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Abstract: Hybrid aerial underwater vehicles (HAUV) are a new frontier for vehicles. They can
operate both underwater and aerially, providing enormous potential for a wide range of scientific
explorations. Informative path planning is essential to vehicle autonomy. However, covering an entire
mission region is a challenge to HAUVs because of the possibility of a multidomain environment.
This paper presents an informative trajectory planning framework for planning paths and generating
trajectories for HAUVs performing multidomain missions in dynamic environments. We introduce
the novel heuristic generalized extensive neighborhood search GLNS–k-means algorithm that uses
k-means to cluster information into several sets; then through the heuristic GLNS algorithm, it
searches the best path for visiting these points, subject to various constraints regarding path budgets
and the motion capabilities of the HAUV. With this approach, the HAUV is capable of sampling
and focusing on regions of interest. Our method provides a significantly more optimal trajectory
(enabling collection of more information) than ant colony optimization (ACO) solutions. Moreover,
we introduce an efficient online replanning scheme to adapt the trajectory according to the dynamic
obstacles during the mission. The proposed replanning scheme based on KD tree enables significantly
shorter computational times than the scapegoat tree methods.

Keywords: underwater vehicle; hybrid aerial underwater vehicle; informative path planning

1. Introduction

Both unmanned aerial vehicles (UAVs) and unmanned underwater vehicles (UUVs)
are widely applied in civil and military fields. However, a single UAV or UUV cannot
go on multidomain missions, such as mapping of isolated water regions, multidomain
oceanic monitoring, and inspections of submersed structures and ship hulls [1]. As a result,
a hybrid aerial underwater vehicle (HAUV) that can operate both underwater and aerially
would be helpful to accomplish such tasks. Thus, interest has risen in HAUVs.

In recent years, HAUV research has focused more on two subsets of HAUV: HAUVs
based on fixed-wing or rotary-wing UAVs combined with UUVs’ underwater functionality.
Weisler et al. first achieved aerial flight, underwater cruising, and cross-domain transition
with one vehicle [2]. Later, Stewart et al.’s work added an aft water rotor to optimize
underwater motion on multi-domain missions [3]. As for rotary-wing HAUVs, which have
shown good control potential for multidomain emissions, they were first put forward by
Drews et al. in 2014 [4]. Later, some works combined rotary-wing UAVs with underwater
rotors to allow underwater operation [5–7]. These HAUVs showed controllable and smooth
operation; nevertheless, they are limited by their UAV-based structures. Our previous work
was inspired by gliders, which have proven to be the most efficient UUVs [8]. Our HAUV
was a combination of underwater gliders (UGs) and UAVs. We showed the functionality of
underwater gliders in both vertical and level flight.

Many works on HAUV have been performed recently. However, most of them focus
on the control system and structural design. Few studies on path planning for HAUVs
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in multidomain environments have been proposed. These vehicles have different work
modes in various domains, and are supposed to conform to various constraints in different
environments. Therefore, they require copmlex path planning and trajectory generation
strategies compared to other vehicles, such as UAVs and USVs. Indeed, the trajectory
planning for HAUV is of great significance. Therefore, we propose a way to grasp and
cluster the information from the environment and find an energy-saving mission trajectory
for an HAUV.

1.1. Informative Path Planning

The developing requirements of robot monitoring have given rise to the challenge
that the equipped devices are subject to limited resources, such as mission time and energy.
Therefore path planning for vehicles to maximize the information gathered is of significance.
In the aerial environment, many works have been done to maximize information gathering.
2D spaces were divided into several cells to find solutions for coverage paths in [9,10]. The
cells can be trapezoidal or boustrophedon [11–13]. Finding the shortest and most efficient
sequence of cell visiting, and generalizing the path, was proven to be NP-hard and was
formulated as a TSP problem by Lewis et al. [14]. Vandermeulen et al.’s work [15] decom-
posed the environment into ranks. They solved multiple TSP problems on the ranks to
minimize the number of turns taken by robots, which relates to the mission time. Tokekar
and Yu reduced the problem to a generalized traveling salesman problem (GTSP). They
could obtain optimal solutions in reasonable durations. They also proposed a strategy
with which to recharge UAVs by UGVs during flight [16]. Their former work proved
the GTSP solver GLNS performs better in terms of speed and path generation than other
TSP solvers [17]. Our former studies [18–24] involved a lot of research on path planning
in underwater and sea surface cases. Concerning the sea surface, Yuanchang Liu et al.’s
work [25–27] presents several algorithms for single and multiple unmanned surface ve-
hicles. Ref. [28] proposed a dive planning method to monitor underwater environments.
Hollinger et al. [29] proposed a method to efficiently inspect underwater structures using
AUV, based on Bayesian active learning. Cao et al. [30] presented a method to decompose
the environment into several subspaces and solve the problem in two levels: sequence
of subspace visiting and detailed coverage in subspaces. To efficiently grasp information
from the environment, Jing. et al. [31] directly planned and optimized paths via a video
stream gathered by a UAV. Vidal E. et al. proposed a novel algorithm based on Octree to
achieve full coverage of unknown environments [32]. In [33], Zacchin L. et al. proposed a
sensor-driven, two-level seabed path planning solution for AUV, which is available for any
acoustic or optical sensor. In [34], Paull L. et al. presented a method that was combined
with a new concept coined branch entropy based on hexagonal cell decomposition to
achieve efficient multi-objective optimization.

