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Abstract: Mixed flow pumps driven by hydraulic motors have been widely used in drainage in
recent years, especially in emergency pump trucks. Limited by the power of the truck engine, its
operating efficiency is one of the key factors affecting the rescue task. In this study, an automated
optimization platform was developed to improve the operating efficiency of the mixed flow pump.
A three-dimensional hydraulic design, meshing, and computational fluid dynamics (CFD) were
executed repeatedly by the main program. The objective function is to maximize hydraulic efficiency
under design conditions. Both meridional shape and blade profiles of the impeller and diffuser
were optimized at the same time. Based on the CFD results obtained by Optimal Latin Hypercube
(OLH) sampling, surrogate models of the head and hydraulic efficiency were built using the Radial
Basis Function (RBF) neural network. Finally, the optimal solution was obtained by the Multi-
Island Genetic Algorithm (MIGA). The local energy loss was further compared with the baseline
scheme using the entropy generation method. Through the regression analysis, it was found that
the blade angles have the most significant influence on pump efficiency. The CFD results show
that the hydraulic efficiency under design conditions increased by 5.1%. After optimization, the
incidence loss and flow separation inside the pump are obviously improved. Additionally, the overall
turbulent eddy dissipation and entropy generation were significantly reduced. The experimental
results validate that the maximum pump efficiency increased by 4.3%. The optimization platform
proposed in this study will facilitate the development of intelligent optimization of pumps.

Keywords: mixed flow pump; optimization platform; surrogate model; entropy generation; MIGA

1. Introduction

With the emergence of global extremes in recent years, the frequency of disasters such
as droughts and urban flooding has suddenly increased, which greatly affect security and
the economy. Because of its flexibility, the emergency pump truck has obvious advantages
in dealing with urban flooding [1]. To minimize economic losses, the main requirements of
dealing with urban flood are rapid drainage and long-distance transportation. Because of
its characteristics of large flow and high head, mixed flow pumps have been widely used in
emergency situations. The mobile pump truck is a highly integrated drainage equipment,
with all power coming from the engine. Limited by the vehicle output power, improving the
pump efficiency and reducing the operating energy consumption can provide protection
for emergency work. Therefore, a mixed flow pump with high efficiency is required for the
design of the emergency pump truck.

The impeller and diffuser are the key components of energy conversion in pumps.
Much of the research mainly focuses on the meridional flow passage shape and blade
profile. Based on computational fluid dynamics (CFD) technology, Kim et al. [2] performed
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optimization of the meridional shape of a mixed flow pump impeller to improve its suction
performance. Hao et al. [3] further investigated the effect of the hub and shroud radius
ratio on the hydraulic efficiency of a mixed flow pump by numerical simulation. Ji et al. [4]
analyzed the effect of the blade thickness on the rotating stall of a mixed flow pump
using the entropy generation method. Ikuta et al. [5] found that the forward skew blade
angle has an obvious effect on positive slope characteristics of the mixed flow pumps.
The positive slope region can be moved to a smaller flow rate by increasing the skew
blade angle. Most vaned mixed flow pumps are equipped with an unshrouded impeller.
The tip clearance between the impeller and casing may cause adverse flow phenomena
such as leakage, cavitation, and so on. Li et al. [6] studied the influence of tip clearance
on the rotating stall in a mixed flow pump using CFD. By investigating the effect of
rotational speed on the tip leakage vortex, Han et al. [7] found that with the increase of
rotational speed, the leakage flow and oscillating frequency of the tip leakage vortex will
also increase. To inhibit the leakage and improve the energy performance in the unshrouded
centrifugal pumps, Wang et al. [8] proposed a T-shaped blade. The CFD results show
that the leakage and flow loss of the T-shaped blade is decreased. Zhu et al. [9] studied
dynamics performance of the centrifugal pumps with different diffuser vane heights and
found that the half vane diffuser could increase the flow uniformity and reduce the pressure
pulsation intensity. The effect of the divergence angle of the diffuser on the performance of
a centrifugal pump was studied by Khoeini et al. [10]; the results show that the diffuser
parameters have a remarkable influence on the head and efficiency. Wang et al. [11]
performed the optimization of the vaned diffuser in a centrifugal pump to improve the
pump efficiency. Kim et al. [12] presented an optimization process based on a radial basis
neural network model to optimize four design variables of a diffuser in a mixed flow pump,
and the optimization increased in efficiency by 9.75% at the design point.

