 A peak phase current input conditions in the 
time frame. V shape inner permanent magnet rotor surface flux density. (b) Comparison of B-H 
Loops of end teeth and rotor surface. 

 
Figure 7. (a) Estimated iron loss data from the external value of proportional to the input fre-
quency square. (b) Magnetic flux density according to the magnetic field strength. 

3. Comparison of Study Result 
3.1. Comparison of Iron Losses 

Figure 8a and Table 1 shows a comparison of the three (single-V, single-F, and du-al-
D) magnet rotor structures based on different iron loss calculations at 6540 rpm and 24 A 
phase current. Figure 8b and Table 2 shows a comparison of the three magnet rotor struc-
tures based on different hysteresis loss calculations under the same conditions. In the 
same stator structure, the iron losses of single-F increased from 5.3 to 9.2% depending on 
the calculation method compared with dual-D. The single-V losses increased from 2.6 to 
4.3% depending on the calculation method compared with dual-D. This comparison 
shows that the dual-D iron loss may be improved or similar to the other rotor structures 
in terms of electromagnetic torque generation. However, owing to the coercive force dif-
ference between the rotor structure and the magnet, an absolute comparison is not possi-
ble. Therefore, a comparison of the procedures prior to the saturation of the operating 
voltage and overall range is necessary for a trend comparison. 

Table 3 shows a comparison of the IPMSM efficiency of three different rotor structure 
at 6540 rpm and 24 A phase current with three different types of iron losses. When calcu-
lating the efficiency, the loss analysis method was used; therefore, the efficiency of the 
first loss calculation method was lower than that of the second method. This is due to the 
over consideration of harmonics in the frequency analysis separation method. 

Figure 9a,b show a comparison of the total iron losses for the three hysteresis losses 
and two different eddy current loss calculation methods at a four-step operating speed. 
Each point considers the same maximum torque per ampere point at 24 A. The results 
reveal that the iron loss of single-F in the entire operation range is high, and the total iron 
loss calculated based on single-F and -V were 2.5–3.4% and 5.2–5.1% higher than that of 
dual-D, respectively. 
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Figure 7a shows the conventional estimation of iron losses. In the estimation, the
external input value is assumed to be proportional to the input frequency square. This is
the most typically used data-estimation method. Figure 7b shows the calculated value of
the eddy current loss when an AC magnetic field with an amplitude of 0.04T is applied to
a 50A470 single plate. The value obtained is not proportional to the squared frequency.
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3. Comparison of Study Result
3.1. Comparison of Iron Losses

Figure 8a and Table 1 shows a comparison of the three (single-V, single-F, and du-
al-D) magnet rotor structures based on different iron loss calculations at 6540 rpm and
24 A phase current. Figure 8b and Table 2 shows a comparison of the three magnet rotor
structures based on different hysteresis loss calculations under the same conditions. In
the same stator structure, the iron losses of single-F increased from 5.3 to 9.2% depending
on the calculation method compared with dual-D. The single-V losses increased from
2.6 to 4.3% depending on the calculation method compared with dual-D. This comparison
shows that the dual-D iron loss may be improved or similar to the other rotor structures
in terms of electromagnetic torque generation. However, owing to the coercive force
difference between the rotor structure and the magnet, an absolute comparison is not
possible. Therefore, a comparison of the procedures prior to the saturation of the operating
voltage and overall range is necessary for a trend comparison.
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Table 1. Comparison of iron losses of three different calculation methods at 6540 rpm, 24 A phase current.

Iron Loss 1st Method 2nd Method 3rd Method

Single-V 138.93 132.68 134.38
Dual-D 135.35 128.74 128.67
Single-F 142.86 135.89 141.69

Table 2. Comparison of hysteresis losses of three different calculation methods at 6540 rpm, 24 A
phase current.

Hysteresis Loss 1st Method
(Frequency Sep.)

2nd Method
(Loop Count.)

3rd Method
(Loop Size Consider)

Single-V 28.62 22.37 24.81
Dual-D 28.05 21.45 22.56
Single-F 28.99 22.02 23.61

Table 3 shows a comparison of the IPMSM efficiency of three different rotor structure at
6540 rpm and 24 A phase current with three different types of iron losses. When calculating
the efficiency, the loss analysis method was used; therefore, the efficiency of the first loss
calculation method was lower than that of the second method. This is due to the over
consideration of harmonics in the frequency analysis separation method.

Table 3. Efficiency comparison of three different rotor structure at 6540 rpm, 24 A phase current
based on three different type of iron loss.

Efficiency 1st Method 2nd Method 3rd Method

Single-V 93.52% 93.64% 93.52%
Dual-D 93.44% 93.57% 93.47%
Single-F 93.44% 93.57% 93.37%

Figure 9a,b show a comparison of the total iron losses for the three hysteresis losses
and two different eddy current loss calculation methods at a four-step operating speed.
Each point considers the same maximum torque per ampere point at 24 A. The results
reveal that the iron loss of single-F in the entire operation range is high, and the total iron
loss calculated based on single-F and -V were 2.5–3.4% and 5.2–5.1% higher than that of
dual-D, respectively.
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3.2. Comparison of Hysteresis Losses

Figure 8b and Table 2 show a comparison of the hysteresis losses of the different
calculation methods at the rated operation point: 6540 rpm and 24 A phase input current.
Detail regarding the methods used are as follows:

The first method, which is the frequency-separation method, over-calculates Phys. This
result is over-reflected as a loss, which is not only a sinusoidal Phys, but also an FFT with
harmonics. The second method, which is the minor loop counting method, can re-duce the
excessive analysis based on the hysteresis loop counting method. The third Phys calculation
method shows that Phys can be calculated by considering the DC bias and minor loop size.

