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Abstract: In turning operations, the wear of cutting tools is inevitable. As workpieces produced
with worn tools may fail to meet specifications, the machining industries focus on replacement
policies that mitigate the risk of losses due to scrap. Several strategies, from empiric laws to more
advanced statistical models, have been proposed in the literature. More recently, many monitoring
systems based on Artificial Intelligence (AI) techniques have been developed. Due to the scope of
different artificial intelligence approaches, having a holistic view of the state of the art on this subject
is complex, in part due to a lack of recent comprehensive reviews. This literature review therefore
presents 20 years of literature on this subject obtained following a Systematic Literature Review (SLR)
methodology. This SLR aims to answer the following research question: “How is the AI used in the
framework of monitoring/predicting the condition of tools in stable turning condition?” To answer
this research question, the “Scopus” database was consulted in order to gather relevant publications
published between 1 January 2000 and 1 January 2021. The systematic approach yielded 8426 articles
among which 102 correspond to the inclusion and exclusion criteria which limit the application of
AI to stable turning operation and online prediction. A bibliometric analysis performed on these
articles highlighted the growing interest of this subject in the recent years. A more in-depth analysis
of the articles is also presented, mainly focusing on six AI techniques that are highly represented
in the literature: Artificial Neural Network (ANN), fuzzy logic, Support Vector Machine (SVM),
Self-Organizing Map (SOM), Hidden Markov Model (HMM), and Convolutional Neural Network
(CNN). For each technique, the trends in the inputs, pre-processing techniques, and outputs of
the AI are presented. The trends highlight the early and continuous importance of ANN, and the
emerging interest of CNN for tool condition monitoring. The lack of common benchmark database
for evaluating models performance does not allow clear comparisons of technique performance.

Keywords: artificial intelligence; turning; cutting tools; condition monitoring; wear; systematic
literature review

1. Introduction

Cutting tools endure mechanical, thermal, and chemical conditions that induce wear,
most importantly located on their flank face (flank wear) under nominal machining condi-
tions. The workpieces produced with worn tools may exhibit poor quality, consisting of
dimensional discrepancies, poor surface roughness and residual stresses that fall out of
specifications. In order to limit downtime and risks for the machine and for the production
quality, the cutting tools must be replaced in a timely manner [1]. Due to several wear
mechanisms occurring simultaneously [2], the evolution of tool degradation is extremely
variable even at steady cutting parameters, inducing the need for detection or prediction of
wear. The continuous nature of the machining process does not allow direct measurement
of the tool wear degradation. Furthermore, the evolution of different condition monitoring
parameters with wear differs highly depending on the measured variable, which makes

Machines 2021, 9, 351. https://doi.org/10.3390/machines9120351 https://www.mdpi.com/journal/machines

https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-1059-1185
https://orcid.org/0000-0003-0442-8015
https://orcid.org/0000-0002-6218-4736
https://orcid.org/0000-0002-4299-2699
https://doi.org/10.3390/machines9120351
https://doi.org/10.3390/machines9120351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/machines9120351
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines9120351?type=check_update&version=1


Machines 2021, 9, 351 2 of 54

tool wear estimate extremely complex [3]. In consequence, it is estimated that only 50%
to 80% of numerical control machining tool life is rationally used [4], hence important
waste and losses. The industrial practice occasionally contributes to this trend, by using
lower cutting parameter values in order to slow the wear process and replace the tool in
time [5]. Therefore, the tool life estimate is a recurring research in machining, and several
approaches have been attempted, from early empiric laws [6] to stochastic modeling [7],
to more advanced statistical models such as the Proportional Hazards model [8], and in
recent years, Artificial Intelligence (AI) methods.

With the rise of industry 4.0, the amount of monitoring data available for analysis
increases, along with the capability of automation for industrial processes, including
machining [9]. An increasing number of sensors are included in machine tools, accounting
for the rise in data available, but also to the variety of variables being monitored. In this
context, AI can be used in order to predict the state of tool wear based on sensors data in
order to replace the cutting insert before adverse effects on production are met. Contrary
to previous methods, AI also provides the capability of taking into account large data sets
and continuous measurements of several sensors allows updated condition monitoring.

In a 2002 review of Artificial Neural Networks (ANN) used in tool wear monitor-
ing in turning, Bernhard Sick covered the research of the previous decade [10]. Its long
conclusions summarize the state of the art at the time, but remain specific to ANN, few
applications of other techniques to tool wear monitoring existing at that time. Indeed,
the AI techniques evolve rapidly and the last twenty years provided a large array of
models with various input and output variables, which raised numerous methodolog-
ical questions. In 2010, Abellan-Nebot and Romero Subirón [11] highlighted the lack
of common methodologies for the development of AI in this framework and proposed
guidelines for future experiments, regardless of the machining process, using Taguchi’s
orthogonal arrays [11]. In a major review of 2013, Siddhpura and Paurobally [12] compre-
hensively reviewed the available variables for condition monitoring and the AI techniques
for decision-making in turning [12]. More recently, taking into account the recent develop-
ments in deep learning techniques, Serin et al. [13] reviewed specifically the applications of
deep learning to tool wear monitoring in machining [13]. In parallel, and specifically for
milling, Mohanraj et al. [14] produced a short review on the tool condition monitoring tech-
niques in milling, highlighting the main condition monitoring variables and summarizing
the AI techniques used in decision-making relative to this process, highlighting the variety
of techniques available and importance of feature extraction [14]. However, despite these
reviews, which are either outdated or specific to a restricted portion of AI techniques, there
is a lack of hindsight on the current variety of AI techniques applied to tool life estimate in
turning, their inputs, pre-processing, and outputs.

In this paper, a brief overview of the background of tool wear in turning and AI
techniques is presented in Section 2. Then, in Section 3, the standardized methodology
of the systematic literature review is presented and applied to the current review [15].
For this analysis, research questions are identified, then the search process is described. In
Section 4, a first bibliometric analysis is performed, then an in-depth analysis of the identi-
fied literature entries is proposed in Section 5. The results are discussed in Section 6 and
formal answers to the research questions are formulated in Section 7. Finally, conclusions
on each aspect of the review and perspectives on future research objectives are identified
in Section 8.

2. Background in Turning Process and Artificial Intelligence

This section defines some important concepts that are used through this systematic
literature review. First, the concept of tool wear in turning is presented, followed by the
introduction of machine learning. This section does not constitute an exhaustive description
of the subjects that it describes, but rather constitutes a comprehensive introduction to the
specificities of tool wear and the AI techniques discussed in the following sections. A short
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introduction to some of the most used AI techniques used in this systematic literature
review is presented in the appendices of this article (Appendices B.1–B.6).

2.1. Tool Wear in Single Point Turning

Any machining operation induces tool wear. The causes of degradation of the tool can
be numerous and of very varied origins. Among them, the main causes of degradation are
adhesion, abrasion, tribochemical reactions and surface disruption [16]. The word “wear”
groups together the surface interactions leading to all of these degradation mechanisms.
The predominance of one mechanism over another depends on the cutting conditions and
materials. In nominal cutting conditions, the main mechanism of wear is abrasive wear
resulting in the degradation of the flank face. This type of wear is favoured by the tool
manufacturers, as it is considered as the steadiest and most predictable [17,18]. Prominence
of other kinds of wear generally comes from poor cutting parameters choice [8]. In turning,
the main cutting parameters are: cutting speed, feed rate, and depth of cut. The workpiece
material and the choice of cutting parameters each have an effect on the tool life.

In the case of flank wear, the evolution of wear depends on the cutting condition and
is constituted of three phrases (Figure 1):

1. An initial wear zone. In this phase, the new insert starts to wear quickly. This period
is generally short in regard of the cutting life;

2. A steady-state region. In this region, the wear slowly gradually increases. The tool
spends most of its life in this phase;

3. Accelerated wear. This is the end-of-life of the cutting tool, the wear rate starts to
increase significantly until the tool is worn. When the tool end-of-life criterion is
reached, the tool is replaced by a new one.

Defining an end-of-life criterion for a tool can be complex. Wear is generally accompa-
nied by a degradation in the quality of the machined surface and compliance with required
tolerances. The end-of-life criterion is thus variable, depending on the objective of the
machining process. The ISO 3685 standard defines the value of VBB as the end-of-life
criterion for flank wear in the framework of single point turning tool life testing [19]. VBB
is defined as presented in Figure 2, and a tool is considered worn if the value of VBB reaches
0.3 mm or VBBmax is above 0.6 mm. In industrial applications, this criterion may vary
depending on the machining purpose. The value of VBB is obtained by directly measuring
the wear land width on the flank face (Figure 2).
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Figure 1. Tool life for a given cutting speed.
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Figure 2. Tool wear standardized measurement [19]. Image from Jozić et al. [20] under Creative Commons Attribution
License [20].

2.2. Artificial Intelligence

In the framework of this paper, the words “artificial intelligence” are often be used to
be as general as possible. It regroups “machine learning” and “deep learning” approaches.

The AI paradigm finds its origin during the 1950s [21] and can be defined as: “an area
of study concerned with making computers copy intelligent human behaviour” [22]. The word
“intelligence” should be taken in the broad sense. Indeed, while the task of recognizing a
cat from a dog is not considered as a marker of high intelligence in humans, achieving this
task is considered as AI for machines. A definition for intelligence in this framework can
be proposed as: “the computational part of the ability to achieve goals in the world” [23].

Machine learning (ML) algorithms can achieve different tasks without the intervention
of human beings in the process; they therefore belong to a part of the AI paradigm. They
are soft computing techniques in the way that they can adapt their architecture in order to
achieve the desired task without having explicitly been programmed to do so. The process
of adapting the architecture is called “learning”. A model learns through experience,
in such a way that the model is influenced by the input data and the desired output.
The interest of these techniques is that they are not only able to learn from the data but also
to generalize the results for previously unseen data [24]. ML can therefore be defined as:
“The use and development of computer systems that are able to learn and adapt without following
explicit instructions, by using algorithms and statistical models to analyse and draw inferences
from patterns in data” [22].

In the context of this Systematic Literature Review (SLR), AI methods can be applied
to: detecting the failure of the tool, diagnosing the state of the tool or making a prognosis
on the future state of the tool, this can be achieved in different ways. There are four
AI families depending on whether it performs: regression, classification, clustering or
pattern recognition.

A wide variety of AI techniques exists, varying by their architectures, the way they
learn, their objectives, . . . In the following, six AI approaches are presented: Artificial
Neural Network (ANN), Support Vector Machine (SVM), Hidden Markov Model (HMM),
Convolutional Neural Network (CNN), Self-Organizing Map (SOM) and Fuzzy Inference
System (FIS). The choice to present these techniques comes from their interest in the
literature of this SLR. These techniques therefore do not represent all aspects of AI but
regroup all the approaches that are presented in this SLR.

As part of this SLR and for comparison purposes, it was chosen to structure the use of
a AI method into six steps:

1. Data collection. The first step of using an AI approach is to collect information
from the different sensors. In turning, numerous types of sensors are used, and the
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fundamental variables to which they relate have been extensively reviewed in the
past [12]: accelerometers, strain gauges, microphones, etc.

2. Features extraction. As the data come from different types of sensors, extracting
the useful information of the signal is not always feasible without applying a pre-
processing technique. These techniques make it possible to extract the useful informa-
tion (or features) from the raw signal.

3. Features selection. As all the features extracted from the previous step are not
always useful, a selection of the best features is made. This is generally accomplished
by a correlation analysis such as ANalysis Of VAriance (ANOVA) [25], Pearson’s
analysis [26], etc. or through expert judgment.

4. Input of the selected features into the AI. The number of inputs may vary depending
on the approach.

5. Inference. This is the output of the selected AI approach. Based on the model
architecture and the input data, the AI produces an inference of the output.

