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Abstract: This paper presents innovative reinforcement learning methods for automatically tuning
the parameters of a proportional integral derivative controller. Conventionally, the high dimension
of the Q-table is a primary drawback when implementing a reinforcement learning algorithm.
To overcome the obstacle, the idea underlying the n-armed bandit problem is used in this paper.
Moreover, gain-scheduled actions are presented to tune the algorithms to improve the overall
system behavior; therefore, the proposed controllers fulfill the multiple performance requirements.
An experiment was conducted for the piezo-actuated stage to illustrate the effectiveness of the
proposed control designs relative to competing algorithms.

Keywords: reinforcement learning; Q-learning; Sarsa; gain-scheduled action; time-varying PID
controller; PZT stage

1. Introduction

Recent advances in technology have ushered in the fourth industrial revolution (4IR),
a concept introduced by Klaus Schwab [1] that includes three-dimensional (3D) printing,
virtual reality, and artificial intelligence (AI), with AI being the most active [1]. As pre-
sented in [2], the branches of AI include expert systems, machine learning (ML), robotics,
computer vision, planning, and natural language processing (NLP). ML is when an al-
gorithm learns from data. ML comes in supervised learning, unsupervised learning,
and reinforcement learning variants [3].

In supervised learning, the training set contains both the inputs and desired out-
puts. The training set is used to teach the model to generate the desired output, and the
goal of supervised learning is to learn a mapping between the input and the output
spaces [3]. Supervised learning was often used in image recognition, and self-supervised
semi-supervised learning (S4L) was proposed to solve the image classification problem [4].
In unsupervised learning, the training set contains unlabeled inputs that do not have any
assigned desired output. The goal of unsupervised learning is typically to discover the
properties of the data generating process, and its applications include clustering documents
with similar topics [3] or identifying the phases and phase transitions of systems [5]. Rein-
forcement learning is similar to supervised and unsupervised learning and has advantages
of both. Some form of supervision exists, but reinforcement learning does not require
a desired output to be specified for each input in the data; the reinforcement learning
algorithm receives feedback from the environment only after selecting an output for a
given input or observation [3]. In other words, the building system model is unnecessary
for reinforcement learning algorithms [6].

In reinforcement learning, the most challenging problem is finding the best trade-
off between exploration and exploitation; this trade-off dominates the performance of
the agent. By combining Monte Carlo methods and dynamic programming (DP) ideas,
temporal difference (TD) learning is a brilliant solution to the problems of reinforcement
learning. Two TD control methods, Q-learning and Sarsa, were proposed on the basis of
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the TD learning method [7]. Q-Learning [8] is a form of model-free reinforcement learning.
It can also be viewed as a method of asynchronous DP. It provides agents with the capability
of learning to act optimally in Markovian domains by experiencing the consequences of
actions without requiring maps of the domains to be built [9,10]. The Sarsa algorithm was
first explored in 1994 by Rummery and Niranjan [11] and was termed modified Q-learning.
In 1996, the name Sarsa was introduced by Sutton [7].

Conventionally, Sarsa and Q-learning have been applied to robotics problems [11].
Recently, a fuzzy Sarsa learning (known as FSL) algorithm was proposed to control a biped
walking robot [12] and a PID-SARSA-RAL algorithm was proposed in the ClowdFlows
platform to improve parallel data processing [13]. Q-learning is often applied in combina-
tion with a proportional integral derivative (PID) controller. Specifically, an adaptive PID
controller was proposed in [14], a self-tuning PID controller for a soccer robot was proposed
in [15], and a Q-Learning approach was used to tune an adaptive PID controller in [16].
Moreover, the Q-learning algorithm was applied to the tracking problem for discrete-time
systems with an H∞ approach [17] and linear quadratic tracking control [18,19]. Recently,
some relevant applications of model-free reinforcement learning for tracking problems
can be found in [20,21]. In these results [12–18], the PID controller has attracted substan-
tial attention as an application of reinforcement learning algorithms [13–16]. However,
the literature [13,15–18] has provided optimal but static gains in control, and a complete
search of the Q-table is required in [14]. Moreover, most of the results [12–14,16–19] were
validated in a simulated environment.