Although much of the research involves the improvement of the impeller and diffuser,
the blade profile of the mixed flow pump is space-distorted and too many geometric
parameters make it difficult to be fully optimized. The inverse design method (IDM)
is a technique to design the blade profile by distribution of blade loading. Compared
with the traditional design method, fewer design parameters are required for IDM [13].
Wang et al. [14] performed the optimization of the mixed flow impeller using IDM. The ef-
fect of different vortex distributions of the blade exit on the hydraulic performance were
investigated using CFD. Lu et al. [15] proposed a modified inverse design method for the
optimization of the runner blade of the mixed flow pump. The IDM is also suitable for the
design of the axial impeller and diffuser [16]. Although the IDM has certain advantages,
it only involves the design of the blade profile with no consideration for the meridional
passage shape.

Based on the above literature, the application of CFD is almost indispensable in
pump optimization. In recent years, CFD technology combined with computer aided
optimization methods have been widely used in the design and optimization of fluid
machinery [17]. Design of experiment (DOE) and surrogate models are the most popular
auxiliary methods. The precision of the surrogate model is one of the key factors for the
success of optimization. Wang et al. [18] tested the accuracy of different surrogate models
in centrifugal pump optimization and the results showed that the prediction accuracy of
the radial basis neural network is better than other models. Si et al. [19] implemented
the multi-condition optimization of an electronic pump using DOE. The influence of
each parameter on the head and efficiency was estimated, and the number of design
parameters were diminished by analysis of variance (AOV). Xu et al. [20] conducted the
multi-parameter optimization of a mixed flow pump based on the orthogonal experimental
method and RBF neural network, while the meridional parameters of impeller were not
included. Pei et al. [21] proposed a modified particle swarm algorithm to accelerate the
speed of optimization, and an artificial neural network was further applied to build the
mathematical model. Zhu et al. [22] applied the global dynamic criterion algorithm to
the optimization of a vaned mixed flow pump, and the parallel running was realized to
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shorten the time consumption. Huang et al. [23] developed a modified non-dominated
sorting genetic algorithm II (NSGA-II) coupled with a dynamic crowding distance (DCD)
method, which contributed to the search for the pareto-front.

The similarity of the studies above is that most research only focuses on the opti-
mization of a single hydraulic component, ignoring the interaction between the rotor and
stator. Further research is needed to optimize the matching of the impeller and diffuser.
In this study, a shrouded impeller was proposed to suppress the complex tip leakage flow.
The MIGA-RBF algorithm combined with CFD technology was introduced to improve
the hydraulic efficiency of the mixed flow pump. An automatic optimization platform
integrating 3D design, meshing, and numerical simulation was built. Variables involving
the meridional shape and blade profile of both the impeller and diffuser were optimized
to fully consider the rotor–stator interaction. The flow regime and local energy loss were
analyzed in detail. The paper is organized as follows: the relevant research status is de-
scribed in Section 1; the pump information and numerical theories are briefly introduced
in Section 2; the concrete optimization methods are illustrated in Section 3; the detailed
results are present in Section 4; and finally, the conclusions are provided in Section 5.

2. Requirements Description
2.1. Information on Mixed Flow Pump

The pump mainly consists of an inlet, a shrouded mixed impeller, a vaned diffuser, a
hydraulic motor, and an outlet. Figure 1 shows the structure of the studied pump. Table 1
shows the design and partial geometric parameters of the baseline scheme designed by the
traditional one-dimensional theory.

Figure 1. Structure of Mixed Flow Pump.

Table 1. Design specifications of the mixed flow pump.