6. Accuracy. To discuss whether the outputs of the AI technique have a good perfor-
mance, some indicators are computed.

These steps allow comparison of the different techniques, and they are discussed in
Section 5.

3. Review Protocol

This SLR was conducted following the review protocol suggested by Kitchenham
et al. [15,27]. The definition of a review protocol is a critical step because it ensures the
repeatability of this review and reduces the researcher bias in the presented results. This
protocol is composed of six stages with the objective of defining the framework of this SLR:

1. Research questions. This step consists of defining the research questions that are
addressed in this SLR.

2. Search process. In this step, the methodology to obtain relevant literature entries
is described.

3. Inclusion and Exclusion criteria. The literature obtained from the previous step
needs to be sorted in order to obtain only the literature entries that answer the
research question. Therefore, in this step, paper selection criteria are defined in order
to best answer the research question based on the title and abstract of the articles.

4. Quality assessment. In this step, the content of the selected papers is analysed, and qual-
ity criteria are applied to reject papers that do not answer the research question.

5. Data collection. In this step, the researchers extract the useful information from the
selected studies.

6. Data analysis. Finally, this step allows the presentation of the results in a relevant
and comparable way.

All six stages of this protocol are exposed in the remainder of Section 3. Figure 3
presents a summary of the research protocol with the corresponding results.

3.1. Research Questions

As presented in the introduction, the interest of AI techniques applied in manufac-
turing is a constantly growing subject. This subject is in fact too broad to be treated in,
a single review. In consequence, the main research question of this review is intentionally
limited to the use of AI techniques to monitor the tool wear in stable turning operations.
The research question is expressed as:

RQ1 How is the AI used in the framework of monitoring/predicting the condition of tools
in a stable turning condition?

The formulation of this research question aims to precisely define the framework of
this paper. The concepts of AI and ML have been described in Section 2.2. The words
“monitoring/predicting” are used to encompass all monitoring cases, i.e., in real time or
with a prediction of the future state of the tool. As many indicators can be used to monitor
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the tool, the word “condition” is used to encompass them all. The formulation “stable
turning condition” aims to reject all papers that discuss chatter or tool breakage detection.
As this research question mainly focuses on AI methods applied to the health of the tool,
quality-oriented approaches which focus on workpieces are not considered in this review.

Scopus160 search queries

62,832 articles

Remove duplicateBased on DOI

8426 articles

Title and abstractInclusion/Exclusion criteria

475 articles

TurningMilling Other

261 articles 65 articles149 articles

Content analysisQuality criteria

Retained

102 articles

Rejected

47 articles

Figure 3. Methodology pursued to identify the 102 articles.
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The research question is voluntarily broad, such that some sub-questions can be ad-
dressed:

RQ2 What are the most used AI techniques used in this context?
RQ3 What is the forecasting horizon of each of the identified AI techniques in this context?
RQ4 What are the most common inputs used with the different identified AI techniques in

this context?
RQ5 What are the most used feature extraction techniques used in this context?

These research questions are answered throughout the SLR analysis process, and they
are explicitly answered in Section 7.

3.2. Search Process
3.2.1. Database

To answer the research question, adequate databases should be consulted. The database
must be as large as possible and related to the subject to have a representative panel of
articles constituting the current state of the art. In this review, it was chosen to use the Scopus
database as it regroups a large number of relevant journals from various publishers [28].
Due to the evolution of AI techniques and computing power, it was considered that articles
dating from before 2000 were not representative of the current state of the art in the frame
of this SLR. Thus, it was chosen to limit the search process over a 20-year period from
January 2000 to December 2020. Furthermore, other studies also stated that before 2000 the
vast majority of AI techniques used was ANN [29]. A literature review made in 2002 [10]
already addresses this part of the literature [10].

3.2.2. Keywords

The search terms must be chosen to be the most general in the framework of the
research question. It ensures that the research addresses the topic without introducing
bias. The keywords used to perform the search in the Scopus database are listed in Table 1.
A semantic approach was chosen such that each search query is constructed with one
element of each semantic part. It was chosen to compose the search query with four parts:

1. the tool part;
2. the aims part;
3. the method part;
4. the indicator part.

For the “tool part” in Table 1, the word cutting tool uses the wildcard character
(*), which is used to include these different forms of the “tool” word: “tool”, “tools”,
and “tooling”. A total of 160 research queries is constructed with this method, creating
all possible combinations with the desired composition. The keywords used to build
the search query are voluntarily broad and include all machining processes. The main
advantage of this approach is that it allows for going through all the possible combinations,
but it creates a significant amount of “duplicate” results which must be removed. This last
step can easily be realized automatically.

As mentioned previously, the research was done in the Scopus database, each combi-
nation of keywords is entered individually, and the results are obtained with the “search
within all fields” option. For the results of each piece of research, Scopus provided the fol-
lowing informations: Title, authors, year, DOI, abstract, document type, publisher, number
of citation, . . .

From the 160 search queries, 62,832 articles were obtained. The duplicates were
removed based on their DOI. This lead to 8426 unique articles. On average, every search
made with this approach yielded 393 results. The most successful search query yielded
3180 results and was

• “machining” AND “prediction” AND “artificial intelligence” AND “data”

With only two results, the least successful search was
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• “cutting tool*” AND “prognosis” AND “intelligent data analysis” AND “data”

From the 160 combinations of keywords, 19 combinations gave more than 1000 results.
From these 19 combinations, it is possible to generalize a search query that would yield
most results into this form:

• “machining” AND (“prediction” OR “monitoring”) AND (“artificial intelligence” OR
“machine learning”) AND (“condition” OR “data” OR “wear”)

Table 1. List of keywords. Wildcard character (*) includes these different forms of the “tool” word:
“tool”, “tools”, and “tooling”

Tool Part Aims Method Indicator

Cutting tool * Prediction Artificial intelligence Wear
Machining Monitoring Machine learning Remaining useful life

Reliability Intelligent data analysis Condition
Prognosis 4.0 Data

Assessment

3.3. Inclusion and Exclusion Criteria

From the previous step in the procedure, 8426 articles are identified. Not all these
articles are relevant to answer the research question. To assess the eligibility of each article,
it has to be compared with some inclusion and exclusion criteria. These criteria are chosen
in accordance with the perspectives of this review and try to be inclusive enough to find all
the articles of interest while clearly delineating the research question. These criteria are
listed below.
Inclusion Criteria:

IC1 The paper describes the application of an AI method applied to cutting tools.
IC2 The paper is about turning operation. This information must be clearly stated in the

title or the abstract.
IC3 The paper is written in English.
IC4 The AI must provide information on the tool condition.
IC5 The paper has been published between January 2000 and December 2020.

Exclusion Criteria:

EC1 The paper must not include instabilities/chatter in the machining process.
EC2 The paper must not be a review.

Based on titles and abstract of the identified articles, the inclusion and exclusion
criteria were applied to obtain 475 results. At this stage, the inclusion criteria IC2 was not
applied to obtain an overview of the application of AI techniques in different machining
processes. From the 475 results, 149 articles are in turning, 261 are in milling, and 65 in other
machining processes (Figure 3). These relevant articles are spread across all search queries;
in other words, they are distributed uniformly over the 8426 articles identified. It confirms
that the semantic approach used to build the search terms was successful. In the following
steps, the criteria IC2 is applied such that only articles about turning are analysed.

Due to the large number of articles and the risk to introduce some bias in the sort-
ing previously described, this stage was performed in parallel simultaneously by two
researchers. After the independent rating phase, in case of disagreement, a discussion took
place to make a final decision for these articles as proposed by Kitchenham [15]. As it is
a manual sorting step, it can introduce some bias into the choice of the selected article
depending on the appreciation of the researchers. To measure the inter-rater reliability,
the Cohen’s kappa statistic (κ) was used [30]. This indicator measures the agreement among
raters and is computed as:

κ =
Po − Pe

1 − Pe
(1)

with Po (observed value: 0.93) the observed agreement and Pe (observed value: 0.64) the
probability of random agreement. After sorting, the obtained κ value was 0.8, which
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indicates that the raters were in “almost perfect agreement” [30]. This means that the
defined criteria were applied in the same way by both researchers. This ensures that the
vast majority of relevant articles dealing with the subject of this SLR have been identified
and provides quality assessment of the sorting process.

3.4. Article Quality Assessment

The previous steps identify 149 articles about turning (Figure 3). These articles were
selected based on their title and abstract, but their contents may still not correspond to the
research question of this SLR. The quality of the content of the 149 articles is compared
with quality criteria that helps to answer the research questions. The quality assessment
is often used to assess differences in the execution of studies [15]. In this SLR, this list of
quality indicator is proposed:

QA1 The paper correspond to the inclusion criteria.
QA2 The paper presents a clear data input description.
QA3 The origin of the data are clearly defined.
QA4 The paper clearly describes its methodology.
QA5 The pre-processing on the data are explicitly mentioned (if any).
QA6 The paper presents an indicator for the quality of their results.

If two or more of these criteria are not met, the paper is rejected. Based on the
quality indicators, the rejected articles are articles that do not contribute to answering the
research question or do not provide enough information to be fairly compared with others.
The analysis of content and the application of these criteria results in 102 articles retained
and 47 articles rejected (Figure 3).

3.5. Data Collection and Data Analysis

By following the procedure previously described, 102 articles are selected to be pre-
sented in the SLR (Figure 3). In what follows, two types of analyses are performed:

1. A descriptive analysis (Section 4). This part discusses the trends in the literature and
shows the state of the art on the research question. Bibliometric information such as
year of publication, authors, number of citations are discussed. A text mapping is
also presented.

2. An in-depth analysis of the AI techniques used (Section 5). A detailed analysis of
the content of the articles is carried out and presented in the form of tables. Each
category of AI is discussed individually and relevant information in each category
are presented. Criteria such as input data, pre-processing, and output are discussed.

4. Bibliometrics Analysis

From the 102 articles identified with the procedure described above (Section 3), a bib-
liometric analysis is performed. The aim of this analysis is to present the trend in the
literature and give a meaningful picture of the state of the art. As described above, this
analysis focuses on the 102 previously identified articles from the last 20 years in the context
of AI applied to cutting tools in turning operation.

4.1. Distribution in Time

The distribution of the number of publications per year allows for finding if a subject
is of interest among researchers. This makes it possible to show trends over the years and
reflects the research interest in a subject. Knowledge of these trends allows researchers to
align their efforts in particular topics to solve current technological challenges.

The distribution of publications between 2000 and 2020 is presented in Figure 4. It
can be observed that there is a steady growth in the number of articles which reflects the
growing interest in the use of AI in the industrial sector. This may be related with the
evolution of AI techniques and also the amount of data generated by machine tools in
the framework of industry 4.0. From Figure 4, it is possible to divide the timeline into
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three identical periods of seven years: from the period of 2000 to 2006, there is an average
of 2.85 articles per year, from the period of 2007 to 2013, there is an average of 4.14 articles
per year and from the period of 2013 to 2020, there is an average of 7.57 articles per year. It
is observed that the year 2020 was particularly rich in the number of publications which
may indicate the rise of a hot topic in the literature.
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Figure 4. Number of publications per year in turning.

4.2. Repartition of AI Type

From the content analysis of the selected papers, seven “types” of AI stand out.
The categorization is the reflection of the occurrence of these techniques in the literature:

1. Artificial Neural Network (ANN) (Appendix B.1).
2. Fuzzy approach (FIS and ANFIS models) (Appendix B.2).
3. Support Vector Machine (SVM) (Appendix B.3).
4. Self Organizing Map (SOM) (Appendix B.4).
5. Hidden Markov Model (HMM) (Appendix B.5).
6. Convolutional Neural Network (CNN) (Appendix B.6).
7. Other. This category regroups techniques that individually are not sufficiently repre-

sented to have their own category. It includes AI techniques such as: decisions trees,
K-nearest neighbour classifier, etc.