For the time-varying PID control design, conventional approaches in the literature
can be found as gain-scheduled PID control [22,23], fuzzy PID control [24–27], or fuzzy
gain-scheduling PID control [28,29], in which the fuzzy logic were utilized to determine
the controller parameters instead of directly producing the control signal. Nowadays, the
application of fuzzy PID control can be found in the automatic voltage regulator (AVR)
system [30], hydraulic transplanting robot control system [31], and the combination with
fast terminal sliding mode control [32].

In this paper, a time-varying PID controller following the structure in [28], which fea-
tures the use of a model-free reinforcement learning algorithm, was proposed to achieve
reference tracking in the absence of any knowledge of system dynamics. Based on the
concept underlying the n-armed bandit problem [33,34], this study’s method allows for
the control coefficients to be assigned online without a complete searching process for the
Q-table. The time-varying control gains were capable of achieving the various performance
requirements and have the potential to handle nonlinear effects. Both the Q-learning and
Sarsa algorithms were applied in the proposed control design, and the performance was
compared with experimental results on a piezo-actuated stage.

2. Preliminaries and System Modeling

In this section, the essential concepts of reinforcement learning for controller de-
sign are reviewed, and the system modeling of control target (the piezo-actuated stage)
is presented.

2.1. The Markov Property

For the finite number of states and reward values, the environment responds at time
t + 1 depending on information from every past event, and the dynamics can be defined
only by specifying the complete probability distribution:

Pr{Rt+1 = r, St+1 = s′ | S0, A0, R1, · · · , St−1, At−1, Rt−1, St, At, Rt}

for all reward R, the state after the movement s′, and possible values of the past events:
S0, A0, R1, · · · , St−1, At−1, Rt−1, St, At, Rt. If the state signal has the Markov property,
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the environment’s response at t + 1 depends only on the state and action representations at
t, in which case the environment’s dynamics can be defined by

p(s′, r|s, a) = Pr{Rt+1 = r, St+1 = s′ | St, At},

where p(s′, r|s, a) denotes the probability of transitioning to state s′ with reward r, from s
and a. A reinforcement learning process that satisfies the Markov property is called a
Markov decision process (MDP). Moreover, if the state and action spaces are finite, then it
is called a finite Markov decision process (finite MDP) [7].

2.2. Reinforcement Learning

Reinforcement learning problems feature an interaction between an agent and envi-
ronment. The learner—and decision maker—is called the agent, which is what we focused
on in our design. The agent interacts with the environment, which is everything external
to the agent [7].

As presented in Figure 1, the agent and environment interact at discrete time steps in a
sequence, t = 0, 1, 2, 3, . . . . At each time step t, the agent receives some representation of the
environment’s state, St ∈ S, where S is the set of possible states. The state is the available
signal from the environment that the agent concerns for making decisions. The agent
then selects an action At ∈ A(St), where A(St) is the set of actions available in the state
St. One time step later, depending on the action selected by the agent, the agent receives
a numerical reward, Rt+1 ∈ R ⊂ R, where R is the set of possible rewards, and it then
proceeds to a new state St+1. Based on the reward trajectory after time step t and by
using a positive discounted factor γ ∈ R, the expected discounted return for time step t is
defined as

Gt =
∞

∑
k=0

γkRt+k+1,

where k denotes the kth iteration and γ is the discounted factor that satisfies 0 ≤ γ ≤ 1.

Agent

Environment

action
AtRt+1

St+1

rewardstate
RtSt

Figure 1. Agent–environment interface [7].

Most reinforcement learning algorithms estimate a value function that evaluates the
favorability of the agent being in a given state. The term “favorability” here indicates
the magnitude of the expected future rewards. Value functions come in one of two types:
the state-value function and the action-value function. The state-value function is the
expected discounted return that can be obtained from some state s following some policy
π, and the action-value function is the expected discounted return when state s is the
initial state, action a is taken, and policy π is followed [7]. Here, we consider the general
stochastic policy π(a|s); in this policy, the probability of taking action a under state s
satisfies ∑a π(a|s) = 1. The state-value function Vπ(s) and the action-value function
Qπ(s, a) for policy π can be defined as follows:

Vπ(s) = Eπ [Gt|St = s] = Eπ [
∞

∑
k=0

γkRt+k+1|St = s],
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and

Qπ(s, a) = Eπ [Gt|St = s, At = a] = Eπ [
∞

∑
k=0

γkRt+k+1|St = s, At = a],

where Eπ [·] represents the expectation value of the expected discounted return under
policy π [7].