Parameters Symbols Values

Rate flow Q 3500 m3/h
Rotational speed n 1500 r/min

Head H 16 m
Impeller suction diameter Ds 380 mm
Impeller outlet diameter D2 340 mm

Impeller outlet width b2 125 mm
Diffuser inlet width b3 125 mm
Diffuser outlet angle α4 90◦

2.2. Numerical Method

The external characteristic and inner flow regime were numerically investigated
by ANSYS CFX. The governing equations listed below are discretized using the finite
volume approximation.
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The whole computational domains contain four parts: impeller, diffuser, inlet, and
discharge pipes. The inlet and outlet sections were extended more than five times the
pipe diameter to consider the fully developed turbulent flow. The k–ω shear stress trans-
port model (SST k–ω) with an automatic wall function was used as a turbulence closure
model. The total pressure and mass flow were applied to the inlet and outlet boundaries,
respectively. For steady simulation, the frozen rotor strategy was adopted to deal with
the interface between the rotor and stator. Using the steady state result as the initial file,
the transient simulation was conducted with the transient rotor–stator interface mode.
The timestep for the transient case was 3.33× 10−4, which corresponds to 3◦ of the impeller
rotation. The root mean square (RMS) residuals for both the steady and transient cases
were selected as 10−4.

Figure 2 shows the grid system in this study. Due to the advantages in the number
of grids, calculation accuracy, and convergence, hexahedral grids with high quality were
used for all domains. The grids in the impeller and diffuser were generated by Turbo-Grid.
For inlet and outlet pipes, ICEM with O-Block strategy was adopted to discretize the
domains. To treat the high velocity gradient, all near wall surfaces were refined with prism
layers. The expansion ratio of near wall grids is 1.2. The first layer nodes distance was
controlled to ensure the dimensionless distance, y+ < 50 [24], which could meet the need of
the grid for the SST k–ω turbulence model.

Figure 2. Hexahedral mesh of computational domains.

A grid independent check (GIC) was conducted to make sure that the simulations
in the optimization process are free from errors caused by the grid number. The results
of the GIC are shown in Table 2, and the grid refinement factor is approximately 1.3.
When the grid number increases from 7.63 million to 9.92 million, the relative error of head
is 0.24%. Finally, the grid number of 7.63 million was used for subsequent optimizations
and simulations.

The comparison of the head and efficiency curves is shown in Figure 3. The CFD curves
are obtained by steady simulations. The tested performance curves were acquired from an
experimental study presented in Section 4.4. As the mechanical and volumetric efficiency
were not considered in simulations, the results obtained by CFD are generally higher than
the experimental values. The maximum relative errors of the head and hydraulic efficiency
are lower than 5%. The absolute predicted deviations for the head and hydraulic efficiency
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at the design condition are 0.55 m and 3.83%, respectively. Thus, the numerical accuracy is
suitable for the following optimization study.

Table 2. Grid independence check

Grid Number (Million) H (m) Relative Error (%)

3.47 14.87 -
4.52 15.75 5.91%
5.87 16.15 2.54%
7.63 16.39 1.49%
9.92 16.43 0.24%

Figure 3. Comparison of performance curves.

2.3. Entropy Generation Theory

Entropy is one of the physical qualities that characterize the state of matter in ther-
modynamics. The nature of entropy indicates the chaos inside the system. The entropy
generation theory is proposed based on the second law of thermodynamics, which effec-
tively explains the flow direction and loss of energy. Flow losses in fluid machinery are
very complex as total pressure loss cannot visualize and locate the maximum flow loss in
pumps. To explain the influence of the optimization variable on hydraulic performance, the
details of flow loss in the pump are revealed in depth. A visualization method of flow loss
based on the entropy generation theory was proposed. The transfer equation of entropy
for incompressible fluid can be described as [25]:

ρ
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where s is the specific entropy, T is the thermodynamic temperature, and u, v, and w are
the Cartesian velocity components,

→
q is the heat flux density vector, Φ

T and ΦΘ
T2 represent

the entropy generation rate caused by dissipation and heat transfer, respectively.
According to the Reynolds averaged Navier Stokes (RANS) approach for turbulent

flows, prior to time-averaging the equation, all quantities are split into time-mean and
fluctuating parts; thus, the time-averaged governing equation then reads [25]:
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In this research, the heat transfer is neglected; hence, only the entropy generation
by dissipation ( Φ

T ) is considered. The time average format of entropy generation can be
expressed as [26]: (

Φ

T

)
= S = SD + SD′ (5)
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where u, v, and w represent the time-averaged velocity components, and u′, v′, and w′ are
the velocity fluctuation components.