These different techniques are the subject of an in-depth analysis in Section 5, including
tables summarizing the review results. To be exhaustive and take into account articles that
in addition to the AI approach addressed a non-AI approach, the category “other (not AI)”
has been added.

The repartition of the type of AI used to monitor the tool wear is presented in Figure 5.
From this figure, it is observed that the majority of articles focuses on the following AI
techniques: ANN, Fuzzy and SVM. These three techniques represent about 60% of all
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articles. The other techniques, i.e., SOM, HMM, CNN and “other” together represent the
remaining 40% of the literature.

0 20 % 40 % 60 % 80 % 100 %

35
.8

 %

21
.1

 %

17
.9

 %

14
.6

 %

5.
7 

%

2.
4 

%
2.

4 
%

ANN Fuzzy Other SVM SOM HMM CNN

Figure 5. Global repartition by type of AI.

The repartition of the type of AI by year is presented in Figure 6. It should be noted
that some articles discuss several independent AI techniques, which explains why the
numbers are not consistent with the repartition by year in Figure 4. This figure allows
observing some trends in the literature:

• The interest for the ANN approach occupies an almost constant proportion of the
literature through the years.

• The SVM approach has seen a growing interest in the last five years.
• The fuzzy logic approach aroused great interest up to 2011, but it seems less repre-

sented in recent years.
• Techniques such as HMM and SOM are not sufficiently represented to observe

any tendencies.
• The CNN approach was first observed in 2020. Therefore, no conclusion can be drawn

as to its use. It will be necessary to monitor its use in future years to observe if this is
a hot topic of ongoing research.

• The other AI techniques have a growing interest too. This may indicate an interest to
test new approaches.

The choice to carry out an analysis of the literature over the last 20 years therefore
makes it possible to observe the evolution in interest of each of the AI techniques. This
allows for identifying all the approaches that have been tried and which approaches are
raising the most interest for future trends.

4.3. Citations Analysis

Analysing the number of citations helps to identify the most influential papers in a
subject. In this SLR, seven types of AI have been identified, and the top 3 of the most cited
articles in each technique is presented in Table 2. The number of citations comes from the
Scopus database and reports this value as of 1 January 2021. In Table 2, as the HMM and
CNN approaches include only three articles, all articles are listed, resulting in a citation
number of 0 for 3 articles.

Hereafter, the top 3 of the most cited articles in all categories of AI are presented (in
boldfacetype in Table 2):

1. The most cited article is [31] (Salgado and Alonso, 2007) and concerns the uses of SVM
with easily accessible signals such as sound, motor current and cutting parameters to
make a real-time estimation of VBB.

2. The second paper that receives the most attention is [32] (Wang et al., 2002). It uses an
HMM approach using a pre-processed vibration signal to classify the state of the tool
(“new tool” or “worn tool”).
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3. The third most cited paper is [33] (Balazinski et al., 2002) and concerns the use of ANN
and Artificial Neural Network Based Fuzzy Inference System (ANNBFIS) with the
feed rate, cutting force and feed force as input signals to estimate the tool wear (VBB).

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

N
um

be
r 
of

 p
ub

lic
at

io
ns

2 3
1

3 2 1 1
3

1 1 2 2
4

2 2
4 4

61

4

1 2

3
1

3

3

2

1

1

1 1

1

1

2

1
1

1

1 2

2 3

7

1

1
1

2

3 2

2

6

1

1

1
1

1

1

1

1

1

1

3

ANN Fuzzy Other SVM SOM HMM CNN

Figure 6. Chronological repartition of the type of AI—Note that some articles present several AI techniques.

On average, all identified articles are cited 18 times. Even if the HMM approach is not
strongly represented in the literature (Section 4.1), it appears that that publication [32] has
been cited a significant number of times. However, this citation analysis may present some
bias. Indeed, for a paper to accumulate citations, it has to be published for a sufficient time
to be read and cited. It is therefore normal to observe a majority of papers published before
2015 in this analysis. Note that the number of citations was not always available for all
102 articles.

Table 2. Top 3 most cited articles by AI techniques, three globally most cited articles in boldface type.

Technique No. Citation Article

ANN

94 [33] “Tool condition monitoring using artificial intelligence methods” Balazinski et al., 2002
90 [34] “Online metal cutting tool condition monitoring” Dimla and Lister 2000
83 [35] “Prediction of flank wear by using back propagation neural network modelling when cutting

hardened H-13 steel with chamfered and honed CBN tools” Özel and Nadgir 2002

Fuzzy

94 [33] “Tool condition monitoring using artificial intelligence methods” Balazinski et al., 2002
63 [36] “Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process”

Gajate et al., 2012
61 [37] “Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy

inference system” Rizal et al., 2013
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Table 2. Cont.

Technique No. Citation Article

SVM

135 [31] “ An approach based on current and sound signals for in-process tool wear monitoring” Sal-
gado and Alonso 2007

45 [38] “On machine tool prediction of flank wear from machined surface images using texture analyses
and support vector regression” Dutta et al., 2016

33 [39] “Identification of features set for effective tool condition monitoring by acoustic emission sensing”
Sun et al., 2004

SOM

94 [40] “Wear monitoring in turning operation using vibration and strain measurements” Scheffer and
Heyns 2001

17 [41] “ Tool wear monitoring—an intelligent approach” Rao and Srikant 2004
10 [42] “Condition monitoring of the cutting process using a self organized spiking neural network map”

Silva 2010

Other

69 [43] “ Tool condition monitoring based on numerous signal features” Jemielniak et al., 2012
15 [44] “Fusion of hard and soft computing techniques in indirect online tool wear monitoring” Sick 2002
12 [45] “Metacognitive learning approach for online tool condition monitoring” Pratama et al., 2019

HMM

125 [32] “ Hidden Markov Model-based tool wear monitoring in turning” Wang et al., 2002
20 [46] “ A comparative evaluation of neural networks and hidden Markov models for monitoring

turning tool wear” Scheffer et al., 2005
0 [47] “Tool wear intelligence measure in cutting process based on HMM” Kang and Guan 2011

CNN

1 [9] “ A qualitative tool condition monitoring framework using convolution neural network and
transfer learning” Mamledesai et al., 2020

0 [48] “Indirect cutting tool wear classification using deep learning and chip colour analysis” Pagani
et al., 2020

0 [49] “A U-net-based approach for tool wear area detection and identification” Miao et al., 2021

4.4. Journal Analysis

The 102 identified articles appear in 61 journals from 23 publishers. The most influen-
tial journals with more than three articles cited in this SLR are identified:

• The International Journal of Advanced Manufacturing Technology is the most represented
journal with 10 articles;

• Journal of Intelligent Manufacturing is the second most represented journal with eight ar-
ticles;

• Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture with five articles;

• International Journal of Machine Tools and Manufacture with four articles.

The other articles come from either journals or conference proceedings that generally
have only a single article taken into account in the framework of this SLR.

4.5. Authors

The identified articles were written by 280 different authors. Among those, only
13 authors have published more than three articles on this subject.

A co-authorship analysis is performed using VOSViewer (a tool for creating, visualiz-
ing and exploring meaningful map of items of interest [50]). A mapping of the different
authors is presented in Figure 7. The size of each item (authors name and associated circles)
indicates the occurrence of the authors in the literature. A larger circle means that the
corresponding author appeared more in this SLR. Each cluster represents an author group,
i.e., usual co-authors. The larger a cluster, the more authors there are in it. It is observed
that there are some clusters which are larger and bigger than the others. This is generally a
specific lab that works on the subject of this SLR. It is observed that most of the clusters
are isolated, and there is no link between them. This does not mean that the authors do
not cite each other, but it does indicate that there is very little inter-lab collaboration in the
redaction of articles beyond usual co-authors.
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Figure 7. Author mapping using VOSViewer.

5. In Depth Analysis

Below, an analysis of the content of the articles is carried out from the different
categories of AI, namely ANN, Fuzzy, SVM, SOM, HMM, CNN, and other. This analysis is
broken down into two stages:

• The content of the articles is presented in table form (Tables A1–A8). Note that some
articles present several approaches, such that they can appear multiple time in the
tables of related techniques.

• A general analysis of the content of the tables for each technique is carried out
(Sections 5.1–5.7). For each AI approach, a presentation of the most used: inputs,
pre-processing and output is presented in the form of figures that relate the number
of article using the corresponding approach. If there is less than four articles for a
technique, a short summary of each article is presented. The articles that compare
their results with others approach is also listed. Finally, a small conclusion is made
highlighting the use of each AI technique.

The presentation of the articles follows the logical steps to use the AI technique
(Section 2.2):

1. Data collection. In this SLR, the sensors used to obtain the data are not explicitly
presented, as previous reviews covered the subject extensively [12].

2. Features extraction. This is the pre-processing of the data, for the sake of this SLR,
these techniques have been grouped into different categories:

(a) Statistical approach. This approach extracts descriptive statistics such as:
mean, kurtosis, skewness, . . . , from the temporal signal.
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(b) Frequency approach. This approach extracts information from the frequency
domain. In this SLR, this is commonly achieved by a Fast Fourier Trans-
form (FFT).

(c) Time-frequency approach. This approach extracts information from the time-
frequency domain. In this SLR, this is generally done with a Wavelet Package
decomposition.

(d) Normalization. It consists of scaling the variables between 0 to 1. This allows
the AI to learn in a more stable and faster way.

(e) Others. This regroups specific approaches. In this SLR, the “others” category
generally refers to features extracted from images.

(f) None. An article which does not explicitly describe any pre-processing tech-
niques is found in this category. Note that some sort of pre-processing is
always needed.

More detailed descriptions of these approaches exist in the literature [40,51,52].
3. Features selection. To avoid any confusion, this part is not systematically presented

in this SLR. Indeed, the articles rarely present the feature selection extensively and,
in many cases, the selection is made by the authors. Since little and incomplete
information is available in the articles, it is therefore not relevant to compare the
articles on this point.

4. Input In this review, a categorization of the input data is realized, and the input is
categorized as: cutting speed, feed rate, depth of cut, cutting time, spindle informa-
tion, cutting forces, Acoustic Emission (AE), vibration, surface roughness, images,
temperature, and others. The first three inputs listed above are data characterizing
the cutting conditions of the turning operation. These data are not correlated with
the health of the tool but are usually used to give context to the other measured data.
In this study, these data are presented in the “input” column in the different tables of
results and figures related to the approach.

5. Inference In this SLR, the output is categorized in: classification, estimation of VBB,
prediction of VBB, remaining useful life (RUL) and others. The difference between
“estimation” and “prediction” aims at disambiguating the word “prediction” used
by authors indistinctly for “estimation” (i.e., “monitoring of the current state of the
tool”) and “prediction” (i.e., “prediction of the future state of the tool”). This nuance
is discussed in Section 6.

6. Accuracy Comparing the accuracy of different AI techniques is complex, as different
authors use different indicators (Root Mean Squared Error, Mean Absolute Error,
accuracy term, . . . ) to evaluate their approach. Categorizing the results would be too
subjective as it would be necessary to define precision intervals. As all the approaches
are very different and use various datasets, it was chosen to refer to each article
authors’ assessment to judge the accuracy of the approach. All articles cited in this
SLR have obtained a “good” performance. Objectively, the average accuracy of all
classification methods is around 90%. As it is discussed in the following sections,
the majority of authors that performed a comparison of an AI approach against a
standard statistical approach have shown that the AI approach performed better than
the statistical approach.