2.3. Q-Learning

A key breakthrough in reinforcement learning was the development of an off-policy
TD control algorithm known as Q-learning [8]. One-step Q-learning is defined by

QQ(St, At)← QQ(St, At) + α[Rt+1 + γ max
a

QQ(St+1, a)−QQ(St, At)], (1)

where α < 1 is a positive number known as the learning rate, and the lower script notation
for the action-value function denotes the Q-learning algorithm. The algorithm is presented
in procedural form in Algorithm 1 [7].

Algorithm 1 Q-learning: Off-policy TD control algorithm.

Initialize Q(s, a), ∀s ∈ S, a ∈ A(s), arbitrarily, and Q(terminal − state, ·) = 0
repeat (for each episode):

Initialize S
repeat (for each step of episode):

Choose A from S using a policy derived from Q(e.g., ε− greedy)
Take action A, observe R, S′

Q(S, A)← Q(S, A) + α[R + γ maxa Q(S′, a)−Q(S, A)]
S← S′;

until S is terminal
until episode has terminated

Algorithm 1 is such that (1) the ε-greedy policy strategy is the selection of the action
with the maximum Q value and a probability of 1− ε in a certain state and (2) an action is
randomly selected from all possible actions for the state with probability ε, which can be
expressed as

π(a|s) =


1− ε +

ε

|A(s)| , if a = arg max
a∈A(s)

Q(s, a)

ε

|A(s)| , otherwise,
(2)

where |A(s)| represents the number of all possible actions in state s [7].

2.4. Sarsa

As an on-policy TD control method that uses TD prediction methods for the control
problem, the Sarsa algorithm is defined by the update of the action-value function:

QS(St, At)← QS(St, At) + α[Rt+1 + γQS(St+1, At+1)−QS(St, At)]. (3)

This rule uses every element of the quintuple of events (St, At, Rt+1, St+1, At+1)
that compose a transition from one state–action pair to the next. The algorithm is named
Sarsa, based on the symbols for the elements in the quintuple. The general form of the
Sarsa control algorithm is given in Algorithm 2 [7].
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Algorithm 2 Sarsa: On-policy TD control algorithm.

Initialize Q(s, a), ∀s ∈ S and a ∈ A(s), arbitrarily, and Q(terminal − state, ·) = 0
repeat (for each episode):

Initialize S
Choose A from S using policy derived from Q(e.g., ε− greedy)
repeat (for each step of the episode):

Take action A, observe R, S′

Choose A from S using a policy derived from Q(e.g., ε− greedy)
Q(S, A)← Q(S, A) + α[R + γ maxa Q(S′, A′)−Q(S, A)]
S← S′; A← A′

until S is terminal
until episode has terminated

2.5. System Modeling of Piezo-Actuated Stage

We formulated the model of the piezoelectric transducer (PZT) with reference to [35].
As presented in Figure 2, the PZT model is divided into two subsystems: mechanical and
electrical. In a mechanical subsystem, the behavior follows that of a standard mass-spring-
damper system. We shall adopt the following notation. Fp is the output force generated
by the piezoelectric actuator, Fext is the external applied force, Kp is the stiffness constant,
Λp is the damping constant, and ∆p is the elongation of the piezoelectric transducer. In the
electrical subsystem, the input voltage u contributes a linear transduction voltage up,
and uh is the voltage consumed by the hysteresis effect H(q). Here, q is the charge flow of
the PZT. In the closed loop of circuit, C is an equivalent internal capacitance, and Tem is
the transformation ratio for the connected mechanical and electrical subsystems. Based on
the derivation in [36], a block diagram of a piezo-actuated stage is presented in Figure 3,
where G is the linear, time-invariant transfer function of the mechanical stage body.

Figure 2. Model of a piezoelectric transducer.