The first term, SD, which includes the average velocity gradient, can be interpreted as
the entropy generation dissipated in the average flow field. The second term,SD′ , which
contains the gradients of the fluctuating velocities, cannot be obtained directly; thus, it is
often called indirect or turbulent dissipation. Herwig et al. [27] found that there is a close
relationship between this term and turbulent eddy dissipation. Thus, the SD′ is defined as:

SD′ =
ρε

T
(8)

Because of the viscosity, there is a large velocity gradient near the wall. The time
average variables are obviously affected by the effect of the wall surface, and it is hard to
solve them accurately. Therefore, Hou et al. [28] proposed a new method to calculate the
wall entropy production rate:

Swall =
τwV

T
(9)

where τw represents the shear force on the wall, and V is the average velocity vector of the
first layer of the grid near the wall surface.

By the volume and surface integration, the entropy generation power of each term
can be calculated [29]:

Pave =
y

SDdV (10)

Pf lu =
y

SD′dV (11)

Pwall =
x

SwalldS (12)

The total volume entropy generation power (Pv) is defined as the sum of Equations (10)
and (11) [29]:

Pv = Pave + Pf lu (13)

All the statistical variables in Equations (6) and (8) were arithmetically averaged in
the last revolution of the impeller.

3. Optimizing Method

To reduce the human factor and shorten the optimization time, a highly integrated
optimization platform was established. Figure 4 shows the procedure of this optimization.
The entire optimization process mainly consists of two stages. The main task of the first
stage is to establish accurate surrogate models. In this process, the DOE method combined
with the CFD method was used for sampling in m-dimensional space. Regression analysis
was introduced to test the accuracy of the surrogate models. If the accuracy is lower
than the threshold value, DOE will be repeatedly performed until satisfactory results are
obtained. Secondly, the optimal solution was obtained by solving the surrogate models
with MIGA. The optimization platform was established by the integration of CFturbo,
Turbo-Grid, ICEM, and CFX. Disk Operating System (DOS) commands and script files
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were used to run the software in the background. The DOE program was used to drive
the platform.

Figure 4. Procedure of the optimization design.

3.1. Mathematical Model

The main purpose of this optimization is to improve the hydraulic efficiency, which
belongs to the single objective optimization. The mathematical model of this problem is
as follow:

maximize
η = F(Xm) (14)

subject to
16m ≤ H ≤ 18m (15)

XL
m ≤ Xm ≤ XU

m (16)

where η is the hydraulic efficiency under the design flow rate, X = [x1, x2, . . . , xm] is the
vector of the m design variables. Both the meridional and blade shape of the impeller
and diffuser were optimized in this study. The definition of the geometric parameters is
shown in Figure 5. The meridional shape of the flow passage in optimized schemes was
formed by multipoint Bezier curves, while the benchmark design adopts arcs and straight
lines. To reduce the number of optimization variables appropriately, some parameters
are reasonably constrained: β1, β2, ϕb, α3, and ϕd vary linearly from hub to shroud, b3 is
strictly equal to b2, while α4 is consistent from hub to shroud. Finally, 14 were selected for
the optimization. Table 3 shows the ranges of the optimization variables.

3.2. Design of Experiment

The Latin hypercube experimental design is an efficient experimental design method
with the advantages of effective space filling and the ability to fit second-order or more
nonlinear relationships. The optimal Latin hypercube (OLH) improves the uniformity of
the Latin hypercube and makes all sampling points more evenly distributed in the design
space [30]. To establish more accurate surrogate models, the OLH was used to perform the
space sampling. The number of samples is related to the accuracy of the surrogate model.
An accurate model requires enough sampling points; however, too many sampling points
will consume a lot of time. For tradeoffs between model accuracy and sampling time, the
regression analysis was performed using the coefficient of determination R2 after DOE.
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The closer R2 is to 1, the more accurate the model will be. Usually R2 is greater than 0.9 [31].
To ensure the accuracy of the surrogate model, if the value of R2 is below the threshold
value (0.96), additional sampling points will be added. Within each modeling process,
50 sampling points were added. R2 is defined as follows [31]:

R2 = 1−

n
∑

i=1
(yi − y)2

n
∑

i=1
(ŷ− yi)

2
(17)

where n is the number of samples, y represents the average response, ŷ is the predicted
value, and yi is the actual value.