This approach allows for identifying the different trends in the literature for each AI
selected techniques. It also allows for highlighting the difficulties and opportunities offered
by each approach.

5.1. ANN

As presented in the bibliometric analysis (Section 4), the artificial neural network is the
most popular decision-making method used to monitor the tool life. An explanation of this
approach is presented in Appendix B.1, and Table A1 presents the 44 articles about ANN.



Machines 2021, 9, 351 16 of 54

5.1.1. General Architecture of the Neural Network

The architecture of a neural network is often defined by trial and error and can have a
major influence on the quality of the results. From the 44 papers about ANN, 17 propose
an architecture with one hidden layer [33,41,46,52–65], two propose an architecture with
two hidden layers [66,67] and the rest does not give any information about the network
architecture. From these papers, the most common architecture of the neural network to
monitor the tool wear is presented in Figure 8. This architecture is composed of three
layers: one input layer, one hidden layer and one output layer. The number of neurons
in the input layer depends on the data used as inputs. In the hidden layer, the number of
neurons is around 3 to 5. Finally, the output layer is generally composed of one neuron
that gives information about VBB (Figure 8). This architecture therefore appears to be
the most efficient to resolve the subject of this SLR. Apart from the network architecture,
other considerations exist. An exhaustive comparison of different types of NN is presented
in [68]. The influence of the optimizer is studying in [69,70]. A comparison between
different architectures and activation functions is made in [55]. It is also worth noting
that [71] proposes an approach based on a recurrent neural network.

X

inputs
1 Hidden layer

3-5 neurons

1 output

VBB

VBB

Figure 8. General form of an ANN used for tool condition monitoring.

5.1.2. Input

The different features used as input of the neural network, based on the 44 articles
on the subject, are presented in Figure 9. The six most used features are: cutting speed,
cutting forces, feed, depth of cut, vibration and acoustic emission (AE). In these data, only
three are dependent on the state of the tool: cutting forces, vibration and AE. The three
others are cutting parameters that are necessary to help the neural network to identify the
cutting conditions.

5.1.3. Pre-Processing

To extract useful information about these signals, pre-processing techniques are em-
ployed. Figure 10 shows the pre-processing techniques used in this context. As the two
most used pre-processing techniques are: None and Statistic, it appears that, for ANN,
complex techniques are not always required. When a pre-processing is applied, it is a very
simple one that consists of computing the skewness, kurtosis, etc. Note that the category
“None” refers to articles that do not present the pre-processing technique used. As some
sort of pre-processing is always needed, it indicates that these articles only compute simple
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statistic value on the “raw” signal from the sensors such that it does not require exten-
sive presentation of the pre-processing technique. This observation confirmed what is
presented in Appendix B.1: ANN is robust to noisy data such that advanced pre-processing
techniques are not needed for all the inputs.

5.1.4. Output

The output of the neural network is presented in Figure 11. The vast majority of papers
use the ANN as a regressor to estimate the value of VBB in real time (“estimation of VBB”
in Table A1 and Figure 11). Some papers also use the neural network as a classifier, and
the classification is on average performed for three states. The RUL is used in [72,73] with
the latter giving an upper and lower limit for its prediction. Some articles use a different
approach: [57] monitors the percentage of tool life, [74] monitors the tool life and tool-shim
interface temperature, [75] monitors the surface roughness to latter predict the flank wear
and [59] monitors surface roughness and flank wear.

5.1.5. Comparison

Some articles present the results of the ANN by comparing its performance with those
of classical regression methods [59,61,67,73,75–77]. Some of them also completely describe
a regression method in their approach [59,61,67,75,76]. In all these papers, the observation
is that ANN performs better than the classical regression methods. The advantage of ANN
over the regression model is its ability to continuously learn from the data, making it more
efficient at monitoring the tool wear.

5.1.6. Conclusions

The great interest in this technique can be explained by its history in the framework
of tool monitoring. Indeed, before the year 2000, the majority of publications concerning
the use of AI applied to cutting tools concerned the use of neural networks [10]. This can
be explained by the ease of implementing neural networks and the great interest that this
technique received among researchers. Today, many accessible libraries make it possible
to code a neural network easily, e.g., in Python, TensorFlow [78] and Scikit-Learn [79] are
two commonly used libraries. It is also well known that ANN are efficient to model highly
nonlinear models which is our case of interest [80]. One of the major drawbacks of ANN
is its “black box” aspect. In today industries, the explicability of AI is a subject of great
interest [81,82] but, by the number of articles about ANN, it appears that this consideration
is not an obstacle to the development of this approach.
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Figure 9. Repartition of inputs for ANN techniques.
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Figure 11. Repartition of outputs for ANN techniques.

5.2. Fuzzy Inference System and ANFIS

This section presents the results for the ANFIS and FIS approaches. It was chosen to
group these two approaches because the observations made in the following are identical
for both. The 26 articles are presented in Table A2 for the FIS and Table A3 for the
neuro-fuzzy approach.

5.2.1. Presentation of the Articles

There are 8 articles about FIS: [33,76,83–88] and 18 articles for the neuro-fuzzy ap-
proach: [33,36,37,41,58,89–101]. For the inference system, it is important to note that, out
of the 8 articles, five articles have the author Balazinski Marek (and Baron Luc for four of
these articles) in the author list which explains the similarity in the approaches presented
in these articles ([33,84,86–88]).
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5.2.2. Input

The inputs used for the fuzzy models are presented in Figure 12. It is observed that
the most used input is the cutting forces followed by the AE and feed rate signals. With
17 out of 26 articles using it, the cutting force is the most used input signal. A particular
approach using temperature as well as the power and voltage of the machine as input
signal is presented in [93].

5.2.3. Pre-Processing

The pre-processing technique use is presented in Figure 13. The most used pre-
processing techniques are: None and Statistic. It indicates that the fuzzy logic approaches
do not require elaborated pre-processing technique to obtain a good accuracy.

5.2.4. Output

The output of the fuzzy models is presented in Figure 14. The vast majority of articles
use the fuzzy logic to monitor the flank wear VBB.

5.2.5. Comparison

For the FIS, the papers [86,87] perform a comparison of their approach that uses a
Tagaki–Sugeno–Kang Fuzzy Approach Based on Subtractive Clustering Method with a
neural network, neuro-fuzzy and Mamdani fuzzy logic. The approaches proposed in these
papers have a lower root mean squared error on the prediction of VBB.

5.2.6. Conclusions

The fuzzy approaches occupied a large amount of the literature around the 2010s;
today, they are much less represented in the literature. There is nothing that explain this
decline in interest. It seems that the interest by the researcher has evolved such that these
approaches have been replaced. The interest of fuzzy approaches lies mainly in their
explicable aspect. Unlike neural networks, a fuzzy approach is not a black box. This is
a great feature, especially in shop floor applications where the fuzzy approach can be of
interest by providing more information than a simple prediction. In [41], the low processor
time is also cited as a key feature of the fuzzy approach compared with neural networks.
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Figure 12. Repartition of inputs for fuzzy techniques.
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Figure 14. Repartition of outputs for fuzzy techniques.

5.3. SVM

As mentioned in Section 4.2, SVM received great interest over the past five years and
is one of the most used techniques to monitor the tool wear with 18 articles. A presentation
of these articles is provided in Table A4.

5.3.1. Input

The input features used for the SVM approach are presented in Figure 15. It is
observed that the most used input is the cutting force. It also appears that the use of
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images to generate features is more commonly used in this AI technique than with other
approaches (except CNN).

5.3.2. Pre-Processing

Due to the sensibility of SVM to noise and outliers, it appears that this approach
requires more pre-processing on the data than ANN. Indeed as Figure 16 shows, the vast
majority of the approaches show the use of a pre-processing technique. This pre-processing
is performed in the time-frequency domain and some statistical features are computed.

5.3.3. Output

The output of the SVM is presented in Figure 17. As described, SVM was initially only
used in classification purpose. Here, the number of articles that use SVM for regression
and classification are almost the same.

5.3.4. Comparison and Particular Approaches

In a particular article [102], the authors use the SVM approach to make a short-term
prediction of VBB at time t and also at time t + 1 (“prediction of VBB”). This approach uses
SVM coupled with a genetic algorithm to perform this task. A comparison is realized with
an AutoRegressive Integrated Moving Average (ARIMA) model and the SVM approach
developed in that paper. The authors demonstrate that the SVM approach performs better
than the ARIMA model.

In another instance, it is proposed to use the cutting forces to classify the state of
the tool into three states (“initial”, “normal” and “severe” wear) [103]. The cutting forces
are pre-processed with several techniques: normalization, statistical features and time-
frequency domain. This is followed by a correlation analysis to find the best features. These
features are used as input of a Gravitational Search Algorithm–Least Square Support Vector
Machine model (GSA-LSSVM). In this entry, the authors compare the results obtained with
this technique with other related methods such as: K-Nearest Neighbour(k-NN), Feed
Forward Neural Network (FFNN), Classification And Regression Tree (CART) and Linear
Discriminant Analysis (LDA). The classification obtained with the GSA-LSSVM model
outperforms the others. However, most other authors using SVM in this context compare
SVM with ANN, and they show that SVM is more accurate (in classification and regression)
than ANN [31,104–106]. Some authors also compare the results obtained with SVM and
other AI techniques: [31,103–106].

5.3.5. Conclusions

Applications of SVM appeared later in the literature and remain a relatively modern
approach. As this method is more dependent on the quality of the input data, some feature
extraction is required to improve the quality of the inference. Fitting the correct parameter
in the SVM approach is a complex task, but it appears that the quality of the inference made
with this approach is at least at the same level as with an ANN approach. In practice, this
method may be more difficult to implement in the industrial sector due to its sensibility to
noisy data, and it needs a pre-processing approach. However, SVM has the advantage of a
good generalization performance which could make this approach particularly interesting
in the future.

5.4. SOM

Only 7 articles described this approach and are presented in Table A5.

5.4.1. Input

The inputs of the SOM are presented in Figure 18. Due to the nature of this approach,
only inputs that are highly correlated with the tool wear are used. Indeed, the cutting
parameters such as cutting speed, depth of cut, feed rate, etc. are not used as input of the
SOM contrary to other approaches.
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5.4.2. Pre-Processing

The pre-processing techniques used are presented in Figure 19. It is observed that
the statistical features and frequency domain features are the most used pre-processing
approaches. As presented in Appendix B.4, this method is generally robust against noisy
data but computing the kurtosis, skewness, average value, etc. is an easily accessible way
of improving the results obtained with this approach and reducing the learning time.
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Figure 15. Repartition of SVM inputs.
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Figure 17. Repartition of SVM outputs.

5.4.3. Output

This approach is only able to perform classification as observed in Figure 20.

5.4.4. Comparison

Some articles present the SOM with another method. In [2], a comparison between
SOM, SVM and k-nearest neighbour approach is realized. In [41], the use of SOM, neuro-
fuzzy and ANN is discussed and software is presented for shop-floor application. In gen-
eral, the SOM approach does not outperform the others but proposes a simple and ac-
cessible classification solution. However, the lack of generalization capabilities of this
approach requires training under all cutting conditions, which is not always necessary with
other methods.

5.4.5. Conclusions

The SOM approach is quite different from the others by its unsupervised learning
aspect. Some authors use this aspect to try to select the best features independently of
classical correlation approaches [107]. Other uses this aspect to work with imbalanced
data and uni-sensor approach [2]. In an industrial application, imbalanced data often
constitute the only available data, and this technique can therefore be used in this context.
The advantage of low computation time is also highlighted [41].

5.5. HMM

The HMM approach is not strongly represented in the literature with only 3 articles: [32,46,47].
These articles are presented in Table A6. They are all used to perform a classification on the
tool state.