However, the operating environment for an HAUV is simple neither underwater nor
aerially. We consider the surroundings of the HAUV to be simple in 3D when few obstacles
exist in the environment, and safety constraints mainly come from the terrain. Considering
a multidomain mission for an HAUV, simple path planning is not sufficient. In addition,
some constraints should be set according to the HAUV’s motion capabilities. Considering
the motion capabilities of a UAV, Kumar and Mellinger developed an algorithm to minimize
the fourth derivation of a position function (snap). They reduced the cost of a flight and
could satisfy constraints on safety, velocity, and acceleration as well [35]. Based on the snap
minimizing methods, Chen set collision-free flight corridors and generated trajectories
in corridors to ensure flight safety [36]. Similarly, Gao et al.’s work set corridors for
UAVs, but with a fast marching-based method. They also used a Bernstein polynomial to
represent trajectories piecewise [37]. Gregory Hitz et al. [38] proposed a CIPP algorithm
that optimizes a parametrized path in continuous space.

All the previous works we mentioned focused on UUVs and UAVs operating with
simple domain path planning. However, multidomain missions such as mapping isolated
water regions and inspecting submersed structures bring challenges to such vehicles. A
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heterogeneous vehicle team of a UAV and a UUV is currently used to accomplish the
multidomain tasks according to [39]. However, this kind of strategy is expensive and
inefficient [40]. Therefore, a framework of information clustering, path planning, and
trajectory generation for HAUVs, which are capable of operating well both in the air and
underwater, will be helpful for multidomain missions.

1.2. Path Planning with Unknown Obstacles

Aside from the planned path for a HAUV, some unknown obstacles, such as animals,
floating trash, and branches, could appear in real-time missions. As a consequence, a
path replanning method is a requirement for an HAUV path planning framework. To
replan a path, searching for a new collision-free spot near the obstacle in question and
inserting it into the original path would be helpful. Finding nearby collision-free spots
can be generalized as a k-nearest neighbors (KNN) problem. Our method solves the
problem by reducing the KNN to a nearest neighbor search (NNS). The concept of KNN
was firstly presented by Fix and Hodges in 1951 [41]. Later, KNN was widely used in
data mining, computer version, agriculture, etc. Many studies have been performed to
prove the efficiency of the results of KNN algorithms [42–44]. When reduced to NNS,
solutions are mainly based on three methods: space segmentation, hash algorithm, and
graph theory. Space segmentation by trees and cluster algorithms perform well. A KD tree
can be quickly constructed and used to search for a target (O(logN)) [45,46], but inserting
new elements into a KD tree may lead to unbalance. Cluster algorithms, k-means, GNAT,
the anchor hierarchy, the cover tree, and spill-tree have been used to solve that problem,
but these algorithms did not show decisive advantages over search trees [47]. In 1998,
Indyk and Motwani presented LSH (locality sensitive hashing) [48], which can be used to
cope with tremendous data. In recent years, many studies based on graph theory have
been performed. Jing et al. [49] built a neighborhood graph for data subsets to achieve
efficient and accurate KNN graph construction.

1.3. Contributions

This paper proposes a method to gather information from a given environment and
find an energy-saving mission trajectory for the HAUV to cover this target space. The core
contributions of this work are:

1. Presenting a framework of multidomain path planning for HAUVs, including in-
formation clustering, path planning trajectory generation, and unknown obstacle
avoidance in static environments and environments with current fields.

2. Addressing a heuristic algorithm with a weighted edge for multidomain path plan-
ning based on general large neighborhood searching and k-means.

