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Abstract: Freezing–thawing action has a great impact on the physical and mechanical deterioration
processes of rock materials in cold areas where environmental changes are very complicated. The
direct shear test under unloading normal stress was adopted to investigate the shear mechanical
behavior of sandstone samples after a freezing–thawing cycle in this paper. The failure shear
displacement (Dsf), the failure normal displacement (Dnf), the shear displacement of unloading (Dsu),
and the normal displacement of unloading (Dnu) were analyzed to describe the evolution of shear
and normal deformation during the test. The results indicated that the shear displacement increased
as the freezing–thawing cycle duration increased in a direct shear test under unloading normal stress.
The unloading rate and the number of freezing–thawing cycles affected the failure pattern of the
rock sample significantly in both the direct shear test under unloading normal stress and the direct
shear test. The three-dimensional inclination angle, the distortion coefficient, and the roughness
correlation coefficient of the fracture surface are dependent on the number of freezing–thawing cycles
and the unloading rate. The surface average gradient mode of the fracture surface decreased as the
freezing–thawing cycle times and unloading rate rose.

Keywords: rock mechanics; unloading normal stress; freezing–thawing cycle; shear and normal
displacements; failure pattern; fracture surface roughness

1. Introduction

Freezing–thawing (F-T) action has a great impact on the physical and mechanical
deterioration processes of rock materials in cold regions. The extraction of oil and the
construction of transportation facilities (e.g., extracting natural gas—resource exploitation
and construction, new roads and culverts) are faced with many problems of geotechnical
engineering in cold regions. For example, frost heaving cracking the surrounding rock
of a tunnel, instability of a support structure [1–4], weathering and denudation of rocky
slopes, instability of a high-risk rock mass, rock cavity frost heaving of a liquefied natural
gas reservoir, and freeze–thaw weathering of rock relics in cold regions, affect the safety
of engineering [5–10]. Therefore, it is of great significance to deeply understand the
mechanism and evolution law of freezing–thawing damage to rock [11–15].

Many experiments have been carried out to study the effects of freezing–thawing
cycles on the physical/mechanical properties of rock [16–21]. The investigated properties
include density, porosity, P-wave velocity, point load strength, elastic modulus, Poisson’s
ratio, and uniaxial compression strength (UCS). These studies were mainly carried out in
the context of static or quasi-static loading conditions [22–30]. Most tri-axial unloading tests
were used to study the influences of the unloading path on rock deformation, strength, and
energy evolution after a freezing–thawing cycle [31–38]. However, the tri-axial unloading
test cannot directly and effectively simulate the shear failure mechanism of rock that has
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suffered only from unloading normal stress. Therefore, it is necessary to understand the
shear mechanical behavior of rocks under unloading normal stress.

Importantly, shear failure of rock mass induced by unloading normal stress is par-
ticularly prominent in many geotechnical engineering disasters. In a direct shear test, an
expected constant normal stress is first applied, and then the shear stress is continuously
loaded until the rock sample fails [39–46]. However, a direct shear test cannot show the
shear failure of rock when the normal stress is removed, because the normal stress of the
whole direct shear test remains unchanged [47–51]. Therefore, an innovative experimental
method was proposed and direct shear tests under unloading normal stress (DSTUNS)
were carried out to reveal the shear mechanical behavior of sandstone. However, few
systematic studies have focused on the direct shear tests under unloading normal stress
(DSTUNS) for rocks that were subjected to freeze–thaw cycles [52–57]. Thus, the shear
failure caused by unloading normal stress is also an important failure mode of rock.

In this study, there were a total of six test groups, corresponding to treatments of
freeze–thaw weathering with different numbers of cycles: 0 (no treatment), 10, 20, 30, 40,
and 50. The normal stress on a sample after the freezing–thawing cycles was unloaded at a
rate of 1, 2, 3, or 4 MPa/min. Direct shear tests under unloading normal stress (DSTUNS)
were carried out on the DSZ-1000 electro-hydraulic servo rock triaxial shear permeability
testing machine produced by Sichuan Dexiang technology and innovation company. The
shear displacement, normal displacement, failure pattern, and fracture surface roughness
were systematically studied for sandstone samples exposed to the freezing–thawing cycle
in the DSTUNS.

