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Abstract: There are many challenges that an effective diagnostic system must overcome for successful
fault diagnosis in gas turbines. Among others, it has to be robust to engine-to-engine variations
in the fleet, it has to discriminate between gradual deterioration and abrupt faults, and it has to
identify sensor faults correctly and be robust in case of such faults. To combine their benefits and
overcome their limitations, two diagnostic methods were integrated in this work to form a multi-layer
system. An adaptive performance model was used to track gradual deterioration and detect rapid
or abrupt anomalies, while a series of static and dynamic Bayesian networks were integrated to
identify component degradation, component abrupt faults, and sensor faults. The proposed approach
was tested on synthetic data and field data from a single-shaft gas turbine of 50 MW class. The
results showed that the approach could give acceptable accuracy in the isolation and identification of
multiple faults, with 99% detection and isolation accuracy and 1% maximum error in the identified
fault magnitude. The approach was also proven robust to sensor faults, by replacing the faulty signal
with an estimated value that had only 3% error compared to the real measurement.

Keywords: gas turbine diagnostics; Bayesian network; hybrid models

1. Introduction

The intense competition in the energy sector has been driving the progress in assets
health management systems with the aim of reducing maintenance and operating costs [1].
An effective gas turbine diagnostics system requires comprehensive monitoring of both
gradual deterioration mechanisms and possible malfunctions in any of the system com-
ponents and ancillaries. Since the aim of diagnostics is to provide information to take the
best possible maintenance action, discriminating between gradual degradation and abrupt
faults, which may occur at the same time, is essential. This problem has been addressed
in the literature mostly by integrating different diagnostic techniques for these two types
of faults [2,3]. For example, tracking filters were used to monitor gradual deterioration
and update the engine baseline, while other data-driven techniques were used for online
anomaly detection [4]. In all cases, the diagnostics system needs to be robust enough to
detect and identify sudden faults in presence of deteriorating components [5,6]. In [7], a
combination of model-based gas path analysis (GPA) and auto associative neural network
was proven effective in discriminating among component deterioration, rapid faults in the
rotating components, and bleed valve faults.

The major distinction between gradual and abrupt faults in a gas turbine system lies
in the time over which the fault forms and evolves [3]. Gradual degradation usually affects
more than one component at a time, it is caused by expected long-term phenomena such
as mechanical wear or gradual particles deposition, and it typically manifests as gradual
measurements deviations over time from the design values. On the contrary, an abrupt
fault can be seen as a sudden performance loss due to a single-time event such as foreign
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object ingestion, a valve stuck in a wrong position, a sensor malfunction, etc. Statistically,
abrupt faults are rare and can be therefore assumed to occur for a single component at a
time [8]. In the literature, the terms abrupt fault and rapid fault have been distinguished
depending on whether the fault magnitude stays constant or keeps increasing [8]; however,
in this article, the two terms are used interchangeably. In the present work, examples of
gradual degradation are compressor fouling (CF) and turbine erosion (TE), while examples
of abrupt faults are bleed valve leakage (BV) and sensor faults (bias).

Tracking of gradual deterioration has been commonly achieved with Kalman filter and
its derivative, or with the aid of physics-based performance models [9–11]. A drawback
for these methods is that they usually require a large number of measurements, and their
accuracy is limited when considering a practical sensor set [12]. The significant variations
among machines of the same fleet is another limitation for the accuracy of model-based
diagnostics [13]. In the past decade, a remarkable increase in artificial intelligence tech-
niques has been observed for both trend monitoring and abrupt faults identification [14–16].
Despite the very positive results obtained by such diagnostic methods, a limitation lies in
the wide amount of data needed for training purposes. In fact, the quality of the diagnostics
system is only as good as the underlying data [7]. This presents a non-trivial challenge, due
to the underrepresentation of faulty samples in historical data, especially when it comes to
simultaneous multiple faults [13,17].

Combinations of physics-based models and data-driven methods were proposed as
a solution to overcome several shortcomings of the single methods [18–21]. In particular,
integration of an adaptive performance model with Bayesian networks (BNs) or with
artificial neural networks (ANNs) was proposed by the authors of this paper [7,22]. The
challenge with multiple fault scenarios in BNs is that the size of the conditional probability
tables (CPTs—the numerical relationships between events) increases exponentially [23]. To
keep the problem tractable, hierarchical BN models were proposed [24,25]. However, this
solution was not applied to the challenge of discriminating between gradual degradation
and abrupt faults.