Figure 5. Schematic diagram of geometric parameters. (a) Definition of meridional parameters. (b) Definition of impeller
blade angles. (c) Definition of diffuser vane angles.

Table 3. Ranges of optimization parameters.

Optimization Parameters Lower Bound Baseline Upper Bound

Impeller suction diameter Ds (mm) 360 380 390
Impeller outlet diameter D2 (mm) 330 340 350

Impeller outlet width b2 (mm) 120 125 130
Inlet angle of blade hub β1h (deg) 35 37 50

Inlet angle of blade shroud β1s (deg) 10 15 25
Outlet angle of blade hub β2h (deg) 20 23 35

Outlet angle of blade shroud β2s (deg) 30 35 45
Wrap angle of blade hub ϕbh (deg) 90 102 110

Wrap angle of blade shroud ϕbs (deg) 85 91 95
Inlet angle of vane hub α3h (deg) 35 41 50

Inlet angle of vane shroud α3s (deg) 45 52 60
Vane outlet angle α4 (deg) 85 90 92

Wrap angle of vane hub ϕdh (deg) 30 34 40
Wrap angle of vane shroud ϕds (deg) 15 19 25
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3.3. RBF Neural Network

The artificial neural network (ANN) is a kind of bionic computing system, which has
good, nonlinear fitting, learning and updating abilities; hence, it is widely used in machine
learning, optimization design, and other fields. The radial basis function (RBF) is one kind
of a three layer forward neural network. Figure 6 shows the structure of the RBF [32].
It consists of three layers: input layer, hidden layer, and output layer. In the RBF neural
network, the input vector is directly mapped to the hidden layer through the function, and
there is no need to adjust the connection weights.

Figure 6. Principle of RBF neural network.

The independent variable of the RBF is the Euclidean distance between the test point
and the sample point. The output of hidden layer is [32]:

R(xm) = exp

(
−‖xm − ci‖

2σ2
i

)
(18)

where ci is the center vector of the Gaussian function, and σi represents the width of the ith
Gaussian function.

The output layer responds to the action of the input mode, and there is a linear
mapping from the output R(xm) of the hidden layer to the output layer y [32]:

y = ∑ ωi exp

(
−‖xm − ci‖

2σ2
i

)
(19)

where ωi is the weight between the hidden layer and the output layer.

3.4. MIGA Algorithm

The genetic algorithm (GA) is a very classical algorithm widely used in multidisci-
plinary optimization. It was first proposed in 1971 based on the rule of „survival of the
fittest” in Darwin’s evolution theory [33]. The algorithm imitates the genetic reproduc-
tion mechanism of organisms; regards the solution space as a population with a certain
principle used to encode individuals in the population; and then genetic operations on
the encoded individuals was performed. The main search steps of GA include: selection,
crossover, mutation, and so on. The offspring or mutated individuals replace the old popu-
lation using the elitism or diversity replacement strategy and form as the new population
in the next generation. The optimal solution will be obtained from the new population
through iteration, which can effectively solve the problems of large-scale combination
optimization or discontinuous search space. GA is one of the most prominent stochastic
optimization algorithms.
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After years of development, there are many types of genetic algorithms. Among
them, parallel distributed genetic algorithms (PDGAs) are the most popular ones. Further,
Miki et al. [34] made improvements on the PDGAs, and they divided the solution space
into many parts called “islands”. When performing the optimization, some individuals
are selected on each “island” to conduct optimization according to the principle of the GA,
and then migrate to other “islands” for the same operation at certain intervals. This is the
so called MIGA. Compared with the traditional GA, the migration operation was added in
MIGA. The biggest advantage of MIGA is that it is good at global search and can avoid
falling into the local optimal solution. Figure 7 shows the structure of MIGA. The algorithm
settings are shown in Table 4. A total of 4000 iterations were executed.