5.5.1. Presentation of the Articles

In Ref. [32], a discrete hidden model uses the wavelet transformation on the vibration
signal in the feed direction to classify the tool state within two states (“sharp” or “worn”
tool). This approach achieves a hit rate up to 97%. The authors try this approach under
different training conditions (e.g., length of training data and variation of observation
sequence length), and the HMM performs well in all conditions.
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In Ref. [47], a Discrete Hidden Markov Model (DHMM) is used in combination with
an SOM. They use the cutting force and the acceleration to monitor the state of the tool
and these features are pre-processed with a FFT and coded with a SOM. Their approach
performed well, and a processing time of around 0.2 s is reported, which makes this
approach usable in online applications.

In Ref. [46], the use of ANN is compared to an HMM to monitor the tool wear. The cut-
ting force signal is used as input, pre-processed with multiple techniques: statistical (mean,
skewness, etc.), frequency (FFT, PSD) and time-frequency (wavelet and spectrogram).
The best features are chosen by the researcher following a correlation analysis. It is con-
cluded that both approaches perform well with the advantage of HMM to be extremely
easy to train but limited to a certain amount of output values (classification).
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Figure 18. Repartition of SOM inputs.
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Figure 20. Repartition of SOM outputs.

5.5.2. Conclusions

Even if this approach presents only 3 papers in the literature, the results reported in
these publications show that this technique is capable of realizing a good quality classifica-
tion. In theory, there are Markov models capable of performing a regression, but these have
not been tested yet in the literature. As the classification of the tool state is not the most
common approach, the low interest in this technique can be explained by this consideration.
Moreover, as stated in one of these articles, in comparison, a neural network is able to
have the same precision as an HMM. However, the neural network needs a little more trial
and error to determine the best architecture for learning [46]. HMM therefore does not
seem to present any major advantages, which leads researchers to not favour this approach
over another.

5.6. CNN

The use of CNN has recently emerged. Only 3 articles discuss the use of CNN to
monitor the tool wear: [9,48,49]. They are presented in Table A7. All of these articles have
been published in 2020 showing a new interest in this techniques (see Section 4.2). These
articles almost use the same approach.

5.6.1. Presentation of the Articles

In [49], the authors used the image of the insert to compute the value of VBB. This is
achieved by identifying the wear area on the tool. The identification of this zone makes it
possible to count the number of pixels which allows finding the dimensions of the wear
zone. The authors perform a data augmentation on the initial dataset to improve the
robustness of the CNN. In [9], a similar approach is followed, but the images of the insert
are used directly to classify the state of the tool. In this study, the classification is made
within two classes: “GO/NO GO”. Both articles report accuracy greater than 90%.

Based on the dependency of chip colour on the cutting tool temperature, and the
influence of tool wear on tool temperature, it has been proposed to use the chip colour to
monitor the tool wear [48]. Images of the chip are pre-processed to remove the background
and a kernel density estimation is performed. They show that this density estimation
is more efficient on the hue channel from the Hue Saturation Value (HSV) channels of
the images. This is used as an input of the CNN which performs a classification around
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three classes depending on the class of the wear: “New”, “Medium” and “High”. They
achieve accuracy of above 90%. A comparison is made with a functional data analysis
(FDA) classifier, and it fails to beat the CNN.

5.6.2. Conclusions

The late interest in this technique can be explained by the complexity to obtain a
significant number of images for the datasets. Indeed, this technique uses images of
the tool which can be impractical to obtain in industrial applications. These approaches
work greatly in laboratory conditions but still require human intervention to achieve
them. Comparing this approach with the others presented in this paper, automating this
approach seems more difficult. In addition, in real production applications, turning is
often performed with cutting fluids which can further complicate image capture. Indeed,
the conditions for taking images must be consistent and the light must be controlled so as
not to influence the neural networks [48]. Today, to our knowledge, there is no automated
machine allowing the introduction of a capture system of this type which may explain
the low interest raised by this technique. This lack of interest can also be explained by
the false belief that CNN is more difficult to implement than ANN [108]. Furthermore,
this approach requires stopping the machining process to allow the picture to be taken
which removes all the interest of monitoring in real time. However, the advantage of this
approach is that it makes it possible to directly measure the wear on the tool rather than
going through correlated indicators such as the cutting forces, for example. Automating
this approach would be equivalent to automating the measurement of VBB, which would
provide important data for other forecasting techniques. By using the chip colour instead, it
could then be possible to carry out the measurement without interrupting the process [48].

5.7. Other

This section covers all approaches that are not related to the other categories. The ar-
ticles are presented in Table A8. It can be noted that, among these methods, there is a
majority of decision trees and classifiers. These approaches are generally compared in pairs
with others, hence they do not have a dedicated section in this SLR.

5.8. General Conclusions

Table 3 summarizes the top 3 inputs, pre-processing, and outputs for each AI tech-
niques. From this table, the different methods are compared.

For ANN, 2 of the 3 most used inputs are cutting parameters: cutting speed and feed
rate. This extensive use of cutting parameters as input signal appears to be specific to ANN
as this characteristic is not observed for other methods. All AI techniques extensively use
the cutting force as input signal as it is present in the top 3 of each AI technique (except
CNN). Vibration and AE signal are also commonly used. It is worth noting that, except for
CNN, SVM is the second method that uses features extracted from images as input.

ANN and ANFIS/FIS techniques do not appear to require elaborate pre-processing
as most of the articles do not specify the pre-processing techniques employed (“None” in
Table 3). SVM, SOM, HMM and CNN all require special attention to the feature extraction
techniques, especially SVM and HMM, which benefit from more advanced pre-processing
techniques in the time-frequency domain. For the majority of methods, the computation of
simple statistic characteristic on the signal is commonly used. By its nature, CNN does not
require the same kind of pre-processing technique as it mainly uses images as input.

Two outputs are predominant in the use of AI techniques: estimation of VBB and
classification. In the analysis of AI technique by year (Section 4.1), it was shown that ANN,
fuzzy and SVM techniques are predominant in the literature. It is observed that these
three techniques are the only ones with “Estimation of VBB” as the most represented output.
Indeed, approaches such as SOM, HMM and CNN are mainly focused on classification.
It is therefore observed that techniques monitoring the value of VBB are favoured over a
simple classification purpose.
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Table 3. Comparison of the three most used: input, pre-processing and output for each approaches.

ANN ANFIS & FIS SVM SOM HMM CNN

Nb of articles 44 18 & 8 18 7 3 3

Input
Cutting Speed (24) Cutting Force (17) Cutting Force (7) Vibration (6) Cutting Force (2) Image(3)
Feed rate (24) AE (9) Image (5) Cutting force (5) Vibration (2) /
Cutting force (22) Feed rate (9) AE (4) Noise (2) / /

Pre-processing
None (16) None (12) Time-frequency (8) Statistic (6) Time-frequency (2) Image processing (3)
Statistic (12) Statistic (6) Statistic (8) Frequency domain (5) Frequency (2) /
Frequency domain (7) Other (3) Other (5) Time-frequency (2) Normalization (1) /

Output Estimation of VBB (34) Estimation of VBB (23) Estimation of VBB (10) Classification (7) Classification (3) Classification (2)
Classification (7) Classification (5) Classification (9) / Estimation of VBB (1) Estimation of VBB (1)
Other (6) / Prediction of VBB (1) / / /
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As it is discussed in Section 6, comparing AI methods on the results they are able
to achieve is not possible. Since each approach is carried out on a different dataset,
with different indicators, with different inputs, etc. comparing these results would not
provide a clear and unbiased analysis of the literature. Despite this fact, it is described in
the previous sections that articles that compare the AI techniques with classical methods
such as statistical model, show that the AI techniques outperform the classical models.

6. Discussion

As indicated by the various authors of the identified publications, all approaches
presented in this SLR were able to obtain good results in monitoring the cutting tool health,
some authors were even able to obtain more than 90% accuracy. The majority of these
approaches have the common point to monitor the value of VBB to assess the tool state.
Unfortunately, there are few other approaches that try to evaluate the tool health differently.
Some papers try to monitor the tool wear with other indicators such as its percentage of
elapsed tool life, and others try to predict the RUL. This lack of other approaches may come
from the difficulty to define a clear end-of-life criterion to cutting tools. In the ISO 3685
standard [19], the maximum value for VBB is set to 0.3 mm as the end-of-life criterion, but,
in real application, this value may not represent the cutting tool end-of-life, depending
on the industrial applications and its tolerances. As this end-of-life can be very variable,
having approaches based on the RUL or other time indicator can be very difficult to
adopt for industrial applications. It is therefore understandable why researchers are more
interested in the value of VBB rather than trying to define a precise end-of-life criterion. It
is up to the AI user to define the criteria corresponding to its application. By proposing an
approach that monitors VBB, the researchers ensure that their method can be applicable in
real applications.

Knowing the current condition of a tool is obviously of great interest in condition
monitoring. However, as the industry evolves, predictive monitoring tends to be the
preferred approach. The current state of the art shows that there is too little research
done to meet the future needs of industries in predictive maintenance, i.e., to predict the
coming evolution of the tool condition. In recent years, advanced statistical models tend
to answer this problem but still require a lot of tuning to obtain results. The use of AI
could perhaps meet these needs of industries while guaranteeing models robust enough
to be implemented on shop-floor applications. At this stage, it is not possible to assess
whether this lack of interest in predictive maintenance is due to a lack of interest from
the researchers or if it comes from a publication bias. Indeed, in this SLR are only listed
articles that present relatively good results, and this may either be due to the fact that all
techniques were always able to perform well, or that the publications which do not get
good results are not published or not submitted for publication. It is therefore possible
that, currently, research in predictive maintenance is not published due to a possible lack
of results.

Due to the different nature of the AI techniques, it is not possible to make a compar-
ison between each of them. Many articles compare their approach with other methods.
In this SLR, these articles are listed and their results presented, although they are often
contradictory. Indeed, an approach presented in any of the selected articles is often pre-
sented to be the most effective compared with others. Given these contradictions, it is
impossible to identify the best approach, if one exists. This may come from two reasons:
(i) the publication bias previously discussed (the papers are not submitted or published if
their approach is not better than another one), (ii) there is no best approach. Moreover, out
of 102 articles, 98 performed a test campaign to obtain their dataset. As these data have
been collected with different cutting conditions, materials, tools, . . . it is not relevant to
compare the results of these approaches. In turning, there is no benchmark dataset allowing
for fairly comparing all the approaches, whereas benchmarks exist for other categories of
machining. In milling, for example, some datasets are available on the NASA website [109],
on the PHM website [110], . . . This lack of unified benchmarking in turning does not allow
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a clear view of the performance and is a clear limitation of the comparison of performances
in all these articles, which can therefore only be analysed objectively on the bases of their
methodology instead of their results. The results obtained are therefore highly dependent
on the quality of the data recovered during the tests and some data may be more fitted
to certain approaches than others. Consequently, the pooling of various test data would
allow the establishment of benchmarks. These benchmarks should aim to be the most
representative of industrial reality. This lack of unified dataset can also be in relation
with the co-authorship analysis performed in Section 4.5: as there is little inter-laboratory
collaboration in the topic of this SLR, no data are shared between researchers.

It is also observed that the title of the articles could be confusing. Indeed, many articles
incorrectly used the word “prediction” to talk about “monitoring”. As a matter of fact, out
of the 102 identified articles, 34 wrongly use the word “prediction” in their title and 62 in
their title or abstract. The word prediction, in the English language, normally evokes the
future state as defined in the Oxford dictionary: “Prediction is a statement that says what you
think will happen” [22]. As shown in this SLR, the majority of articles actually use the AI
technique as a monitoring system (i.e., to produce an estimate in real time). There is no
forecasting of the future state. This abuse of language likely leads to confusion given the
previous remark on the emergence of predictive maintenance.