3. Presenting a trajectory generation method combining B-spline with KD tree. The out-
put trajectory is ensured to be smooth and safe, and conform to different constraints,
underwater or aerial.

4. Presenting a method to avoid random unknown obstacles based on the scapegoat
tree and KD tree.

The remainder of this paper is organized as follows: Section 2 formulates the math-
ematical models and presents the theory of path planning, replanning, and trajectory
generation methods. Section 3 gives a detailed description of the path planning and replan-
ning algorithm. In Section 4, the trajectory generation scheme is outlined. The experimental
results and discussion is proposed in Section 5. Finally, in Section 6 our findings are con-
cluded, and avenues of future work are presented. The mathematical symbols denoted in
this paper are as summarized in Table 1.
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Table 1. Nomenclature.

Variable Description Variable Description

P The whole path. Φ{p1, p2, . . . pi, . . . , pn}
Φ is denoted as the set of target
spots the while pi is coordinate of
the ith target spot in path.

sub Pi

The ith sub path in P, each sub path
contains 5–10 path segment, which
denote the length of path the HAUV
can detect when path re-planning.

Γi
The path segment between pi and
pi+1.

Di The length of Γi. ξi
The overall weighted edge of ith
path segment.

ξsur f /air/sea/c
The overall weighted edge of
surface/air/water/current fields. vi

The velocity with which HAUV
move from pi to pi+1.

ai
The acceleration with which HAUV
move from pi to pi+1. vi

max
The maximum velocity with which
HAUV move from pi to pi+1.

ai
max

The maximum acceleration with
which HAUV move from pi to pi+1. OBS{obs1, obs2, . . . , obsk}

OBS is the set of randomly
appeared unknown obstacles, and
obsj is the set of all spots’
coordinate of the jth obstacle.

obsj

{
obs1

j , obs2
j , . . . , obsq

j

} Coordinate of all the spots in the jth
obstacle. CIR1

s /SPH1
s

The minimum circumscribed
circle/sphere of obss.

CIR2
s /SPH2

s

The collision free circle/sphere out
of obss, which is an extension of
CIR1

s /SPH1
s

Dj
obs

The shortest distance between the
obstacle obss and SPH2

s .

Dmi
The minimum distance between
Pm+i and obss. tertree KD-tree constructed by terrain map.

obtree KD-tree constructed by obstacles. Fx,y,z
t The function of trajectory.

α
The control parameter of scapegoat
tree. TE The spots set of terrain map. (The

barriers.)

Ω{s1, s2, . . . , sm}
Ω is denoted as map of informative
spots while {s1, s2, . . . , sm} are the
coordinates of those spots.

Yair/sea
The force HAUV need to overcome
without current fields.

Yairc/seac
The force HAUV need to overcome
with current fields. vc The velocity of currents.

Sair wing area of the HAUV. ρair/sea Density of air/sea water.

Cair/sea
Coefficient of lift/fraction in air/sea
water. vehL The length of HAUV.

COVi
The covariance of the ith
informative spots group. ex,y,z

The expectation of the ith
informative spots group.

xmax/ymax/hmax
The size of terrain map in
simulation. η

The control parameter of current
fields checking.

2. Problem Formulation

In this paper, we address the problem of multidomain path planning and trajectory
generation. We consider the cases of an HAUV moving underwater, aerially, and between
the two media (water and air). The vehicle is required to follow a low-cost, safe, and smooth
trajectory within its motion capabilities when random obstacles and disruptions exist.
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For n clusters of information spots, our goal is to pick one target spot from each group,
and minimize the energy cost for all spots traversed. The whole mission is required to
conform to all constraints in static and dynamic environments, and the HAUV’s motion
capabilities. We divide the operation modes of each path segment Γi between pi and pi+1
into three modes according to the specific environment the trip involves.

In each mode, we set weighted edge ξi, to describe the energy cost per meter during
the mission. Our goal is to minimize the cost of the whole path and then generate a smooth,
safe trajectory that conforms to velocity and acceleration constraints in both static and
dynamic environments. Let the obstacles in the environment be OBS; let Fx,y,z

t be the
output trajectory. Let Di be the distance of the path segment between target spot pi and
pi+1. The problem can be generalized as in Equation (1):

minimize:
n−1

∑
i=1

ξiDi

s.t.: vi ≤ vi
max

ai ≤ ai
max

Fx,y,z
j ∩OBS = ∅

Fx,y,z
j ∩ TE = ∅

(1)

Figure 1 gives an example of a path segment within a whole path:

Figure 1. The path segment will be weighted according to the environment.