Since both physics-based and data-driven methods for diagnostics rely on correct
measurement information, it is essential to isolate sensor malfunctions, which may lead
to an erroneous fault signature [26]. Sensors, as any other component, tend to degrade
over time and are subject to anomalies such as bias, erratic signal, or stuck reading [26,27].
Especially in presence of an excessive bias, the resulting measurements signature may be
confused with a process fault. Several approaches for sensor fault detection have been
proposed, and there is common agreement that sensors monitoring should be a step in
the diagnostics routine [27–29]. Any bias or wrong reading should be detected before
proceeding with the identification of process faults. Gaussian reconciliation technique and
wavelet analysis are two examples of common approaches that detect anomalies in the
signal distribution [26,27]. With the same principle, a BN can be used to relate sensor data
distribution to the probability of a fault. In addition, the BN for sensor fault detection can
be integrated into the hierarchical BN system proposed in this work.

For the first time in this work, four BNs were integrated with a steady-state perfor-
mance model for the purpose of isolating and identifying gradual components degradation
and abrupt faults. The design and assessment of the BNs was presented in Part 1 of this
paper, which provided a comparison between static and dynamic BNs [30]. The application
on synthetic and field data and the robustness against sensor faults are evaluated in this
Part 2. The novelty of the work is the integration of physics-based models with hierarchical
BNs for discrimination of gradual degradation and abrupt faults occurring simultaneously,
which addresses the following challenges: (i) correct identification of fault magnitude in
presence of underlying degradation, (ii) modularity of BN models and tractability of the
CPTs when considering multiple faults, (iii) reduced dataset required for training the BN
models since they can be trained with single-fault scenarios, and (iv) robustness in case of
sensor faults.
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2. Methods

From a diagnostics perspective, differentiating between gradual degradation and
abrupt faults is possible by comparing the measurements at the current time t with both
the values at the time t − 1 and the reference values in healthy conditions. When only
gradual degradation occurs, the difference in performance between time t and t − 1 is very
close to zero, if a sufficiently small time step is chosen. The difference from the reference
condition indicates the degradation severity and triggers an alarm if this surpasses a safe
threshold. On the other hand, an abrupt fault can happen at any time, either on a fully
healthy machine or on a degraded one. The unique signature of an abrupt fault manifests
as a notable difference in performance between two consecutive time steps. Comparing
the performance with the reference condition is not a good indicator of the fault severity,
because this difference is partly due to the continuous degradation the machine was
undergoing until this time [6].

Compressor fouling is one of the most common causes of degradation in a gas turbine
and it was therefore included in this work [31]. Other common degradation phenomena
in industrial gas turbines are tip clearances increase in both compressor and turbine, and
trailing edge erosion in turbine blades [31]. For the demonstration of the proposed hi-
erarchical models, only compressor fouling and turbine erosion were considered in this
work to simulate gradual degradation. The inclusion of other phenomena like clearance
increase could be possible by extending the training space of the BNs, although discrimina-
tion between different degradation phenomena is beyond the scope of this work. Other
typical faults of interest are bearing faults, which have been extensively covered in the
literature [32,33], faults in the fuel injection system [34], or bleed valve fault, which instead
has been more neglected in the literature. Bleed valve leakage is a particularly interest
case for diagnostics because its measurements signature can be very similar to the one of
turbine degradation [35].

2.1. Gas Turbine Model

To diagnose multiple simultaneous faults, a multi-layer system is proposed in this
work. The first layer is composed of a physics-based, non-dimensional model, which was
already introduced in Part 1 of this work [30]. The performance model of the gas turbine
system was extensively described in previous work [22,35,36]. Compared to [22], and
similarly to [35], the model was modified to simulate a single-shaft gas turbine connected
to a generator. The gas turbine under consideration is the Siemens Energy SGT800 (Munich,
Germany), a single-shaft 50 MW class turbine. The validity of the model was proven
against reference data in [35]. For diagnostics purpose, the model computes a Jacobian
matrix between health state variables (deviations in efficiency and flow capacity) and
measurement residuals, and it uses the Broyden method to estimate the values of the
deviation factors that minimize the residuals.