Figure 7. Structure of MIGA.

Table 4. Parameters adopted in MIGA.

Parameters Value

Number of generations 10
Sub-population size 20
Number of islands 20
Rate of crossover 0.9
Rate of migration 0.01

Interval of migration 5
Rate of mutation 0.01

4. Results and Discussions
4.1. Regression Analysis

After repeating the experimental design five times, the accuracy of the model reached
the requirements. Therefore, 250 sampling points were used to establish the RBF model.
Figure 8 shows the results of the DOE. The objective variables show great fluctuations
in the solution space. The maximum difference in head exceeds 3.5 m, the fluctuation
amplitude of efficiency is larger than 3.5%. Therefore, the value ranges of variables are
suitable for optimization.

Figure 8. Results of DOE. (a) Head. (b) Efficiency.
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The accuracy of the surrogate model was evaluated by regression analysis. Figure 9
shows the R2 of both the head and efficiency, and they are all larger than 0.98. Therefore,
the accuracy of these two models is sufficient for further optimization.

Figure 9. Regression analysis of surrogate models. (a) R2 of head. (b) R2 of efficiency.

4.2. Sensitivity Analysis

Sensitivity analysis is a method to study the influence of input parameters on output
in a system. The sensitivity coefficients help the designer decide which parameters can
be ignored in the product optimization. Correlation analysis is a linear analysis method
based on the Pearson and Spearman correlation. The correlation coefficient, r, between two
variables can be calculated as follows [35]:

rXY =
∑
(
X− X

)(
Y−Y

)√
∑
(
X− X

)2
√

∑
(
Y−Y

)2
(20)

It can be seen that r ranges from −1 to 1, and when r > 0, the two variables are
positively correlated; otherwise, they are negatively correlated. It is generally believed
that when the absolute value of the correlation coefficient is greater than 0.4, there is a
significant correlation between the two variables. Correlation analysis is an effective tool
to evaluate the influence of variables on the target and helps designers reduce the number
of optimization variables.

Figure 10 shows the effects of the optimization variables on the pump head and
efficiency. The blue bars indicate the positive effects and the red bars present the negative
effects. The results show that b2 and D2 have a significant positive effect on the design head.
This means that increasing the impeller outlet width and outlet diameter can significantly
increase the design head of the mixed flow pump. In addition, the blade outlet angles also
have an obvious positive effect on the design head, while ϕdh, ϕds, and α3s can be ignored
with very small correlation coefficients. For the pump efficiency, the impeller blade shape
plays an important role, especially the inlet and outlet angles. The blade outlet hub angle,
β2h, has the greatest positive effect on the pump efficiency. Reducing the blade inlet angle
within this constraint is beneficial to improve the pump efficiency. However, efficiency is
less sensitive to other parameters.
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Figure 10. Correlation analysis for objectives. (a) Effect on head. (b) Effect on efficiency.

4.3. Optimization Results

By solving the RBF surrogate models, the best solution was obtained. Table 5 shows the
comparison of geometric parameters between the initial and optimized schemes. The 3D
geometry comparison of the mixed impeller and vaned diffuser between the initial design
and the optimal scheme is shown in Figure 11. The results predicted by the surrogate
models are compared with CFD in Table 6. The relative errors of the head and efficiency
between the predicted values and the CFD results are 0.82% and 0.33%, respectively.
Compared with the initial scheme, the efficiency under the design condition increased by
5.1%, while the deviation of head is within 0.5 m.

Table 5. Comparison of geometric parameters.

Parameters Initial Optimized

Ds (mm) 380 385.7
D2 (mm) 340 341.1
b2 (mm) 125 129.4
β1h (◦) 37 35.7
β1s (◦) 15 10.1
β2h (◦) 23 34.8
β2s (◦) 35 30.4
ϕbh (◦) 102 109.5
ϕbs (◦) 91 94.8
α3h (◦) 41 42.9
α3s (◦) 52 58.1
α4 (◦) 90 90.2

ϕdh (◦) 34 30.7
ϕds (◦) 19 24.7

Table 6. Comparison of performance under design condition.