Along each path segment Γi, the HAUV should move with the corresponding maxi-
mum velocity and acceleration. Additionally, the final output trajectory Fx,y,z

t should be
free from obstacle spots, which contain the unknown obstacles OBS and terrain barriers TE.

2.1. Motion and Structural Parameters of the HAUV

The HAUV discussed in our work is an integration of fixed-wing UAVs, rotary-wing
UAVs, and UGs [8]. Details are illustrated in Figure 2. The mass of the HAUV is 15 kg, each
wing is 750 mm ∗ 300 mm, and the length of the glider is 1000 mm. The main structures of
the HAUV are fixed wings, rotary wings, and a waterproof container.
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Figure 2. A 3D rendering of the proposed HAUV integrating the features of fixed-wing UAVs,
rotary-wing UAVs, and UGs [8].

Since the HAUV can move both underwater and aerially, the motion modes of the
HAUV can be divided into three categories: underwater, aerial, and transitioning (between
water and air). Figure 3 illustrates the motion of the HAUV.

Figure 3. The three mission modes of the HAUV. The edge weight is different per unit of distance for
each situation: the fulfill per meter underwater is 5 times of that of flying. The motion constraints also
vary: the maximum velocities are: 3 m/s underwater, 10 m/s aerially, and 1 m/s while transitioning
(between water and air). The accelerations are: 2 m2/s underwater, 3 m2/s aerially, and 1 m2/s
while transitioning.

Consider the specific environment of the path between each two spot. The path that
the HAUV visits between target spots pi and pi+1 can be divided into four types. The four
types of path in Figure 4 are as follows.

1. Both pi and pi+1 are underwater;
2. Both pi and pi+1 are aerial;
3. pi is underwater but pi+1 is aerial;
4. pi is aerial but pi+1 is underwater.
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Figure 4. Four types of trip according to the HAUV’s mission mode. A blue arrow illustrates an
underwater path, and an orange one means an aerial one. Regarding when the trip crosses domains,
the intersection point on surface will be inserted into the target spots set.

As the HAUV has different motion capabilities in diverse mission environments,
different dynamic constraints should be set. Considering the experimental data of our
former work, NEZHA, in this paper, we roughly define the motion capabilities of the
HAUV as follows: The aerial velocity of the HAUV can range from 0 to 10 m/s, and it
can range from 0 to 3 m/s under the water. The acceleration can vary from 0 to 3 m2/s
aerially, and from 0 to 2 m2/s underwater. In addition, the HUAV can leave the water with
a velocity no higher than 1 m/s and acceleration no greater than 1 m2/s. Within a fixed
period, the HAUV will move from pi to pi+1. The trajectory should conform to motion and
space constraints.

2.2. Environmental Settings
2.2.1. Information Spots Cluster

In the real world, most of the informative areas can be detected before the mission,
such as those that will be interesting because of chlorophyll and oxygen content. Therefore,
in this work, we assume that the informative spots are known, and a randomly set terrain
map based on a real-world map denotes the seabed. Let n groups of random spots represent
information spots that need to be visited by the HAUV. The HAUV is required to visit
one spot that each spots group must visit. An informative spots map Ω {s1, s2, . . . sm}
can be divided into n groups. The process of picking the target spot in each group can
be generalized to a GTSP problem. Φ {p1, p2, . . . , pi, . . . pn} of the group 1, 2, . . . i, . . . n.
However, the energy cost for each path segment, for every unit of distance, varies with the
type of environment and the HAUV’s mission mode. To solve this problem, we determine
weights for different path segments, which are set as heuristics.

2.2.2. Unknown Obstacle Avoidance

In practical operations, the HAUV is always subject to finite sensing resources; it
cannot monitor the whole path at one time. Therefore, in this work whole path is divided
into several subpaths. In the path P {subP1, subP2, . . . , subPn}, each subpath contains more
than 5 and less than 10 spots. Within the duration of subPi {pm, pm+1 . . . , pm+n}, randomly
shaped obstacles can appear with a certain probability in path segment [pm+i, pm+i+1].
We regard each obstacle as scattered points, and use k-means to find the center of each
obstacle. For obstacles obsj whose distances to the subPi are less than the length of the
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HAUV, collisions happen. All the obstacles can be written as OBS {obs1, obs2, . . . , obsk}.
For the jth obstacle obsj in subPi, all points on obsj are [obs1

j , obs2
j , . . . obsq

j ]. During the

path segment from pm+i to pm+i+1, if obstacle obss exists, let the farthest distance r1
s

from [obs1
s , obs2

s , . . . obsks
s ] be the radius. Then draw a circle CIR1

s , such that CIR1
s is free

of obstacles. Then, extend CIR1
s to CIR2

s , whose radius is denoted as r2
s = vehL + r1

s .
Therefore, the space in CIR2

s will be collision-free for the HAUV. The method in a two
dimensional environment is as shown in Figure 5. Extended to three dimensions, the
strategy also works.