A variation of the scheme applied in [22] is proposed here. The deviation factors
considered in this work are for the efficiency and flow capacity for both the compressor and
the turbine. The measurements used for the matching scheme and the Jacobian matrix are
as follows: the compressor outlet temperature (T3) and pressure (P3), the compressor inlet
flow rate (W2), which is measured through a bellmouth intake, and the turbine exhaust
temperature (T5). A method similar to the one proposed in [12] was used to determine the
optimal measurements for the scheme. The schematic of the gas turbine system and the
sensors’ location is presented in Figure 1.
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Figure 1. Schematic diagram of the gas turbine model (η_gen: generator efficiency).

It is worth noting that W2 is not always measured in gas turbines, requiring a modi-
fication of the matching scheme proposed here. Given the high correlation between W2
and the compressor flow capacity change, this deviation may be more difficult to identify
correctly with a reduced set of sensors. For two-shaft machines, the rotational speed of the
high-pressure turbine could be used instead.

When the model runs in diagnostics mode, the inputs are the measurements from the
real plant, the power, the ambient conditions (temperature, pressure, and humidity), and
the inlet guide vane (IGV) position. The deviation factors in efficiency and flow capacity
are the outputs. The deviation factors were calculated as per Equations (1) and (2); hence,
deviation in efficiency is zero in healthy condition while the flow capacity deviation factor
is 1.

∆η = ηfault − ηhealthy (1)

∆w =
wfault

whealthy
(2)

Once the deviation factors have been estimated, these values are used as new inputs
to run the model to a set of reference conditions. For this step, all the other inputs (am-
bient conditions and power) are kept at reference conditions. The new outputs are the
measurements residuals, calculated according to Equation (3).

r =
z − zref

zref
(3)

Residuals are calculated for T3, P3, T5, P5 (turbine exhaust pressure), W2, and Wf
(fuel flow). Reference conditions in this work refer to the conditions presented in Table 1.

Table 1. Reference conditions for the gas turbine model.

Ambient temperature (Tamb) 298.15 K
Ambient pressure (pamb) 101.325 kPa
Relative humidity (RH) 60%

GT power 50 MW

2.2. Muti-Layer Diagnostic System

With the purpose of identifying different fault scenarios, the model is integrated
with a series of Bayesian networks (BNs), which receive the measurement residuals at
reference conditions as inputs. Four different BNs were developed to differentiate between
gradual compressor degradation, gradual turbine degradation, an abrupt fault (bleed valve
leakage as an example), and sensor faults. The steps performed in the diagnostic system
are illustrated in Figure 2.
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1 Estimate performance deviation factors in the rotating components via means of gas
path analysis (GPA) with the performance model;

2a Adjust for turbine degradation: take the difference between turbine performance
factors at time t and t − 1 to use in the next step, then simulate the GT system at
reference (REF) conditions using the compressor performance factors from step 1 and
the adjusted turbine performance factors;

2b Adjust for compressor degradation: take the difference between compressor perfor-
mance factors at time t and t − 1 to use in the next step, then simulate the GT system
at reference conditions using the turbine performance factors from step 1 and the
adjusted compressor performance factors;

3a Feed the results of step 2a to a dynamic Bayesian network to identify compressor
degradation, which gives the compressor performance for time t + 1;

3b Feed the results of step 2b to a dynamic Bayesian network to identify turbine degra-
dation, which gives the compressor performance for time t + 1;

4 Adjust for compressor and turbine degradation: performance factors for both com-
pressor and turbine are taken as the difference between t and t − 1 and the model is
run at reference conditions to isolate the effect of rapid or abrupt faults;

5 Feed the residuals from step 4 to a BN to identify an abrupt fault (e.g., BV leakage);
6 Feed the residuals from step 4 to the final BN to identify a sensor fault, and send the

information to adjust the matching scheme at the next time step t + 1.

The purpose of steps 2a, 2b, and 4 is firstly to remove deviations caused by off-design
ambient and operating conditions, as in [22]. Secondly, the performance is also adjusted
to remove previously identified deviation in turbine performance (step 2a) or compressor
performance (step 2b) or both (step 4) in order to separate degradation assessment from
abrupt fault identification. In this way, separate BNs can be utilized to assess simultaneous
degradation and faults in different components, avoiding extremely large CPTs. When a
sensor fault is detected, the GPA scheme in step 1 is modified according to the method
proposed in [37], since the values from the faulty sensor do not provide reliable information
to estimate the performance deviations.
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2.3. Bayesian Networks

Dynamic Bayesian networks (DBN) for CF and TE were developed as discussed in
Part 1 of this work [30]. The parent nodes in these models represented the degradation
severity for CF and TE, for the respective network, while the measurement residuals
constituted the child nodes. The degradation severity is defined as reported in Equation (4).