2. Materials and Experimental Methods
2.1. Specimen Preparation

Samples were collected from Wuding County of Yunnan province. According to the
rock identification report, samples were yellow and block-like fine sand, and the main
component of the debris was quartz. SEM analysis showed that the samples had a fine-
grain structure. X-ray analysis showed that the main components of the samples were
quartz (62%), feldspar (22%), calcite (9%), and kaolinite (7%). The samples of fine-grained
sandstone taken by the rock core sampler were shaped as cubes at both ends: The collected
samples needed to be cut into cubes of a suitable height at both ends by a rock cutting
machine, and then processed into samples according to international rock mechanics
standards. Samples were processed to produce the standard cubes. The parallelism and
the flatness of the end faces were within ±0.05 and ±0.02 mm, respectively. Samples were
dried in the drying box 105 ◦C for 24 h. Standard cube samples measuring approximately
50 mm wide × 50 mm long × 50 mm thick were selected for the DSTUNS.

2.2. Freeze–Thaw Cycle Test

The freezing–thawing cycle tests were performed in a programmable constant temper-
ature and humidity test chamber with a minimum temperature of −90 ◦C, a maximum
temperature of 200 ◦C, and accuracy of ±0.2 ◦C (Figure 1). Samples were dried in the
drying box at 105 ◦C for 24 h, vacuumed at −0.1 MPa in the vacuum chamber for 10 h,
and then pressurized at 20 MPa. Samples were then saturated in distilled water for 24 h.
According to the temperatures in the cold areas in the northeast and northwest of China,
the temperature range of the freezing–thawing cycles was set to –20 to 20 ◦C. The time
interval of temperature conversion was 3 h, and the duration was 3 h. A cycle of the
experimental freezing–thawing process is shown in Figure 1.
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Figure 1. Diagram of test equipment and procedures.

2.3. Experimental Scheme

A new loading path was designed and direct shear tests under unloading normal
stress (DSTUNS) were performed to reveal the shear failure of rock under the condition
of unloading normal stress. The tests were carried out on the DSZ-1000 electro-hydraulic
servo rock tri-axial shear permeability testing machine at normal temperature (25 ◦C). The
maximum values of the test system in the vertical and horizontal direction were 1000 and
300 kN, respectively. This testing machine can automatically record the displacement and
force in both directions during the test. The stress state and auxiliary device of the rock
sample are shown in Figure 1. The test system mainly includes a computer system, a
control system, and a loading system. In the DSTUNS, the testing process includes three
steps, as illustrated in Figure 2.

First step: Loading the normal stress to 20 MPa at a rate of 2 MPa/min.
Second step: Loading the shear stress to 15 MPa at a rate of 2 MPa/min while leaving

the normal stress constant. After the shear stress reaches the desired level, the stress-
controlled mode is selected to maintain a constant shear stress.

Third step: Unloading the normal stress at a rate of 1, 2, 3, or 4 MPa/min until the
samples are broken, while the shear stress remains constant.
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Figure 2. Stress path of direct shear tests under unloading normal stress (DSTUNS).

The shear resistance of rock was closely related to normal stress. If the shear stress was
too large or the normal stress was greater than the UCS, the rock samples would be broken
before unloading the normal stress. In contrast, if the shear stress was less than a value, the
samples would not be broken when the normal stress was unloaded to zero. Therefore, the
direct shear test and the uniaxial compression test were carried out to determine the normal
stress and the shear stress. The normal stress was less than UCS. Under the normal stress
condition, the shear stress was greater than the shear strength, and under the condition
that the normal stress was zero, the shear strength of the direct shear test was less than the
shear strength under the constant normal stress condition. In the first and the second steps,
the set values of 20 and 15 MPa for the shear stress and the normal stress were obtained by
the direct shear test (Figure 3).
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Figure 3. Stress path and stress–strain curves of direct shear tests. (a) Stress path (DS-F-T-0). (b) Stress–
strain curves.

The samples’ test scheme was carried out according to Table 1.
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Table 1. Sandstone samples’ shear test scheme under the different conditions.