Figure 3. Block diagram of a piezo-actuated stage [36].
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On the basis of these preliminaries, the goal of this paper is to propose a reinforcement
learning-based PID controller that drives the system output to track a reference signal
despite the system being affected by nonlinear hysteresis H(q). The coefficients in the
controller are automatically adjusted by the selected learning algorithm.

Remark 1. In Sections 2.3 and 2.4, it is seen that the update of state-value function follows a finite
MDP; therefore, it is essential to check if the piezo-actuated stage system model fulfills an MDP.
According to the block diagram in Figure 3, the action is the adjustment of control gains and the
state is system output performance; therefore, the system model inherently follows an MDP since
the system transfer function G is linear and time invariant.

3. Controller Design

In this section, we describe our fundamental scheme of the time-varying PID controller.
According to [37], the control input ut of the controller in discrete-time is defined as

ut = Kpet + Ki

k

∑
i=0

et∆t + Kd
et − et−1

∆t
(4)

where t is the discrete time index; ∆t is the time interval of sampling; Kp, Ki, and Kd are the
proportional, integral, and derivative gains, respectively; and the error signal et = rt − yt is
defined in terms of the system output yt and desired reference rt. Control design typically
requires a compromise between various performance requirements; therefore, time-varying
PID gains were used to simultaneously achieve multiple requirements. In each time step
t, a numerical reward Rt is received by the agent according to the partitions in Table 1,
and the control gains Kp, Ki, and Kd are adjusted by the chosen actions according to a
learning algorithm. This design concept coincides with the original form of the n-armed
bandit problem [33,34], and the parameter specification is thus straightforward.

Table 1. Range of partition error and corresponding reward Rt.

Range of Partition Rt

1 < |et| −25
0.5 < |et| ≤ 1 −15

0.1 < |et| ≤ 0.5 −10

0.03 < |et| ≤ 0.1 −5

0.01 < |et| ≤ 0.03 −1

others 10

Remark 2. In the conventional application of the reinforcement learning (see example 6.6 of [7]),
the numerical value of reward is separately assigned for the gridworld example. The same concept is
used in this paper to provide more degree-of-freedoms of adjustment; a partition error is consequently
used instead of a continuous domain value as Rt = |et|.

In this paper, eight cases of action for the agent are examined, and the movement of
the actions are detailed in Table 2, where pt is the scheduling variable [38] to be determined.
According to the current value of the scheduling signal, the scheduling variable provides
an additional chance for the agent to adapt to environmental changes. On the basis of these
actions, the discrete time transfer function expression of the control law (4) is given as

ut = C(z, Q(St, At), pt)et
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with the controller design

C(z, Q(St, At), pt) = K̄p + K̄i
z

z− 1
+ K̄d

z− 1
z

, (5)

where the control gains K̄p = Kp, K̄i = Ki∆t, K̄d = Kd/∆t are adjusted through the selected
reinforcement learning algorithm Q(St, At) and the scheduling variable pt. The closed-loop
control system structure is shown in Figure 4.

Table 2. Actions of the learning algorithm.

Action Adjustment

1 if |et| ≥ 1, Ki ← Ki + 0.014, else Ki ← Ki + 0.0014 · pt

2 Kp ← Kp − 0.00002 · pt

3 Kd ← Kd + 0.0003 · pt

4 Ki ← Ki − 0.00002 · pt

5 Kp ← Kp + 0.0001 · pt

6 Kd ← Kd − 0.00002 · pt

7 no action

8 Ki ← Ki + 0.00002 · pt

Partition of error
Table 1

Learning algorithm
Q(St, At)

Selected action
Table 2

Rt

At

Piezo-actuated stageC(z,Q(St, At), pt) ut
◦

rt + yt

pt Kp,Ki,Kd

Adjustment

−

et

Figure 4. Closed-loop control system structure.

Remark 3. In this paper, the only state S of Algorithms 1 and 2 is the error signal et; therefore,
the condition "S is terminal" for the algorithms is naturally satisfied for each step, and only one
decision is made for each episode since the concept of n-armed bandit is employed.