Case Method Head (m) Efficiency (%)

Initial CFD 16.39 80.26

Optimized RBF 17.02 85.63
CFD 16.88 85.36
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Figure 11. Geometric comparison of impeller and diffuser. (a) Initial scheme. (b) Optimized scheme.

Figure 12 shows the comparison of the velocity streamline in the impeller and guide
blade runner in different spanwise. The incident angle of the blade inlet shows that
there is a large inflow impact near the blade leading edge (LE) of the initial scheme,
especially at span = 20%. When the flow angle is less than the blade inlet angle, flow
separation occurs on the suction side (SS), increasing the velocity and flow loss near the LE.
With the decrease of the blade inlet angle in the optimized scheme, the inflow direction
almost fits the blade profile, the flow separation on the SS was effectively suppressed,
and the velocity distribution is more uniform. In addition, the flow regime in the diffuser
has also been improved. For the initial scheme, there are large-scale, low-speed regions
and separation vortexes near the hub, causing serious blockage near the diffuser outlet.
With the increase of spanwise, the separation vortexes move towards the diffuser outlet,
and their scale decreases gradually. With the increase of the vane wrap angle, the separation
phenomenon in the optimized scheme is greatly improved. Although some separation
vortexes still remain at 20% spanwise, their numbers and sizes are significantly reduced.
The streamlines at 80% spanwise completely align with the blade profile, and the flow
separation phenomenon disappears.

According to the entropy generation theory, turbulent eddy dissipation (TED) is one
of the important factors causing flow loss in the pump. Figure 13 shows the distribution of
average TED at different spanwise. The TED at span = 20% and span = 50% in Figure 13a,b
indicate that the flow separation on the blade SS is prone to cause dissipation loss. With
the increase of spanwise, the effect of the rotor–stator interaction increased, the TED
peak on the blade SS moves towards the blade TE, and the TED in the diffuser increased.
Figure 13d–f illustrate that the TED on the blade surface is significantly reduced in the
optimized scheme. In addition, the TED in the diffuser at span = 50% and span = 80% also
decreased to a certain extent.

Figure 14 shows the comparison of volume entropy generation. The value of entropy
generation reflects the magnitude of flow loss. Consistent with the results reflected in
Figures 12 and 13, the peak value of entropy generation in the impeller was observed
near the LE on the SS in the initial scheme, and the entropy generation fades away along
the streamwise. Entropy generation in the diffuser is mainly distributed in the low-
speed regions; thus the flow separation diffuser is the main cause of the diffusion loss.
After optimization, entropy generation on the blade surfaces is almost eliminated, and
the impeller efficiency is improved. In the diffuser, the entropy generation near the hub
was still obvious in the optimized scheme, while the flow loss near the shroud is reduced,
which contributes to the improvement of the energy recovery rate of the diffuser.
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Figure 12. Velocity and streamline distribution in different spanwise. (a) Initial scheme at span = 20%.
(b) Initial scheme at span = 50%. (c) Initial scheme at span = 80%. (d) Optimized scheme at span = 20%.
(e) Optimized scheme at span = 50%. (f) Optimized scheme at span = 80%.
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By volume integral of entropy generation S, the total volume entropy generation
power Pv of impeller and diffuser were obtained. Similar to total pressure drop, Pv rep-
resents the magnitude of flow loss in a domain. Figure 15 compares Pv in the impeller
and diffuser, the flow loss in the impeller is greater than that in the diffuser. The opti-
mization results show that Pv in the impeller and diffuser decreased by 33.3% and 19.0%,
respectively. The decrease of entropy generation in the impeller is the main reason for the
efficiency improvement.