7. Answers to the Research Questions

This section presents an answer to the research questions identified in Section 3.1.
The answers to these questions are distributed through this SLR, but the main results are
summarized here.

RQ1 How is AI used in the framework of monitoring/predicting the condition of tools in
stable turning condition?

This question is answered throughout this SLR and RQ2 to RQ5. Several approaches
have been mentioned and there is not one that stands out from the others (mainly due
to the lack of unified benchmark). Each approach can find its place depending on the
means and equipment made available to the monitoring system. However, as discussed
in Section 6, it appears that, in the current state of the art, too few papers concern the
evolution of VBB, as they rather monitor the current state of the tool, which could be a
problem in the framework of predictive maintenance in industry 4.0.

RQ2 What are the most used AI techniques used in this context?

In Section 5 of this SLR, all the AI methods were presented. Among them, there does
not appear to be a more efficient approach than another. Each approach has its advantages
and disadvantages. However, it appears in Section 4.2 that approaches from neural net-
works, fuzzy logic and support vector machines are particularly present in the literature.
They all have the ability to be integrated into workshops. Neural network approaches have
the advantage of having been widely studied but have a “black box” aspect which could
cause reluctance in practice. Fuzzy logic seems to no longer be considered even though
they had the advantage of presenting the results in an easily understandable way. In
addition, finally, SVM approaches seem to perform as good as ANN and fuzzy approaches
but require special attention to data pre-processing and the choice of parameters.

RQ3 What is the forecasting horizon of each of the identified AI techniques in this context?

Figure 21 presents the outputs of all the AI techniques presented in this article. It
appears that the majority of articles use AI to monitor the current state of tool wear
(estimation of VBB). A classification purpose is also realised to detect the actual state of
the tool. Some papers also present other kinds of output such as the percentage of tool life.
Only five articles propose an approach that consist of a prediction of the future state. This
is achieved by computing the remaining useful life (RUL) or a prediction of VBB at a future
time (generally called “t + 1”). As discussed in Section 6, there is a lack of application in
predictive maintenance and the actual state of the art is limited to the actual monitoring of
the tool.
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RQ4 What are the most common inputs used with the different identified AI techniques in
this context?

As AI techniques are data-driven, the most common features have a high correlation
with the cutting tool state. The repartition of all input data for all techniques is presented in
Figure 22. The cutting force is the main input as it appears in 54 of the 102 articles. Features
that correspond to the cutting conditions such as: feed rate, cutting speed, and depth of
cut are also used a lot. These features are generally constant through the cutting process
but are important to give context to the correlated data such as the cutting force, vibration
signal, . . . These cutting parameters thus have a significant impact in the ability of the AI
technique to perform the monitoring of the tool.

RQ5 What are the most used features extraction techniques in this context?

The features extraction technique for each AI approach is presented in Section 5.
Figure 23 presents the repartition of all pre-processing techniques in this SLR. It is important
to note that, depending on the approach, the pre-processing technique can be different.
For example, it is observed that using ANN does not need much pre-processing while, for
SVM, the pre-processing technique is necessary.
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Figure 21. Output variables of all the approaches.
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Figure 23. Feature extraction techniques of all the approaches.

8. Conclusions

This paper presents a systematic literature review covering the use of AI techniques
in the monitoring of cutting tool health in stable turning condition. The review protocol
allowed for identifying 8426 articles in which 102 articles are corresponding to criteria
of interest (Section 3). The review protocol followed the procedure recommended by
Kitchenham [15]. During the definition of the research procedure, a new approach that
aims to improve the quality of it was proposed. Some conclusions can be made about them:

• In the research procedure for this SLR, the choice to use a semantic approach to build
the keywords was successful. It was chosen to construct each search query with a
combination of four keywords so that each correspond to one part of the semantic
approach (Section 3.2.2). The results show that this approach allows for browsing
all of the literature on the subject of interest. However, it needs some additional
sorting steps such as removing the “duplicated” items. Due to the number of articles
identified, this last step cannot be performed manually. This approach is particularly
interesting in the context of a systematic literature review.

• In the research procedure, to evaluate the inter-rater reliability, the Cohen’s kappa [30]
was used to evaluate the agreement among raters (Section 3.3). This gives an unbiased
judgement of the quality of the sorting which ensures that the research was carried
out in an unbiased manner.

The bibliometric analysis of the 102 articles was performed in Section 4 and shows the
trends in the literature over the last 20 years. Several aspects were discussed including the
distribution of the number of articles per year (Section 4.1), the number of article citations
(Section 4.3), the identification of reference journals (Section 4.4), and a discussion on the
authors (Section 4.5). Some general conclusions can be drawn:

• There is a growing interest in the use of AI techniques to monitor the tool wear in
turning operation. This is observed by the increasing number of publications by year
in this domain (Section 4.1).

• Approaches using neural networks are predominant in the subject of this SLR with
44 articles (Section 4.2). This may be linked to the ease of implementation of this
type of technique and to its robustness to handle noisy data. Fuzzy logic and SVM
approaches are also often used by the researchers with 26 and 18 articles, respectively.

An in-depth analysis of the six AI approaches identified in this SLR was carried out
and presented in the form of Tables A1–A8. A discussion for each approach was performed
in Section 5. Some general comments can be provided:
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• Some articles compare the AI techniques and the classical statistical approach. It
appears that the AI techniques outperform the classical approach. The main advantage
of the AI technique over the classical approaches is that the AI are able to easily adapt
to multiple cutting conditions without any further researcher expertise. This makes
AI an interesting approach in the industrial context.

• Almost all the articles presented in this systematic literature review perform a dedi-
cated test campaign to obtain their own data. This makes it difficult to determine the
best approach. An establishment of a benchmark dataset would allow for comparing
the different approaches on the same data allowing the researchers to have a clear
view of the best approach.

• There is a vast variety of approaches to monitor the tool wear, but the accuracy is
usually above 90%. It indicates that, no matter the approach, AI techniques can be used
to monitor the tool health. Due to the wide variety of approaches and the differences
in the AI techniques employed, producing an effective horizontal comparison between
the methods is not feasible.

• The forecasting horizon is actually limited to the real-time monitoring with only a few
applications corresponding to predictive maintenance.

To conclude this SLR, some future scopes that need to be addressed in the use of AI to
monitor the tool wear are highlighted:

• The implementation of a common benchmark dataset is needed to allow an objective
comparison of the performance of proposed approaches.

• Since all the approaches mainly focus on real-time monitoring of the tool state, the pre-
dictive maintenance aspects need to be considered a priority.
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Appendix A

Table A1. General summary of ANN-related publications.

Article Method Material Input Output Pre-Processing Comments

[53] ANN Inconel 718
Cutting forces

AE
Vibration

Estimation of VB Time/frequency 3 layers: 3 to 7 neurons in the
hidden layer

[71] Recurrent neural network (RNN) mild steel
Cutting forces

Vibration
Acoustic (audible)

Estimation of VB Statistic Best performance with 6 to 9 neurons
in hidden layers

[54] ANN steel EN8

Cutting speed
Cutting forces

Feed
Depth of cut

Estimation of VB None 3 layers: 5 inputs ; 1hidden (5 to
10 neurons); 1 output

[55] ANN hardened bearing steel
(61HRC)

Cutting forces
Vibration Estimation of VB Statistic Multi layer perceptron

[111] Regression neural networks high manganese cast
steel

Cutting speed
Cutting forces

Vibration
Feed

Depth of cut
Temperature

Estimation of VB Normalization

[70] Generalized regression neural network
with improved fruit fly optimzation

high manganese cast
steel

Cutting speed
Feed

Depth of cut
Estimation of VB Normalization 93% accuracy

[52] Back Propagation NN aluminum alloy 7050 Vibration
Acoustic (audible) Classification Time/frequency 3 layers: 8-11-3; 3 states classification

up to 92.5% accuracy

[72] ANN steel Other RUL None

[56] ANN Ti6Al4V AE
Vibration Estimation of VB Statistic Best results with 3-3-1 and 3-6-1

[76] ANN, fuzzy logic and regression
(not AI) AISI 4140

Cutting speed
Feed

Depth of cut
Estimation of VB None

[66] ANN AISI 4140

Cutting speed
Cutting forces

Vibration
Feed

Depth of cut

Estimation of VB None shape: 5-14-6-1-1
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Table A1. Cont.

Article Method Material Input Output Pre-Processing Comments

[57] ANN AISI 316
Cutting forces

AE
Vibration

Other Time/frequency
Statistic

3 layers: 6-x-1. Output: percentage of
tool life

[74] ANN and case based reasoning steel AISI 304; AISI D2;
AISI 52100

Cutting speed
Feed

Depth of cut
Other

RUL Other Output: Tool life and tool-shim
interface temperature

[112] ANN steel (AISI 4340)
Cutting speed

Feed
Depth of cut

[75] ANN and regression model (not AI) 3 different steel

Cutting speed
Feed

Depth of cut
Other

Estimation of VB Other None
Comparison with multiple linear

regression model. Output: surface
roughness and flank wear

[68] ANN and SVM steel (AISI 4340 AND
52100 hardenend) Surface texture Estimation of VB None

Reflectiveness of the surface; 28 ANN:
6 Multi Layer Perceptron (MLP), 3
MLP with Principal Component

Analysis (MLPPCA), 3 Generalized
FeedForward (GFF), 3 Radial Basis

Function, 3 Time Delay Neural
Network, 3 time-lag recurrent network
(TLRN), 3 Recurrent Network, 2 linear
regression (LR), 1 probabilistic neural

network (PNN) and 1 SVM models

[67] ANN and regression (not AI) steel (AISI 4340)

Cutting speed
Cutting forces

Feed
Depth of cut

Other
Temperature

Estimation of VB Other Architecture: 6-4-5-4-1. Comparison
with regression

[58] ANN and CANFIS 7075 alloy
Cutting speed

Feed
Depth of cut

Estimation of VB None Co-Active Neuro Fuzzy Inference
System (CANFIS)

[113] ANN grey cast iron

Cutting speed
Cutting time

Feed
Depth of cut

Other None Output: Cutting forces (estimation of
flank wear)
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Table A1. Cont.

Article Method Material Input Output Pre-Processing Comments

[114] ANN and polynomial classifiers mild steel

Cutting speed
Cutting forces

AE
Cutting time

Feed

Estimation of VB Other
Statistic ANN 90% accuracy and classifier 85%

[115] ANN AISI 52100 bearing steel

Cutting speed
Cutting time

Feed
Depth of cut

Other

Estimation of VB Normalization 3 layers: 5-7-1

[59] ANN and regression model (not AI) steel AISI H13
Cutting speed

Feed
Depth of cut

Estimation of VB Other None
3 layers and 5 neurons in the hidden

layer. Output: Flank wear and surface
roughness

[60] ANN EN-8 steel

Cutting speed
Cutting time

Feed
Depth of cut

Other
Temperature

None

3 layers and 5 neurons in the hidden
layers. There is a mathematical

relationship to predict the tool wear.
The AI does not predict directly

the wear

[35] ANN hardened (55HRC) H-13
steel tube

Cutting speed
Cutting forces
Cutting time

Other

Estimation of VB Other

[77] Neural networks Experiment AISI
1045 steels

Cutting speed
Feed

Depth of cut
Motor info

Estimation of VB Other
Machine learning process optimal

linear associative memory
(MLP OLAM)

[116]
Random Forest; gradient boosting

regression, neural network and Support
vector regression

hardened steel (58 HRC)

Cutting speed
Cutting forces

AE
Vibration

Feed
Depth of cut

Other

Estimation of VB
Time/frequency

Statistic
Frequency domain
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Table A1. Cont.