4. Experimental Results

The proposed control designs were tested along the x-direction of the piezo-actuated
stage PI P-602.2CL; a data acquisition (DAQ) card NI PCIe-6346 was employed as an analog–
digital interface; the analog I/O channels were arranged by an NI BNC-2110 shielded
connector; the control signal was amplified by a PI E-503 amplifier before being fed to the
piezoelectric transducer; and the system output displacement was measured and processed
by a PI E-509.C3A signal conditioner.
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4.1. Gain-Scheduled Actions

In the control stage, the initial value of the controller coefficients in (4) were set as
Kp = Ki = Kd = 0 with a sampling period ∆t = 0.01 s, the learning parameters of action
value functions (1) and (3) are α = γ = 0.99, and ε = 0.021 is specified for the ε-greedy
policy (2). In this paper, two different scheduling variables pt in Table 2 were selected to
reveal the effectiveness of gain-scheduled actions.

4.1.1. pt = 1

In this case, if the scheduling variable is set as pt = 1, the actions are unscheduled.
Figure 5 depicts the step responses of the controller (5) with the different selected algo-
rithms that form the Sarsa controller

C1
S(z) = C(z, QS(St, At), 1)

and the Q-learning controller

C1
Q(z) = C(z, QQ(St, At), 1).

Figure 6 presents the learning curves of different algorithms, Figure 7 presents the
time history of the control gains, and Figure 8 presents the control signals. In Figure 5,
Sarsa (red line) has a faster transient response (shorter rise time) but an undesirable
overshoot and a longer settling time; Q-learning provides precise set-point performance
with a shorter settling time, but the system output unpredictably jumps to an overshoot at
0.78 s. At that moment, even if the system has been settled in a steady state, the control
gains Kp and Ki are increased by Q-learning algorithm when the error signal is almost
0. Moreover, Q-learning had chattering between the first and third second because the
control gains were switching rapidly, and Sarsa had a smoother response and a stable
steady-state response.
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Figure 5. Step responses with pt = 1.
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Figure 6. Learning curves with pt = 1: (a) Q-learning C1
Q(z); (b) Sarsa C1

S(z).
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Figure 7. Time-varying gains of PID controllers with pt = 1: (a) Q-learning C1
Q(z); (b) Sarsa C1

S(z).
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Figure 8. Control signals with pt = 1: (a) Q-learning C1
Q(z); (b) Sarsa C1

S(z).

4.1.2. pt = et

In the previous unscheduled case, the controlled system was observed to have an
unexpected overshoot during the steady state, and the output trajectory causes undesirable
sharp corners and chattering. To eliminate these drawbacks, the scheduling variable of the
actions is set as pt = et, and the proposed controllers are as follows:

Ce
S(z) = C(z, QS(St, At), et) and Ce

Q(z) = C(z, QQ(St, At), et) (6)

The system responses of the proposed controllers are displayed in Table 3 and Figure 9.
For the controller Ce

Q(z) and Ce
S(z), Figure 10 presents the learning curves, Figure 11 depicts

the time-varying control gains, and Figure 12 shows the control signals. Figure 9 reveals
that the gain-scheduled actions with pt = et improve system performance; the rising stage
is similar to the unscheduled case pt = 1, but the undesirable overshoots are removed.
The output trajectories are smoothed with the scheduling variable pt = et because the
control gains in Figure 11 are almost constant during the steady state, and the learning
curves in Figure 10 reveal that the learning algorithms always choose the case of Rt = 10
when the system error et converges to 0.

Table 3. Statistical comparison of the controllers.

Q-Learning Controller Sarsa Controller

C1
Q(z) Ce

Q(z) C1
S(z) Ce

S(z)

Rise Time (s) 0.1226 0.1152 0.0559 0.0548

Settling Time (s) 6.142 0.2886 1.1533 0.1592

Overshoot (%) 15.6647 0.1838 14.4465 0.2477

RMSE (um) 0.4224 0.4026 0.3783 0.3652

4.2. Comparison to Constant PID Controllers

For the purpose of comparison, different constant control designs are selected to
present the obstacle of constant parameter choosing. The selected constant control gains are
given in Table 4, in which the coefficients of C1(z) and C2(z) are specified by the final value
(control gains at system time t∆t = 4 s) of Ce

Q(z) and Ce
S(z), respectively. Compare with

the performance of time-varying controller Ce
Q(z) and Ce

S(z), system output performances
of constant controllers are depicted in Figure 13. It is seen the transient performances of
time-varying designs Ce