Figure 16 shows the blade loading on different spanwise along the streamwise.
The blade loading increases along the spanwise. The blade shape near the shroud has
the greatest influence on the impeller performance. The difference is mainly found near
the LE and TE. A pressure jump is observed near the TE because of the cut off. Owing to
the serious flow separation near the LE of the initial scheme, the relative larger pressure
difference appears in front of the blade (streamwise: 0~0.2). Additionally, the decrease
of blade loading initiated before 80% streamwise. For the optimized scheme, the blade
loading before 20% streamwise is greatly improved. In addition, the minimum differential
pressure is closer to the TE, and the blade loading is more uniformly distributed along
the streamwise.
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Figure 15. Comparison of the total volume entropy generation power. (a) Pv of impeller. (b) Pv

of diffuser.

Figure 16. Distribution of blade loading. (a) Span = 20%. (b) Span = 50%. (c) Span = 80%.

4.4. Experimental Verification

To verify the optimization results, the hydraulic components were manufactured,
and performance tests were carried out on the opening test rig. Figure 17a presents the
test site of the mixed pump, and it mainly includes the tested pump, motor, pipes and
so on. The pump was installed horizontally, and an elbow pipe was used to connect
the pump and outlet pipe. The pump head was measured by a differential pressure
transducer whose accuracy is better than 0.1%. The volume flow was measured by the
electromagnetic flowmeter with an uncertainty of 0.2%. The input power of the pump was
calculated according to the motor efficiency curve. The error of shaft power is less than
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0.14%. The systematic uncertainty of the test rig is 0.26%, which meets the level 1 accuracy
requirements specified in ISO9906-2012.

Figure 17. Experimental measurement. (a) Test rig. (b) Impeller. (c) Diffuser.

The performance curves of the initial and optimized schemes are compared in Figure 18.
After optimization, the head and pump efficiency increased under the full flow condition.
The maximum pump efficiency increased by 4.7%, and the best efficiency point shifts to
large flow. At the same time, the optimization scheme alleviates the problem of the rapid
drop of the head and efficiency curves under large flow conditions and broadens the high
efficient operation range.

Figure 18. Comparison of experimental performance curves between initial and optimized schemes.

5. Conclusions

A vaned mixed flow pump was optimized by MIGA. An intelligent optimization
platform integrating DOE, mesh generation, numerical simulation, and RBF neural network
were established to shorten the optimization time. The best solution was obtained by
solving the RBF model. This research has reached the following conclusions:
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1. The RBF neural network has good accuracy in terms of the complex nonlinear rela-
tionships. The R2 value of both the head and efficiency under the design condition is
better than 0.98. The relative error between the predicted values and the CFD results
is less than 1%.

2. The impeller outlet width, b2, and its outlet diameter, D2, have a significant positive
effect on the design head, while the efficiency is more sensitive to the blade angles.

3. The efficiency of the optimized scheme predicted by CFD increased by 5.1%. Experi-
mental results show that the maximum pump efficiency increased by 4.7%, and the
high efficient operation range is significantly broadened.

4. The entropy generation can effectively visualize the flow loss distribution caused
by turbulent dissipation and flow separation. Compared with the initial scheme,
the volume entropy generation powers in the impeller and diffuser are effectively
reduced, and the blade loading is more uniformly distributed along the streamwise.

5. The optimization platform proposed in this study is universal and can be applied to
conduct optimization of other fluid machinery.
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Nomenclature

u v w Cartesian velocity components
x y z Coordinate components
t Time
f Body force
p Pressure
µ Dynamic viscosity
P Entropy generation power
T Temperature
D2 Impeller outlet diameter
Ds Impeller suction diameter
b Width
α Diffuser van angle
β Impeller blade angle
ϕ Wrap angle
Q Flow rate
n Rotational speed
m Sample number
V Volume
Ω Area
H Head
s Entropy
SD Viscous dissipation
SD′ Turbulent dissipation
→
q Heat flux density vector
θ Volute tongue angle
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α Circumferential angle
ρ Density
ν Kinematic viscosity
ε Turbulent Eddy Dissipation

Subscripts
1 Impeller inlet
2 Impeller outlet
3 Diffuser inlet
4 Diffuser outlet
i Free index
j Dummy index
h Hub
s Shroud
b Blade
d Diffuser

Superscripts
¯ Time-averaged value
′ Fluctuating component
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