Test Freeze–Thaw Cycles Unloading Rate Samples

Direct shear test
(DS) 0 10 20 30 40 50

DS-F-T-0
DS-F-T-10
DS-F-T-20
DS-F-T-30
DS-F-T-40
DS-F-T-50

Direct shear test under
unloading normal stress

(DSTUNS)
0 10 20 30 40 50

1 MPa/min

UNS-F-T-0-1
UNS-F-T-10-1
UNS-F-T-20-1
UNS-F-T-30-1
UNS-F-T-40-1
UNS-F-T-50-1

2 MPa/min

UNS-F-T-0-2
UNS-F-T-10-2
UNS-F-T-20-2
UNS-F-T-30-2
UNS-F-T-40-2
UNS-F-T-50-2

3 MPa/min

UNS-F-T-0-3
UNS-F-T-10-3
UNS-F-T-20-3
UNS-F-T-30-3
UNS-F-T-40-3
UNS-F-T-50-3

4 MPa/min

UNS-F-T-0-4
UNS-F-T-10-4
UNS-F-T-20-4
UNS-F-T-30-4
UNS-F-T-40-4
UNS-F-T-50-4

DS—Direct shear test, F-T—Freeze–thaw cycle, DSTUNS—Direct shear test under unloading normal stress.

3. Results and Discussions
3.1. Direct Shear Test Results

The direct shear tests of samples after different freezing–thawing cycles (0, 10, 20, 30,
40, and 50 times) were carried out at normal temperature (25 ◦C). First, 2 MPa normal
stress was applied to the sample at a speed of 2 MPa/min. At the same time, the normal
stress was kept constant and the shear stress was applied to the samples at a speed of
0.5 MPa/min until the sample was broken, and the failure stress was obtained when
the samples were broken. The set values of 20 and 15 MPa for the shear stress and the
normal stress were obtained for the DSTUNS. The stress path of the direct shear test on the
untreated freezing–thawing sample is shown in Figure 3a. The failure shear stress of the
samples was 11 MPa.

The stress–strain curves of samples after different freezing–thawing cycles’ treatment
(0, 10, 20, 30, 40, and 50 times) under the direct shear test are shown in Figure 3b. The
change of peak shear stress was not obvious, but the shear deformation changed obviously
as the freezing–thawing cycle times increased. The shear deformation of samples exhibited
an upward trend as the freezing–thawing cycle duration increased. It indicated that
the samples had different degrees of deterioration after freezing–thawing cycles. After
50 freezing–thawing cycles, the shear deformations were 0.7351, 0.9621, 0.9275, 1.246,
1.3103, and 1.357 mm, respectively. Thus, the rock samples demonstrated varying extents
of deterioration after freezing–thawing cycles. The development of micropores and cracks
led to deterioration and damage to the internal structure of rock samples as the freezing–
thawing cycle duration increased. The damage also resulted in rock looseness, which
reduced samples’ compactness [58].
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3.2. Deformation
3.2.1. Displacement Histories

The stress path of the DSTUNS is shown in Figure 2. According to the results of the
direct shear test, the preset shear stress was 15 MPa, and the normal stress was 20 MPa.
Based on this, the normal stress was loaded to the predetermined value of 20 MPa at a rate
of 2 MPa/min. Then, the shear stress was loaded to the predetermined value of 15 MPa at
the same rate.

The normal stress of samples after different freezing–thawing cycles was reduced at
rates of 1, 2, 3, or 4 MPa/min. The normal displacement and the shear displacement change
with time are shown in Figure 4. The trends of the normal displacement and the shear
displacement of samples with different freezing–thawing cycles were basically same. In the
DSTUNS, when the unloading rate was 1 MPa/min, different freezing–thawing cycles had
little effect on the normal displacement, but obviously affected the shear displacement. The
shear displacement increased as the number of freezing–thawing cycles increased. Herein,
the increased displacement was defined as positive, and the decreased displacement
was defined as negative. For sample UNS-F-T-50-2 (Figure 4), for example, when the
number of freezing–thawing cycles was 50, the unloading rate was 2 MPa/min, and the
normal displacement increased as the normal stress increased. The samples showed shear
expansion action. The shear displacement changed from 0 to negative and continued to be
reduced. When the normal stress reached 20 MPa, the normal displacement was 6.7793 mm
and the shear displacement was 0.3984 mm. Then, the normal stress was invariant, and
the shear stress was loaded at the same time. As the shear stress increased, the shear
displacement gradually increased, and the normal displacement gradually decreased.
When the shear stress reached 15 MPa, the shear displacement was 2.2256 mm and the
normal displacement decreased to 6.6359 mm. Then, the shear stress was kept constant
and the normal stress was unloaded at a rate of 2 MPa/min. The normal displacement
was gradually decreasing, and the shear displacement gradually increased as the normal
stress decreased. When the samples were destroyed, the normal displacement sharply
decreased and the shear displacement dramatically increased. The normal displacement of
the samples was 5.5898 mm, and the shear displacement was 2.5615 mm (Figure 4b).