Article Method Material Input Output Pre-Processing Comments

[104]

Classifier: Decision tree, K-neighbour,
Random forest; Regressor: MLP,

Random Forest, SVM, Naive Bayes,
gradient boosting

Generation on Python
(turning case)

Cutting forces
Motor info

Classification
Estimation of VB None 2 states classification

[61] ANN and Response Surface
Methodology (RSM) (Not AI) /

Cutting speed
Feed

Depth of cut
Estimation of VB None

3 layers: 5 neurons in the hidden layer;
Activation function: “tansig”; Better

results with the AI approach

[117] MLP ANN Die steel Vibration Classification Frequency domain 2 states classification; 87% accuracy

[62] ANN Ti6Al4V Cutting forces
AE Estimation of VB Statistic 3 layers with 9, 18 or 27 neurons in the

hidden layer

[118] ANN (MLFFNN) steel EN 24 AE Estimation of VB Frequency domain

[41] SOM, neuro-fuzzy,ANN EN-8 Steel Cutting forces Classification
Estimation of VB None ANN: 3 layers: 2-3-1; SOM:

classification

[63] ANN / Acoustic (audible)
Surface texture Estimation of VB Other

Frequency domain 3 layers: 3-4-1

[85] Hybrid: ANN and fuzzy modelling
SAE 6150

chromim-vanadium
alloy steel

Cutting forces
AE

Vibration
Estimation of VB Statistic

Frequency domain

[34] ANN EN24 steel Cutting forces
Vibration Classification Normalization 3 layers MLP: 7-20-1; 7 States

classification

[64] ANN steel aisi 1040

Cutting forces
Cutting time

Surface roughness
Other

Temperature

Estimation of VB Normalization 3 layers: 3 neurons in the hidden layer

[119] ANN 100Cr-6 and 54CrV4

Cutting speed
Cutting forces

AE
Feed

Estimation of VB Statistic
Frequency domain SOM for correlation analysis

[46] ANN and HMM From another study Cutting forces Classification
Estimation of VB

Time/frequency
Statistic

Frequency domain

Comparison between the
two approaches: similar results
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Table A1. Cont.

Article Method Material Input Output Pre-Processing Comments

[33]

ANN; Fuzzy decisions support logic
(rules set by the researcher); Artificial

Neural Network Based Fuzzy Inference
System (ANNBFIS)

/ Cutting forces
Feed Estimation of VB None For ANN 3 layers: 5 neurons in the

hidden layers

[65] ANN Another study -
EN-24-steel

Cutting speed
Feed

Depth of cut
Estimation of VB None 3 layers: 3-7-1. More than

90% accuracy

[73] Neural network mild steel
Cutting speed

Feed
Depth of cut

RUL Normalization Comparison with regression

[101] ANFIS and BPNN Stainless steel 304 L Cutting forces Classification
Estimation of VB Statistic 2 states classification

[120] ANN

hardened AISI 52100
(literature) and

experiment on AISI
H-13

Cutting speed
Cutting forces

Feed
Other

Estimation of VB Other Statistic
3 layers: 8 to 13 neurons in the hidden
layer. Comparison with regression: AI

perform better

[121] ANN AISI D2
Cutting speed
Cutting time

Feed
Estimation of VB None

Table A2. General summary of fuzzy logic related publications.

Article Method Material Input Output Pre-Processing Comment

[83] Decision tree (j48) and fuzzy logic steel Vibration Classification Statistic 95% accuracy

[76] ANN, fuzzy logic and regression
(not IA) AISI 4140

Cutting speed
Feed

Depth of cut
Estimation of VB None

[84] Type 2 fuzzy model Titanium Metal Matrix
Composite AE Estimation of VB Other

[85] Hybrid: ANN and fuzzy modelling
SAE 6150

chromim-vanadium
alloy steel

Cutting forces
AE

Vibration
Estimation of VB Statistic

Frequency domain

[86]
Takagi–Sugeno–Kang (TSK) Fuzzy

Approach Based on Subtractive
Clustering Method

steel Cutting forces
Feed Estimation of VB None
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Table A2. Cont.

Article Method Material Input Output Pre-Processing Comment

[87]
Takagi–Sugeno–Kang (TSK) Fuzzy

Approach Based on Subtractive
Clustering Method

steel Cutting forces Estimation of VB None

[88] Fuzzy method / Cutting forces
Feed Estimation of VB None

2 approaches: one with the
knwoledge given by the researcher

and one automatic genetic algorithm

[33]

ANN; Fuzzy decisions support logic
(rules set by the researcher); Artificial
neural network based fuzzy inference

system (ANNBFIS)

/ Cutting forces
Feed Estimation of VB None For ANN 3 layers: 5 neurons in the

hidden layers

Table A3. General summary of neuro-fuzzy related publications.

Article Method Material Input Output Pre-Processing Comment

[89] ANFIS steel 1215. Cutting forces Estimation of VB Time/frequency
5 layers; 4 different activation function:

sigmoid, triangular, gaussian,
bell-shaped

[90] Type 2 basis function network steel/ inconel/ Ti6Al4V
AE

Vibration
Motor info

Estimation of VB Normalization

[91] ANFIS steel Cutting forces
Feed Estimation of VB Statistic

[37] ANFIS hardened JIS S45C
carbon steel

Cutting speed
Feed

Depth of cut
Other

Estimation of VB Other Features extraction with Z-filter

[36] ANFIS From another study

Cutting forces
AE

Vibration
Cutting time

Estimation of VB Normalization Inductive, transductive and evolving
neuro-fuzzy systems

[92] ANFIS
cryogenically treated
AISI M2 high speed

steel

Cutting speed
Cutting time

Other
Estimation of VB None
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Table A3. Cont.

Article Method Material Input Output Pre-Processing Comment

[93] ANFIS D2 X115Cr VMo121
steel

Surface texture
Temperature
Motor info

Estimation of VB None Accuracy up to 98%

[94] Fuzzy with a new Takagi–Sugeno–Kang
(TSK) modelling steel Cutting forces

Feed Estimation of VB None

[58] ANN and CANFIS 7075 alloy
Cutting speed

Feed
Depth of cut

Estimation of VB None Co-Active Neuro Fuzzy
Inference System

[95] Transductive-Weighted Neuro-Fuzzy
Inference System (TWNFIS) From another study

Cutting forces
AE

Vibration
Estimation of VB None More than 90% accuracy

[96] ANFIS compared with Hybrid approach steel EN 24 and FG15

Cutting forces
AE

Vibration
Cutting time

Estimation of VB Normalization

comparison between Transductive
Weighted Neuro-Fuzzy Inference

System (TWNFIS), ANFIS and Hybrid
Incremental Modeling (HIM). HIM

outperform the other

[41] SOM, neuro-fuzzy, ANN EN-8 Steel Cutting forces Classification
Estimation of VB None ANN: 3 layers: 2-3-1;

SOM: classification

[97] Evolving extended Takagi–Sugeno based
neuro-fuzzy algorithm Inconel 718 Cutting forces

AE Estimation of VB Statistic

[98] Localized fuzzy neural network (LFNN) 45 middle carbide steel
workpiece

Cutting forces
AE Classification Time/frequency

[33]

ANN; Fuzzy decisions support logic
(rules set by the researcher); Artificial
neural network based fuzzy inference

system (ANNBFIS)

/ Cutting forces
Feed Estimation of VB None For ANN 3 layers: 5 neurons in the

hidden layers

[99] ANFIS steel Cutting forces
AE Classification Statistic Best with triangular and bell function

[100] ANFIS FG15 cast iron

Cutting forces
AE

Vibration
Cutting time

Estimation of VB Other Around 82% accuracy

[101] ANFIS and Back Propagation NN Stainless steel 304 L Cutting forces Classification
Estimation of VB Statistic 2 states classification
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Table A4. General summary of SVM-related publications.

Article Method Material Input Output Pre-Processing Comment

[51] SVM high strength steel
(45CrNiMoVA)

Cutting forces
Vibration

Surface texture
Estimation of VB

Time/frequency
Statistic

Frequency domain

Grid search-SVR, Genetic algorithm
SVR, Particle swarm optimizer-SVR

and Grid-search SVR

[103]
Gravitational search algorithm coupled

with least square support vector
machine model

steel Cutting forces Classification
Time/frequency
Normalization

Statistic
3 states classification

[2] SOM; SVM; k-nearest neighbour steel AISI D6 Vibration Classification
Normalization

Statistic
Frequency domain

Accuracy up to 92%; 2 states
classification

[102] SVR modified / Other Prediction of Vb Normalization Forecasting at t + 1

[122] SVM and decision tree steel (1.4542) Motor info Classification
Time/frequency
Normalization

Frequency domain

2 states classification; above 90%
accuracy

[123] SVM ZMn13 high manganese
cast steel

Cutting speed
Cutting time

Feed
Depth of cut

Estimation of VB None

Nelder–Mead Leave One Out-Least
squares Support Vector Machines

(NM-LOO-LSSVM), Particle Swarm
Optimization-LSSVM (PSO-LSSVM)
and LSSVM. Best performances with

NM-LOO-LSSVM

[124] SVM superalloy

AE
Acoustic (audible)

Feed
Depth of cut
Motor info

Classification
Estimation of VB

Time/frequency
Other Optimization with genetic alogrithms

[68] ANN and SVM steel (AISI 4340 AND
52100 hardened) Surface texture Estimation of VB None

Reflectiveness of the surface; 28 ANN:
6 Multi Layer Perceptron (MLP),

3 MLP with Principal Component
Analysis (MLPPCA), 3 Generalized
FeedForward (GFF), 3 Radial Basis

Function, 3 Time Delay Neural
Network, 3 time-lag recurrent network
(TLRN), 3 Recurrent Network, 2 linear
regression (LR), 1 probabilistic neural

network (PNN) and 1 SVM models
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Table A4. Cont.

Article Method Material Input Output Pre-Processing Comment

[116]
Random Forest; gradient boosting

regression, neural network and Support
vector regression

hardened steel (58 HRC)

Cutting speed
Cutting forces

AE
Vibration

Feed
Depth of cut

Other

Estimation of VB
Time/frequency

Statistic
Frequency domain

[104]

Classifier: Decision tree, K-neighbour,
Random forest; Regressor: MLP,

Random Forest, SVM, Naive Bayes,
gradient boosting

Generation on Python
(turning case)

Cutting forces
Motor info

Classification
Estimation of VB None 2 states classification

[105] v-SVR steel #50 Cutting forces Estimation of VB Time/frequency
Statistic Comparison with BPNN

[125] SVM C50 steel Surface texture Classification Other 3 states classification

[38] SVM C50 steel Surface texture Estimation of VB Other

[126] SVM GH4169 AE Classification
Time/frequency

Other
Frequency domain

4 states classification

[31] LSSVM steel AISI 1040 Cutting forces
Acoustic (audible) Estimation of VB Statistic

[39] SVM ASSAB705/760 steel AE Classification Time/frequency
Statistic 80-85% accuracy

[106] v-SVR #50 steel Cutting forces Classification Normalization
Statistic 2 states classification. 96% accuracy

[127] SVM AISI 01 Surface texture Estimation of VB Other Genetic algorithm
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Table A5. General summary of SOM-related publications.