S = −∆η·

√
1 +

(
∆w − 1

∆η

)2
(4)

A fault severity between 0 and 0.5% was considered Normal (N), between 0.5 and 1%
Very Low (VL), between 1 and 2% Low (L), between 2 and 3% Medium (M), and above 3%
High (H). The parent nodes were created as temporal nodes, i.e., the prior probability was
set as a function of the previous condition, which was proven to achieve higher diagnostics
accuracy than considering a constant prior probability distribution [30]. Each network
was trained with data generated by the performance model described in Section 2.2, by
simulating data from various machines. Deviations between machines in the same fleet
were taken into account with different design values for efficiency and flow capacity,
different ratios ∆w−1

∆η between 1 and 2, and measurement noise. The training phase was
used to estimate the CPTs for each node by using the Maximum Likelihood Estimator [38].

Static BNs were instead employed for BV leakage and sensor faults, where the single
event probability is independent from the previous condition. The structure of the BV BN
was similar to the one for CF and TE, with the parent node being the BV fault represented
by 5 states or fault severities. The fault severity in this case represented the leakage flow in
percentage of the turbine flow, where 0% is N, between 0 and 1% VL, between 1 and 2% L,
between 2 and 3% M, and above 3% is H. BV leakage is not a gradual phenomenon, it can
occur suddenly with any severity. The initial probability was set according to Table 2.

Table 2. Prior probability distribution P(Y) for BV leakage.

N VL L M H

99% 0.25% 0.25% 0.25% 0.25%

A fourth BN for detecting sensors faults is depicted in Figure 3. Each child node was
composed of five states: normal (N), low reading (L), very low (VL), high reading (H),
and very high (VH). The parent nodes can assume the states normal (N) or faulty (F), the
latter indicating a sensor fault. Note that only the sensors that are used for the diagnostic
scheme were included in this work, but the principle can be extended to multiple sensors.
The definition of low and high reading is the measurement residual being between −0.5%
and −1.5%, and between 0.5% and 1.5%, respectively. Very low and very high indicate
residuals below −1.5% and above 1.5%, respectively.
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2.4. Tested Scenarios

Three scenarios were tested to assess the capability of the proposed diagnostics ap-
proach. First, synthetic data were generated with the performance model to simulate
simultaneous compressor fouling, turbine erosion, and bleed valve leakage. The gradual
degradation in compressor and turbine components was simulated as a linear decay in
efficiency and flow capacity, with a ratio ∆w−1

∆η equal to 1.5. In particular, both compressor
efficiency and flow capacity were decreased to simulate fouling, while turbine erosion was
simulated by an increase in turbine flow capacity and a decrease in efficiency.

A total of 6000 h (1 data point per hour) were simulated, varying the power, the
ambient temperature, and the IGV position according to daily schedules. Note that the
choice of degradation level was arbitrary, only for test purposes, and does not represent
actual degradation of the SGT800 or any real engine.

In Scenario 2, field data from a Siemens Energy SGT800 machine were employed to
validate the approach. Data from a month of operations were analyzed, containing an
occurrence of BV leakage at day 21. Over this month, the engine was assumed to be in a
state of no or very low degradation, although the exact conditions were unknown at the
time of the test. In Scenario 3, the same data were also corrupted with simulated sensors
faults. These scenarios are shown in Table 3.

Table 3. Test scenarios.

Scenario Gradual Compressor
Degradation Gradual Turbine Degradation Abrupt Fault

1: Simulated From 0% to 4%
Maintenance at 2500 h From 0% to 3% BV 2%

2: Field data Unknown Unknown BV unknown%
3: Field data + simulated Unknown Unknown T3 and P3 faults 12.5%

All the synthetic and field data were first used as inputs to the performance model in
diagnostic mode, and deviation factors were estimated. The sequence of steps 1–6 from the
previous section was followed.