Figure 5 shows the relationship between the shear displacement and the normal
displacement. It could be seen from the diagram that the normal displacement increased
rapidly as the normal stress increased, and the shear displacement decreased slowly from
0 to negative at the initial stage of loading. When the normal stress reached the preset
value (20 MPa), the shear stress was loaded. As the shear stress increased, the normal
displacement decreased slowly. When the shear stress reached the preset value, the normal
stress was unloaded. Furthermore, the normal displacement decreased rapidly until the
samples were broken and the test was finished. The normal displacement decreased rapidly
due to the unloading normal stress.
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3.2.2. Characteristic of Displacements

The curves of the shear and the normal displacements versus normal stress are shown
in Figure 6. The trend of normal displacement and shear displacement of samples after
the freezing–thawing cycle was basically consistent at the same unloading rate, and the
shear displacement increased as the freezing–thawing cycle times increased. The effect of
freezing–thawing cycles was not obvious on the normal displacement as the unloading rate
increased. However, the shear displacement increased more and more obviously as the
freezing—thawing cycle times increased. The reason was that the samples after the freezing–
thawing cycles suffered freezing–thawing damage, which weakened the brittleness of the
samples and resulted in the significant increase of shear strain before failure.
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(a) 1 MPa/min, (b) 2 MPa/min, (c) 3 MPa/min, and (d) 4 MPa/min.

The typical curve of the shear and normal displacements versus the normal stress
can be simplified as shown in Figure 7. For example, point A and point a represent
normal displacements and shear displacements at the same time, respectively. The normal
displacement curve was O-a-b-c, and the shear displacement curve was O-A-B-C. When
the normal stress was loaded, the normal displacement gradually changed from point o
to point a, and the shear stress gradually changed from point O to point A. During the
application of shear stress, the normal stress changed from point a to point b, and the
shear displacement changed from point A to point B. During the process of unloading
normal stress, the normal displacement changed from point b to point c, and the shear
displacement changed from point B to point C.
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Figure 7. Typical curves of the shear and normal displacements with normal stress (UNS-F-T-0-1) in
the DSTUNS.

In order to study the effects of freezing–thawing cycles and unloading rate on the
normal displacement and the shear displacement, the failure normal displacement (Dnf),
the failure shear displacement (Dsf), the normal displacement of unloading (Dnu), and the
shear displacement of unloading (Dsu) were defined, respectively, as shown in Figure 7.
The failure normal displacement was the normal displacement of the samples when failure
occurs, which was normal displacement at point c. The failure shear displacement was
the shear displacement when the sample was destroyed, namely, the shear displacement
at point C. The unloading normal displacement was the normal displacement produced
during the unloading process, i.e., the displacement from point b to point c (the value
of point c minus the value of point b). The unloading shear displacement was the shear
displacement generated during unloading, that is the displacement from point B to point C.

Figure 8 shows the change in the Dsf, Dnf, Dnu, and Dsu with the number of freezing–
thawing cycles and unloading rate. Overall, the Dsf exhibited an obvious increase as
the number of freezing–thawing cycles increased. However, Dnf, Dsu, and Dnu did not
show significant changes as the number of freezing–thawing cycles and unloading rate
rose, as shown in Figure 8a–d. The main reason was that the deformation energy was
consumed by freezing–thawing cycle damage. Furthermore, the values of Dnf were much
bigger than those of Dsu and Dnu, which were kept at a low level. The unloading shear
fracture was a transient fracture during the DSTUNS, resulting in a little accumulation of
the unloading displacement.