Figure 9a shows the Phys calculation results for the four operating speeds. The results
show a similar pattern to those shown in Figure 8b and Table 2, thereby confirming the
suppression of the reflection of excessive Phys in the frequency-separation method.

Figure 10a and Table 4 show the significant effect of the DC bias on the loss of the
third Phys of the rotor. Compared with the second Phys, an average increase of 66.3% was
observed. This indicates that the effect of DC bias is a prominent feature on the IP-MSM
rotor surface, as shown in Figure 6.
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Figure 10. Comparison of three (a) rotor and (b) stator structure iron losses using three different
calculation methods at 6540 rpm and 24 A phase current.

Table 4. Comparison of three rotor structure iron losses in rotor using three different calculation method at 6540 rpm and 24
A phase current.

Response Value
1st Iron Loss 2nd Iron Loss 3rd Iron Loss

Single-V Dual-D Single-F Single-V Dual-D Single-F Single-V Dual-D Single-F

Eddy current loss 11.76 11.38 12.02 11.76 11.38 12.02 8.93 10.02 11.22
Hysteresis loss 1.92 1.89 1.80 1.75 1.58 1.67 3.10 2.65 2.57
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Figure 10b and Table 5 show the limited effect of the DC bias on the third Phys of the
stator. Compared with the second Phys, an average increase of 2.9% was observed.

Table 5. Comparison of three rotor structure iron losses in stator using three different calculation method at 6540 rpm and
24 A phase current.

Response Value
1st Iron Loss 2nd Iron Loss 3rd Iron Loss

Single-V Dual-D Single-F Single-V Dual-D Single-F Single-V Dual-D Single-F

Eddy current loss 98.55 95.91 101.85 98.55 95.91 101.85 100.64 96.09 106.86
Hysteresis loss 26.71 26.16 27.19 20.63 19.87 20.35 21.71 19.91 21.04

3.3. Comparison of Eddy Current Losses

Figure 9b shows a comparison of the eddy current losses at 6540 to 1635 rpm in the
operating range. The loss obtained using the frequency separation method was higher
than that using the homogenized eddy current loss calculation method. This is due to
the iron loss data in Figure 7a, this is proportional to the square of the input frequency
and, this because data had been used the frequency separation method for eddy current
loss calculation. At the same time Figure 9b also shows the calculations result of the
homogenization method. In this case, the eddy current loss data from the AC magnetic
field in-put conditions in Figure 7b is used.

4. Conclusions

In this study, two types of comparisons were performed. One was a comparison based
on the iron loss analysis method, and the other was a comparison of the iron loss based on
the structure of the rotor magnet shape (single-V, single-F, and dual-D).

Table 6 shows the three methods of iron loss and the data used. The first method
was simple and fast; however, in resulted in an over-loss calculation. The second method
improved the over-loss problem but did not consider the DC bias of the hysteresis minor
loop. Therefore, it may be insufficient for calculating the interior permanent-magnet-type
concentrated winding motor loss. Finally, the third method indicated that the DC bias of
the hysteresis can be considered, and that the over-loss of the eddy current can be improved
by considering the skin effect.

Table 6. Comparison of three different iron losses calculation methods.

Iron Loss 1st Method 2nd Iron Loss 3rd Iron Loss

Hysteresis Loss Method Frequency Sep. Loop Count. Loop Size Consider
Data Iron loss data (FFT) Iron loss data, DC bias Loop measurement

Eddy-current
Loss

Method Frequency Sep. Homogenization
Data Iron loss data (FFT) Electrical resistivity

The iron losses based on the rotor magnet shape were compared. The same mag-
net volume was used in the rotors based on the same concentrated winding-type stator
structure, pole-slot combination, number of windings, and wire specifications. Therefore,
mechanical and copper losses were excluded from this comparison, and the induced volt-
ages under the no-load condition were almost identical. However, the changed reluctance
based on the magnet shapes in the rotor can affect the flux density saturation, not only in
the iron losses of the rotor, but also in the stator. This was validated using three iron loss
calculation methods, and the contribution of harmonic effects by the calculation method
and conditions yielded different results. In addition, the DC bias of the hysteresis of all
IPMSM rotors was confirmed. In conclusion, in the relative comparison of rotor structure
geometries, the single-F magnet rotor structure indicated the greatest iron loss, whereas
the dual-D magnet rotor structure indicated the lowest. This comparison of three iron
loss analysis methods is beneficial to not only IPMSMs for automotive electric refrigerant
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compressors, but also to various electric machine iron loss analyses of high magnetic flux
saturation Applications.
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