3. Results and Discussion
3.1. Scenario 1

The daily variations of power set-point and ambient temperature are depicted in
Figure 4. These are used as inputs for the model together with the sensor outputs.
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The results from the first simulated scenario are presented in Figures 5–7, which show
the compressor and turbine degradation estimated by the adaptive model (Figures 5 and 6)
and by the DBNs (Figure 7). The trends in efficiency and flow capacity deviations for both
rotating components are clearly followed, as seen in Figures 5 and 6. The BV leakage events
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were interpreted by the model’s adaptation scheme as deviations in turbine efficiency
and flow capacity, however, these erroneous deviations were not picked up by the DBN
(Figure 7). It is also possible to note that the effect of operating power and ambient
temperature is taken into account in the model, and does not hinder the correct estimation
of the degradation conditions. Only some errors occurred in the CF prediction from the
DBN around 2500 and 5000 h, probably due to excessive noise in the data, as seen at the
top of Figure 7.
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Figure 7. BN predictions of compressor fouling, turbine erosion, and BV leakage in Scenario 1. CF and TE are quantified
from normal (N—0% degradation) to high (H—4% degradation).

3.2. Scenario 2

The data for Scenario 2 were taken from a Siemens Energy SGT800 machine operating
over a month. On day 21, a BV leakage was reported. An extraction of the data is presented
in Figure 8, where the performance factors calculated by the adaptive model are shown
for compressor and turbine for day 1, day 10, and day 20. The y-axes show the deviations
in efficiency and flow capacity as defined in Equations (1) and (2). It can be noted that
compressor efficiency and flow capacity deviations oscillate a bit during this time, bounded
between 0 and −1.5% for the efficiency and between 100% and 98% for the flow capacity.
Turbine performance deviations are instead more stable and do not show any significant
fluctuation over this period of time. This represents the baseline against which the analysis
for day 21 was performed.
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As Figures 9 and 10 show, the model adaptation to the measured variables resulted in
an increment in estimated compressor efficiency and a simultaneous reduction in turbine
efficiency and flow capacity. This efficiency increment was not physical, but a result of
the model adaptation to the measurements in presence of BV leakage, in particular the
varying ratio T3/P3 due to a change in operating point. The estimated turbine flow capacity
decreased and then increased again as a result of the model matching scheme. It is possible
to conclude that an abrupt fault occurred, because the changes in Figures 9 and 10 are
very sharp. However, the results from the GPA cannot directly point to the fault type.
The BN layers were in any case able to discriminate between gradual degradation and
abrupt fault, as it can be seen in Figure 11. The two DBNs for gradual degradation did
not react to the sudden change in performance since the probability to jump to a much
higher degradation level was constrained to be very small. The third BN instead identified
a BV leakage (bottom of Figure 11). In the last part, the BN predicted a reduction in the
leakage, consistently with the trends in Figures 9 and 10. This was probably due to the fact
that the power was decreased, before shutting down the machine and inspecting the valve.
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Compressor degradation was also detected in the last minutes before shut-down, probably
erroneously due to a quick load transient.
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3.3. Scenario 3

For the last Scenario, healthy SGT800 measurement data were corrupted by adding
manually a sensor fault. The fault was simulated in this way by subtracting a fixed value
from the real measurement, to simulate a sudden bias equal to 12.5% of nominal T3 and
P3 values. The residuals of the measured variables after the manual fault injection are
presented in Figures 12 and 13 for T3 and P3 fault, respectively.
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As expected, the BNs for compressor degradation, turbine degradation, and BV
leakage did not detect any anomaly. The BN for sensor faults instead detected the correct
faults after the injection time, as illustrated in Figures 14 and 15.

According to the scheme presented in Figure 2, the first diagnostics layer requires
four functioning sensors for the adaptive model to estimate the performance deviation
factors. If one of the four sensors (T3, P3, T5, and W2) is faulty, the step 1 in the diagnostics
scheme cannot proceed, because a square Jacobian matrix cannot be built for the analysis.
Therefore, the method suggested in [37] was implemented to remove one performance
deviation factor from the matching scheme and perform the GPA with a 3 × 3 matrix.
The method from [37] established that ∆ηc (compressor efficiency) should be removed
in case of T3 sensor fault, while ∆ηt (turbine efficiency) was to be dropped in case of P3
sensor fault. The previous values of ∆ηc and ∆ηt were instead used as constant inputs,
respectively. T3 and P3 were then calculated in step 2 as normally, with the three current
estimated deviation factors from step 1 and with the constant factor from the previous time
step. The calculated values are compared with the real ones in Figures 16 and 17.