As shown in Figure 8e, as the number of freezing–thawing cycles increased from 0 to 50,
the Dsf increased from 1.1387 to 2.3428 mm, which represented a growth of 105.74% (with a
constant unloading rate of 1 MPa/min), a growth of 218.56% from 1.0805 to 2.3615 mm (at
a constant unloading rate of 2 MPa/min), a growth of 242.38% from 0.7881 to 1.9102 mm
(at a constant unloading rate of 3 MPa/min), and a growth of 330.05% from 0.7628 to
2.5176 mm (at a constant unloading rate of 4 MPa/min), respectively. It was similar to
the change rule of Dsu (Figure 8f) whereby values were decreased as the unloading rate
increased before cycle times less than 30. However, when the cycle times were higher than
40, Dsf has an obvious increase due to the freezing–thawing cycle damage on samples. For
Dnf and Dnu shown in Figure 8g,h, the Dnf and Dnu fluctuated largely when the number
of freezing–thawing cycles was constant, but increased significantly as the unloading rate
increased from 1 to 4 MPa/min. This observation suggested that a higher freezing–thawing
cycle can induce a larger shear displacement under unloading normal stress. The Dnf
and Dnu comprised elastic deformation release and shear dilatancy deformation under
unloading normal stress. Furthermore, the Dnf and Dnu increased significantly only when
the number of freezing–thawing cycles was unchanged for the large enough unloading
rate. It indicated that the unloading rate has a large impact on the shear dilatancy whatever
the direct shear test and the DSTUNS on samples after freezing–thawing cycles.
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Figure 8. The change of Dsf, Dnf, Dsu, and Dnu with different numbers of freezing–thawing cycles
and unloading rates in the DSTUNS: (a) 1 MPa/min, (b) 2 MPa/min, (c) 3 MPa/min, (d) 4 MPa/min,
(e) Dsf, (f) Dsu, (g) Dnf, and (h) Dnu.
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3.3. Failure Pattern

The failure patterns of the direct shear test under the unloading normal stress and the
direct shear test are displayed in Figure 9. In Figure 9, “T” represents tensile crack and “S”
represents shear crack. The tensile crack was characterized by grain opening degree, while
the shear crack was characterized by shear displacement between grains and spallings of
the rock surface.
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test (3 MPa/min), and (e) unloading normal stress direct shear test (4 MPa/min).

Most of the cracks formed in the DSTUNS and direct shear test were uneven and
S-shaped. The S-shaped cracks were not obvious in some direct shear tests (Figure 9a).
However, they were particularly obvious in the DSTUNS (Figure 9c). Moreover, in the
DSTUNS, all the samples showed evident surface exfoliation around the primary cracks
(Figure 9b–e).

When the unloading rate was 1 MPa, as the number of freezing–thawing cycles
increased, the surfaces spallings became more obvious. It indicated that higher freezing–
thawing cycles led to a larger area of surface spallings. When the unloading rate increased
from 1 to 4 MPa at the same freezing–thawing cycle times, the change of the surface
spalling was not significant, particularly when the freezing–thawing cycle times were ≤30.
Therefore, surface spallings were more sensitive to the change of the number of freezing–
thawing cycles than the unloading rate in the DSTUNS when the freezing–thawing cycle
times were ≤30 in the direct shear test. It was different from the DSTUNS, where surface
spallings occurred obviously only on the samples as the number of freezing–thawing cycles
increased in the direct shear test (Figure 9a). When the number of freezing–thawing cycles
was less than 30, only slight surface spallings occurred locally. Generally speaking, from
the point of view of failure morphology, the effects of the direct shear test were relatively
narrow and single on the fracture surface. There were few other cracks nearby.

However, the shear fracture phenomena were obvious in the DSTUNS, such as obvious
scratches, shear damage, peeling off, grinding round angle, transverse cutting, and block
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trituration (Figure 9). When the unloading rate was higher than 3 MPa/min, branch cracks
and fragments were much higher than in other samples in the DSTUNS, especially for
samples that experienced more than 40 freezing–thawing cycles. The reason was that the
minerals were harvested closely with each other before being exposed to low temperatures.
During freezing, a large number of microcracks appear in the rock due to the excessive
frost heave stress. For samples with low freezing–thawing cycle times, the integrity of the
samples after the freezing–thawing cycle tests was basically the same as that before freezing,
indicating that the samples with low freezing–thawing cycles were less affected by the frost
heave effect. The results were consistent with previous studies [56,57]. It was shown that
the frost damage of high-frequency freezing–thawing rock was more serious. As a whole,
the results indicated that the unloading rate and the number of freezing–thawing cycles
affected the failure pattern of the rock sample significantly in both the DSTUNS and the
direct shear test, based upon experimental results.