Q(z) and Ce
S(z) were significantly faster than that of the constant
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control design C1(z) and C2(z) with the same level of control gains, thus illustrating the
advantages of the time-varying control design over the constant one. When the constant
control gains are increased as C3(z), the output performance shows a slightly faster rise
time, but still large settling time. When control gain KP is increased for controller C4(z),
the system has a shorter rise time but slower settling time than C3(z), and the output
signal begins to oscillate in the very initial time period. When the coefficient KP is further
increased, the oscillation becomes serious and the undesirable overshoot occurs, the system
performs relatively slow convergency with an extremely large control gain KP. In this
comparison, the experimental results show the time-varying control design improves both
transient (rise time) and steady state (settling time) performance with relatively small
control gains.
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Figure 9. Step responses: (a) Q-learning; (b) Sarsa.
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Figure 11. Time-varying gains of PID controllers with pt = et: (a) Q-learning Ce
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S(z).
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Figure 12. Control signals with pt = et: (a) Q-learning Ce
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S(z).
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Table 4. Controller gains of the constant PID controllers.

C1(z) C2(z) C3(z) C4(z) C5(z)

KP 0.000567 0.000371 0.022680 0.2 1.2

KI 0.041982 0.056906 0.083964 0.083964 0.083964

KD 0.00185 0.001085 0.074 0.074 0.074
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Figure 13. Output responses of constant PID controllers.

4.3. Time-Varying Reference

To provide a more complete set of validation experiments, the controllers (6), and C1(z),
C2(z) in Table 4, are tested using a piecewise step function

rt = 5d∆t
t
2
e, where t ∈ [0, 800]. (7)

In Figure 14, the time history of the system outputs is presented, and the control
signals are shown in Figure 15. In Figure 14, it is seen that the time-varying controller
Ce

Q(z) and constant design C1(z) had similar behavior; the time-varying design only had a
slight improvement in performance as the step function increased. By contrast, the time-
varying Sarsa controller Ce

S(z) exhibited considerable learning progress; the algorithm
effectively compensated for the tracking error at the second step of (7). The accuracy of the
positioning is further evident in Figure 16; the Sarsa controller drives the system output
to gain an optimal reward most of time. As indicated in Figure 17, the Sarsa algorithm
properly adjusts the controller parameter Ki subject to the movement of the reference signal,
whereas the Q-learning algorithm ignores the desired reference characteristic (7).
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Figure 14. Output responses of: (a) Q-learning controllers; (b) Sarsa controllers.
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Figure 17. Time-varying gains of PID controllers of (a) Q-learning Ce
Q(z) and (b) Sarsa Ce

S(z).

4.4. Robustness Test

To test the robustness of the proposed time-varying control design, an unknown
disturbance is added to the control signal, and the control input becomes

ut = C(z, Q(St, At), pt)et + dt,

where dt = sin(2πt∆t) is a sinusoidal external disturbance.
In Figure 18, the output responses are depicted, and Figure 19 shows the control signals

of different controller designs. Figure 18 indicates the system performance has a smoother
trajectory when the scheduling variable is specified as pt = et, and the Sarsa-based designs
C1

S(z) and Ce
S(z) perform superior robustness to the unknown disturbance.
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Figure 18. Output responses of: (a) Q-learning controllers; (b) Sarsa controllers.
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Figure 19. Control signals: (a) Q-learning Ce
Q(z) and C1

Q(z); (b) Sarsa CQ
S (z) and C1

S(z).

5. Conclusions

This paper presents a time-varying PID controller design in which the control gains are
automatically adjusted by the reinforcement algorithms. The concept of the n-armed bandit
problem was used to simplify the learning process. Different learning algorithms were
applied to the control design, and the control performance was experimentally evaluated
on a piezo-actuated stage. The results reveal the potential of the proposed controller
for handling system nonlinearity; various performance requirements were met, and the
gain-scheduled actions improved the steady-state response and smoothed the system
output trajectory. Moreover, adaptability to a time-varying reference signal and unknown
disturbance was demonstrated. The Sarsa controller effectively compensates for variation
in the reference signal and unknown disturbance, and the characteristic of the reference
signal was successively learned by the time-varying controller.
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