Article Method Material Input Output Pre-Processing Comment

[2] SOM; SVM; k-nearest neighbour steel AISI D6 Vibration Classification
Normalization

Statistic
Frequency domain

Accuracy up to 92%;
2 states classification

[107] SOM steel EN1A1

Cutting forces
Vibration

Acoustic (audible)
Feed

Motor info

Classification Statistic
Frequency domain

[128] SOM mild steel
AE

Vibration
Cutting time

Classification Statistic

[42] Self organizing spiking neural
network map mild steel

Cutting forces
Vibration

Acoustic (audible)
Classification Statistic

Frequency domain

[41] SOM, neuro-fuzzy,ANN EN-8 Steel Cutting forces Classification
Estimation of VB None ANN: 3 layers: 2-3-1;

SOM: classification

[40] SOM
Industrial in South

Africa (piston
manufacturer)

Cutting forces
Vibration Classification

Time/frequency
Statistic

Frequency domain
3 × 3 output

[129] Self organizing map (SOM) cast iron Cutting forces
Vibration Classification

Time/frequency
Statistic

Frequency domain

Table A6. General summary of HMM-related publications.

Article Method Material Input Output Pre-Processing Comment

[47] HMM 45# steel Cutting forces
Vibration Classification

Other
Normalization

Frequency domain

[46] ANN and HMM From another study Cutting forces Classification
Estimation of VB

Time/frequency
Statistic

Frequency domain

Comparison between the 2 approaches:
similar results

[32] Discrete Hidden Markov
Model (DHMM) AISI 8620 steel Vibration Classification Time/frequency 2 states classification; more than

97% accuracy
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Table A7. General summary of CNN-related publications.

Article Method Material Input Output Pre-Processing Comment

[49] convolutional neural network (U-Net) 45# steel Surface texture Estimation of VB Other

[48] CNN and functional data analysis low carbon steel
(25CrMo4) Surface texture Classification Other 3 states classification; around

90% accuracy;

[9] CNN steel Surface texture Classification Other 2 states classification

Table A8. General summary of publications related to various other methods.

Article Method Material Input Output Pre-Processing Comment

[130]
Logical Analysis of data (AI classifier);

Logical analysis of survival
curves (LASC)

titanium metal
matrix composite Cutting forces Remaining Useful

Life (RUL) None Non AI outperform AI

[2] SOM; SVM; k-nearest neighbour steel AISI D6 Vibration Classification
Normalization

Statistic
Frequency domain

Accuracy up to 92%;
2 states classification

[131]
Nearest-Neighbour-like algorithm using

non-nested Generalized
Exemplar (NNGE)

steel Vibration Classification Statistic 4 states classification up to
100% accuracy

[83] Decision tree (j48) and fuzzy logic steel Vibration Classification Statistic 95% accuracy

[122] SVM and decision tree steel (1.4542) Motor info Classification
Time/frequency
Normalization

Frequency domain

2 states classification; above
90% accuracy

[132]

linear regression, decision trees, random
forests, k-nearest neighbours, adaptive

boosting, bootstrap aggregating and
gradient boosting

inconel 718 Cutting forces Estimation of VB Statistic

[133] Hybrid dynamic neural
network (HDNN) steel (different alloy) Motor info Estimation of VB Statistic

[134] Logical analysis of data (LAD) steel (AISI 1045) Cutting forces
Feed Classification None

[74] ANN and case based reasoning steel AISI 304; AISI D2;
AISI 52100

Cutting speed
Feed

Depth of cut
Other

RUL
Other

Output: Tool life and tool-shim
interface temperature
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Table A8. Cont.

Article Method Material Input Output Pre-Processing Comment

[135] Novelty detection steel Cutting forces Estimation of VB Statistic
Frequency domain Up to 100% accuracy

[114] ANN and polynomial classifiers mild steel

Cutting speed
Cutting forces

AE
Cutting time

Feed

Estimation of VB Other
Statistic

ANN 90% accuracy and
classifier 85%

[136] Hybrid neural network AISI 52100 bearing steel

Cutting speed
Cutting time

Feed
Depth of cut

Other

Estimation of VB Other Other
Training with an extended Kalman
filter. Activation function: Sigmoid

and optimization of the network

[44] Hybrid approach / Cutting forces Estimation of VB Other Physical model use to convert
the features

[48] CNN and functional data analysis low carbon steel
(25CrMo4) Surface texture Classification Other 3 states classification; around

90% accuracy;

[137] Naive Bayes classifier Oil hardened Nickel
steel

Cutting forces
Vibration Classification Time/frequency

4 states classification. 96% accuracy
with the cutting forces and 70% with

the vibration signal

[138] Random forest; Gradient boosting
method (GBM); regression model steel Cutting forces

Vibration Estimation of VB Other Frequency domain Output: tool wear and
surface roughness

[116]
Random Forest; gradient boosting

regression, neural network and Support
vector regression

hardened steel (58 HRC)

Cutting speed
Cutting forces

AE
Vibration

Feed
Depth of cut

Other

Estimation of VB
Time/frequency

Statistic
Frequency domain

[104]

Classifier: Decision tree, K-neighbour,
Random forest; Regressor: MLP,

Random Forest, SVM, Naive Bayes,
gradient boosting

Generation on Python
(turning case)

Cutting forces
Motor info

Classification
Estimation of VB None 2 states classification

[139]
Functional Series Time dependent
AutoRegressive Moving Average

(FS-TARMA)
AISI 1045 steels Vibration Other Output: Vibration signal
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Table A8. Cont.

Article Method Material Input Output Pre-Processing Comment

[45] Metacognitive learning
approach (Rclass) low carbon alloy steel

Cutting speed
Cutting forces

Vibration
Feed

Depth of cut

Classification None

[43] Hierarchical algorithm Inconel 625
Cutting forces

AE
Vibration

Other
Time/frequency

Statistic
Frequency domain

Output: percentage of tool life

[140] Self adjusting monitoring system 45 middle carbide steel
workpiece

Cutting forces
AE Estimation of VB

Time/frequency
Statistic

Frequency domain
Regroups multiple approach
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Appendix B

This section presents an introduction to the most used AI techniques presented in
this SLR. The descriptions of the method are not exhaustive but allows a comprehensive
introduction to some of the concepts that are used in this article.

Appendix B.1. Artificial Neural Network—ANN

The Artificial Neural Network (ANN) is one of the most popular AI techniques.
Inspired by the human brain, the architecture of an ANN is composed of at least three
layers: an input layer, some hidden layers and one output layer (Figure A1) [141]. Each layer
is composed of neurons which are interconnected with the neurons in the following layer.
Each neuron has an associated activation function and the weights of the interconnections
are updated in the training phase to obtain the desired relationship between the input
and the output. The advantages of ANN are their ability to reproduce highly nonlinear
input-output characteristics, their ease of software implementation and their robustness to
noisy data. It is suggested that ANN can achieve similar performance to any other methods
given enough resources [80]. The main downside of ANN is their need for a large amount
of data and processing power to learn from the dataset, the trial and error process to choose
their parameters and the fact that they are to be considered as black boxes [29]. ANN can
be used to achieve regression or classification.

Input 1

Input 2

Input n

Output

Output j

Input layer Hidden layers Output layer

Figure A1. Architecture of an ANN.

Appendix B.2. Fuzzy and Adaptative Neuro-Fuzzy Inference System—FIS & ANFIS

In the framework of this paper, two fuzzy approaches are considered: Fuzzy Inference
System (FIS) and Adaptative Neuro-Fuzzy Inference System (ANFIS). Both are based on
the fuzzy logic originally proposed by Zadeh in [142].

An FIS is generally composed of five elements: (i) a set of “if-then” rules; (ii) a database
for the membership function; (iii) an inference operation system; (iv) a fuzzification inter-
face; and (v) a defuzzification interface [143] (Figure A2). Different types of fuzzy reasoning
exist (types 1, 2 and 3). In this SLR, the vast majority of FIS are based on approaches that try
to generate the fuzzy rule based on the input–output dataset rather than with the researcher
knowledge [144].

ANFIS is the integration of a network that optimizes a FIS. This optimization is
achieved by associating and optimizing a series of fuzzy “if-then” rules with the appropriate
membership function [145]. This approach was first proposed in [143] and combines the
capability of adaptation of neural networks while being comprehensible with its set of
fuzzy rules [143,145].
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Both approaches have the advantages of fuzzy logic: robustness and being easily
understandable, and hence a natural implementation. However, the learning capabilities
can be limited.

Fuzzy inference system 

Fuzzi�cation

Inference

Knowledge base

Data base Rule base

Defuzzi�cation
Input Output

Figure A2. General layout of FIS.

Appendix B.3. Support Vector Machine—SVM

Support Vector Machine (SVM) is based on statistical learning. This supervised tech-
nique was originally developed for classification (Support Vector Classifier, SVC) purposes,
but it was later adapted as a regressor (Support Vector Regressor, SVR). The aim of SVC is
to find an optimal hyperplane that best separates the data classes by minimizing a loss func-
tion. In nonlinear problems, the input can be mapped into a higher-dimensional Hilbert
spaces through a kernel function such that the nonlinear approach is transformed into a
linear approach in the higher-dimensional space [146] (Figure A3). A similar approach is
used for SVR. In this approach, the continuous output is the hyperplane that minimizes
the loss function [147]. SVM has the advantages of being efficient on small datasets and
providing a great generalization, but the training time can be high on bigger datasets, they
are sensitive to datasets with noise and outliers, and fitting the correct parameters can be
difficult (Kernel function).

Kernel function

Input space Output space

Figure A3. SVM principle.

Appendix B.4. Self-Organizing Map—SOM

This unsupervised learning method is a kind of neural network sometimes referred
to as a Kohonen map [141]. The neural structure is made to represent the high dimension
input into a typically two-dimensional map. In other terms, this is a nonlinear transfor-
mation from a higher dimensions space to a one- or two-dimensional map (Figure A4).
An interesting feature of the SOM is that they preserve their neighbourhood such that,
if the data are in the same region in the input space, they are also in a similar region in the
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map [148]. These maps are generally used to perform classification. The main advantage
of SOM is its ability to process incomplete data, its ease of interpretation, and its learning
speed. The main disadvantage is that it requires a large number of parameters and may
require optimization to perform well.

Weigth

Map

Input 1 Input 2 Input n

Figure A4. SOM principle.

Appendix B.5. Hidden Markov Model—HMM

Hidden Markov Model (HMM) is based on Markov chains. Markov chains describe
a system by a finite number of states. In a Markov chain, the history of the system is
irrelevant and only the current state influences the future state. Two categories of models
exist: the continuous and discrete models. In continuous model, the changes of the system
can occur at any time, while, in discrete model, the change can only occur at given time
steps [149]. The particularity of HMM is that the Markov model underlying the data are
unknown such that the data are the observation of this model [150]. In other terms: This
model is a doubly embedded stochastic process with an underlying stochastic process that is not
observable, but can only be observed through another set of stochastic processes that produce the
sequence of observations [150]. HMM are a well-studied probabilistic model but cannot model
dependencies between hidden states.

Appendix B.6. Convolutional Neural Network—CNN

Convolutional Neural Networks (CNN) have seen a growing interest in the past sev-
eral years for tool monitoring applications. The architecture of a CNN is an extension of an
ANN. The main difference comes from the presence of a convolutional and a pooling layer
which allows for extracting relevant features before the fully connected layers which per-
form as classical ANN. The convolutional layer aims to apply filters to the input while the
pooling layers gradually reduce the dimensionality of the representation [108] (Figure A5).
These two extra layers make CNN a deep learning approach (i.e., the features of interest
are extracted autonomously by the model). The dimensionality of the input is generally
higher than a classical ANN such that these types of networks are much more complex and
need more computing power than classical ANN [151]. In general, CNN also primarily
focuses on images and pattern recognition.
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Input Convolutional

Layer

Convolutional

Layer

Pooling

Layer

Pooling

Layer

Fully-

connected

Layer

Output

Figure A5. CNN principles.
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