4. Fracture Surface Roughness
4.1. D Roughness Parameters

Belem et al. [59] proposed five three-dimensional roughness parameters to describe
the roughness characteristics of the fracture surfaces. The four parameters are: the 3D
average inclination angle, θs, the surface relative roughness coefficient, Rs, the surface
distortion parameter, Ts, and the surface average gradient mode, Z2s. When scanning the
fracture surface using an optical scanner, the X, Y, and Z coordinates of multiple points
were recorded in the point cloud file. The three adjacent points obtained by scanning can
form a triangular element plane. The angle between the normal direction of the triangle
and the Z coordinates was αk. The mean value of the 3D average inclination angle was
used to describe the roughness of the fracture surface, which represents the average spatial
direction of the rough fracture surface.

4.2. Triangulated Point Cloud

The point cloud was obtained when scanning the rock fracture surface by a Cronos
three-dimensional optical scanner. It was necessary to calculate the spatial parameters of
the triangular element by the coordinates of the points of adjacent rows and columns in the
process of 3D roughness parameter calculation, but the point cloud could not be realized in
the calculation process. As a result, it was necessary to triangulate the point cloud through
MATLAB program language. Then, the effect of tensile stress on fracture surface roughness
was analyzed. The schematic diagram of triangulated point cloud treatment is shown in
Figure 10 [60]. Based on the MATLAB program language, the flow chart of calculating the
3D roughness parameters of the rock fracture surface was plotted in Figure 11.
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Figure 11. Flow chart for the process of calculating the 3D roughness parameters.

The morphology of the fracture surface before and after triangulated treatment was
shown in Figure 12. It could be seen from the diagram that the point clouds after trian-
gulated treatment were arranged regularly, and the section morphology after treatment
was basically no different from that before treatment. Therefore, the above method could
be used to triangulate the point cloud and select the sampling interval according to the
needs. After the triangulated point cloud, the morphology of the section did not change, so
it could be used for the microscopic characteristic analysis of the fracture surface.
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4.3. Roughness Variation Rule

Under different freezing–thawing cycle times and unloading rates (1 MPa/min,
4 MPa/min), the roughness parameters θS1, Rs1, TS1, Z2S1 (1 MPa/min), θS4, Rs4, TS4,
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and Z2S4 (4 MPa/min) of the fracture surface of sandstone samples are as shown in Table 2.
The three-dimensional inclination angle and the roughness correlation coefficient of the
fracture surface increased as the number of freezing–thawing cycles increased at the 1 and
4 MPa/min unloading rates. The three-dimensional inclination angle and the roughness
correlation coefficient of the fracture surface decreased as the unloading rate increased at
the same freezing–thawing cycle times. The distortion coefficient of the fracture surface
increased and the first derivative root mean square of the fracture surface decreased as
the freezing–thawing cycle times increased at the same unloading rate. Under the same
freezing–thawing cycle, the distortion coefficient and the first derivative root mean square
of the fracture surface decreased as the unloading rate increased.

Table 2. 3D roughness parameters.

F-T θS1 Rs1 TS1 Z2S1 θS4 Rs4 TS4 Z2S4

0 11.7 1.09 1.031 0.45358 10.4 1.01 1.011 0.41336
10 12.3 1.14 1.042 0.36945 11.5 1.08 1.025 0.32647
20 14.2 1.38 1.054 0.31254 12.6 1.16 1.032 0.29825
30 16.1 1.44 1.068 0.28533 13.9 1.20 1.045 0.24066
40 18.5 1.68 1.073 0.21687 14.8 1.47 1.059 0.17424
50 19.7 1.86 1.089 0.17744 16.5 1.64 1.065 0.10685