Even with a sensor missing from the matching scheme, the model was still able to
produce suitable residuals for the underneath BNs. As depicted in Figure 16, the error
between calculated and real T3 was below 2 K (less than 3%), while the one for P3 was
below 15 kPa (or less than 7%). In conclusion, the BNs could still provide information
about the status of the machine while the faulty sensor gets to be replaced.
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3.4. Adaptability to Different Machines

In the previous Scenarios, the diagnostics system was applied to a single machine at
a time, either a simulated one or a real one. Therefore, its application was demonstrated
only on two gas turbines of the same class. In this Section, results are presented for the
validation of the method on 2000 machines. The different engines were simulated with
the gas turbine model, by performing Monte Carlo sampling on Gaussian distributions
for efficiency and flow capacity of each rotating component, with 3σ equal to 0.5%. Since
different machines degrade at different rates, the ratio ∆w−1

∆η was varied according to a
uniform distribution between 1 and 2. The same fault types as in Scenarios 1 were tested for
each of the 2000 machines. The results of the method accuracy are summarized in Table 4,
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where it is possible to see how the proposed approach can be applied to different units and
maintain the desired accuracy. In Table 4, the true positive rate refers to the data points
correctly classified as faulty, the false positive rate (or false alarms) represents healthy data
points erroneously classified as faulty, while the true negative rate refers to the healthy data
point correctly classified and the false negative rate to the faulty data point erroneously
classified as healthy.
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Table 4. Diagnostics system accuracy for fleet data.

Fault Type True Positive
Rate

False Positive
Rate

True Negative
Rate

False Negative
Rate

CF 99% 4% 96% 1%
TE 99% 3.5% 96.5% 1%
BV 99% 0% 100% 1%

4. Conclusions

A multi-layer, hierarchical approach was proposed in this work to detect and iden-
tify simultaneous gas path components degradation and sudden faults in sensors and
components. The approach was based on Bayesian network (BN) models, both static and
dynamic, and the multi-layer feature allowed to limit the size of conditional probability
tables (CPTs) in each BN and still monitor multiple faults simultaneously. The first two
layers of the diagnostics system were composed of a physics-based, adaptive performance
model to correct the data with respect to ambient conditions, operating conditions, and
baseline degradation conditions. Gradual degradation and rapid faults were discriminated
at the BN layers based on the fact that the probability of a sharp performance deviation
due to gradual wear or material deposition was considered almost null. Instead, abrupt
performance deviations compared to the previous condition (be healthy or degraded)
are to be attributed to an abrupt fault such as a valve leakage or a sensor malfunction,
among others.

The proposed system was tested on synthetic and field data, on three scenarios that
comprised of compressor fouling, turbine erosion, bleed valve (BV) leakage, and two
sensor faults. It is important to note that the test was in this way performed on two
gas turbines (a simulated one and a real one) different from the ones used to train the
BN models. While the results from the performance model layers were used to detect a
change in performance, the BNs were used to isolate and identify the correct fault. The
faults were correctly isolated all times and their magnitude identified mostly correctly,
with some small errors due to e.g., presence of noise or model uncertainty. For example,
BV leakage was identified with a lower magnitude for 25% of the time in the simulated
scenario. Nevertheless, the application on real field data showed the potential of this
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approach to aid the plant operators and service staff. The adaptability to different machines
in the fleet was also proven. Overall, the maximum error in identification of the fault
severity was 1% (i.e., a severity just below or just above the correct one was estimated),
but the true positive rate in detection and isolation was around 99% for all cases. A false
positive rate below 5% can be still considered high and needs to be improved. However, it
concerns estimation of low degradation severity, which does not present any requirements
for immediate maintenance actions.

Further, the whole approach was proven to be fairly robust to sensor failures, since the
missing measurement could be estimated by the model, leaving some time to perform the
necessary maintenance actions. Future work needs to assess the impact of the diagnostics
errors and uncertainty on the prediction and planning of future operations, to better
understand the limitations of the presented approach.
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Nomenclature

Acronyms
ANN Artificial neural network
BN Bayesian network
BV Bleed valve
CF Compressor fouling
CPT Conditional probability table
DBN Dynamic Bayesian network
GPA Gas path analysis
GT Gas turbine
H High
IGV Inlet guide vane
L Low
M Medium
N Normal
TE Turbine erosion
VH Very high
VL Very low
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Symbols and Greek Letter
r Residual
S Fault severity
w Flow capacity
z Measurement
η Efficiency
Subscripts
ref Reference conditions
t Time
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