It could be seen from Figure 13 that the fluctuation of the fracture surface increased
gradually as the number of freezing–thawing cycles increased at the 4 MPa/min unloading
rate. The number of freezing–thawing cycles was reduced from 50 to 0, and the maximum
elevation on the fracture surface was reduced from about 18 to 7 mm. It indicated that the
freezing–thawing cycle action has a significant influence on the roughness of the fracture
surface of samples in the DSTUNS. Essentially speaking, the freezing–thawing cycle action
caused freezing–thawing damage between mineral grains in sandstone samples.
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Previous studies have shown that for low permeability rocks, the local pore frost
heave pressure can reach 60 MPa. This pressure greatly exceeds the tensile strength of the
rock, and may cause cracks to initiate and propagate at the pore boundaries while the stress
balance is maintained throughout the frozen rock, as shown in Figure 14 [58]. Figure 14
presents microscopic images showing the distribution characteristics of mineral particles
before and after freezing for Wuding sandstone. The minerals were previously tightly
packed together before exposure to the low temperature, and considerable trans-granular
microcracks were observed when exposed to the low temperature. The findings were
consistent with previous studies.
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between rock pores and ice. The pores were considered to be spheres uniformly distributed
in the rock, so the ice pressure can be derived from the following equation [61]:

pi =


0.029

1+2n+(1−4n)µs
2(1−n) . 1

kEs
+1.029( 1−2µi

Ei
)
δij T f ≤ Tm

0 T f > Tm
(1)

where, µi is the Poisson’s ratio of ice, n is the porosity, µs is the Poisson’s ratio of porous
rock, Tf is the freezing temperature of the rock sample, Ei is the elastic modulus of ice, Es is
the elastic modulus of porous rock, and Tm is the freezing point of bulk water at normal
pressure. Furthermore, κ is the conversion coefficient defining the relationship between
the elastic modulus of the rock matrix and the elastic modulus of porous rock. It could be
expressed as:

κ =
(2 + 3n)− (4 + 3n)µs

2(1 − 2µs)
(2)
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Equation (1) showed that the ice pressure in the pores of rocks was closely related
to porosity and the inherent mechanical properties of the rock itself. It can be seen that
the ice pressure could be equivalent to the effective tensile stress on the rock surface [62].
When the effective tensile stress on the rock was bigger than the strength of pores or the
bond strength between mineral grains, micro-cracks would initiate and propagate. This
process was accumulated during the freezing–thawing cycle action of sandstone samples.
Then, the accumulated damages in freezing–thawing cycle samples were not uniformly
distributed, which could induce different roughness of the shear surface. Moreover, the
higher the number of freezing–thawing cycles, the greater the roughness of the failure
surface in the DSTUNS.

5. Conclusions

This paper discussed the shear mechanical behavior of sandstone after freezing–
thawing cycle action in the DSTUNS. The effects of the different freezing–thawing cycle
times and different unloading rates on the normal and shear characteristic displacements,
the failure pattern, and the fracture surface roughness were investigated. The conclusions
are summarized as follows:

(1) The shear deformation changed obviously, and the shear deformation of sandstone
samples exhibited an upward trend as the numbers of freezing–thawing cycles increased. It
indicated that samples had different degrees of deterioration after freezing–thawing cycles
under the direct shear test. The different freezing–thawing cycle times have little effect on
normal displacement, but the effect on shear displacement was obvious. This observation
suggested that a higher freezing–thawing cycle can induce a larger shear displacement in
the DSTUNS. The Dnf and Dnu comprised elastic deformation release and shear dilatancy
deformation in the DSTUNS. Furthermore, the Dnf and Dnu increased significantly only
when the numbers of freezing–thawing cycles were unchanged for a large unloading rate.
It indicated that the unloading rate has a large impact on the shear dilatancy when the
direct shear test and the DSTUNS for samples were exposed to freezing–thawing cycles.

(2) The unloading rate and the number of freezing–thawing cycles affected the failure
pattern of the rock sample significantly in both the DSTUNS and the direct shear test. It
showed that the frost damage of high-frequency freezing–thawing rock was more serious.

(3) The three-dimensional inclination angle and the roughness correlation coefficient
of the fracture surface increased as the number of freezing–thawing cycles increased at
the same unloading rate. The three-dimensional inclination angle and the roughness
correlation coefficient of the fracture surface decreased as the unloading rate increased at
the same freezing–thawing cycle times. The distortion coefficient of the fracture surface
increased and the surface average gradient mode of the fracture surface decreased as
the freezing–thawing cycle times increased at the same unloading rate. The distortion
coefficient and the surface average gradient mode of the fracture surface decreased as the
unloading rate increased at the same freezing–thawing cycle times.
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