Figure 5. Obstacle avoidance strategy: extend the outer circle of obstacles to CIR2
s and find a free

point set on the circle. If there is no solution found, CIR2
s must be extended again.

Finding the free point set on CIR2
s and picking out one to insert into the path can be

generalized to a KNN problem—a fixed-radius near neighbors problem: picking one lowest-
cost spot from the set and inserting it into the original succession of path spots. If there is
no solution on CIR2

s , the circle CIR2
s must be extended again such that r2

s = vehL + r2
s . In

Section 3.2, we present our method to finding a solution.

2.2.3. Dynamic Environment with Current Fields

During operations both aerial and underwater, the HAUV will always face current
fields. When in the air, the air drag is normally much weaker than the vehicle’s gravity, so
we only consider the lift caused by currents. When there are currents, the lift force is as in
the following Equation (2):

Yairc = 1/2 ∗ ρair ∗ Cair ∗ Sair ∗ (vi + vc)
2 (2)

When the HAUV moves in a static environment, the lift force is as in Equation (3):

Yair = 1/2 ∗ ρair ∗ Cair ∗ Sair ∗ v2
i (3)

where Yair/airc denotes the lift force when the HAUV is in the static environment or current
field, and vi defines the velocity of the HAUV in Γi, which is expressed in m/s. ρair is the
air density, affected by altitude. Sair is the reference area or the wing area of an aircraft
measured in square meters, and Cair is the coefficient of lift, depending on the angle of
attack and the type of airfoil. We roughly set Cair as 1 and ρair as 1.2 kg/m3. When there
are no current fields, vi is the average velocity during the HAUV mission. When currents
exists, v = vi + vc, where vc refers to the currents velocity. The size of our HAUV’s wing
area on each side is 750 mm ∗ 300 mm; therefore, the Sair can be roughly set to 0.1–0.225
according to the direction of currents.
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Likely, in an underwater environment, the power generated by the propeller needs to
overcome the lift and frictional resistance. From our experimental data, for most scenarios,
the lift is much more than resistance, so we only consider the lift and roughly regard the
influence of current in as Equation (4):

Yseac = 1/2 ∗ ρsea ∗ Csea ∗ Ssea ∗ (vi + vc)
2

Ysea = 1/2 ∗ ρsea ∗ Csea ∗ Ssea ∗ v2
i

(4)

where the ρsea is 1205 kg/m3, Ssea is 0.33 m2, and Csea depends on the current fields and the
HAUV’s velocity, we calculate it bt ITTC recommend formula (5), where Re is the Reynolds
number. In Sections 3.1 and 3.2 we will discuss the method to measure the influences of
currents and the solution to avoid them.

Csea =
0.075

(lgRe− 2)2 (5)

3. Multi-Domain Informative Path Planning

The framework of the whole algorithm is shown in Figure 6. The input the presented
framework is scattered informative spots. Through the heuristic GLNS and k-means
solver, the spots are clustered, and the path planning is described in Section 3.1. Then in
Section 3.2, whether unknown obstacles exist is solved, and replanning is explained for
path segments that pass obstacles. The trajectory regeneration based on that path found in
the former section is explained as well.

Figure 6. The framework of the whole algorithm. The inputs of this system are randomly created information spots, obstacle
sets, and current fields. The output is a smooth, safe, low-cost trajectory conforming to all constraints.

To simulate the target motion space, we can randomly create m spots. Both the number
of spots and the positions must conform to a Gaussian distribution. When passing through
the target space, the HAUV has to sample or move to some spot of scientific relevance.
Therefore, a target spot should be selected from all the information spots. Since all the
terrain map is fixed, KD tree treTree stores the environmental information to enable quick
reactions to the NNS problem. An example of this information mapping is in Figure 7.
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Figure 7. Randomly generated information spots. Through KMEANS (MATLAB) the spots were
clustered into several sets. The input for ACO is the center of each set, and the input for GLNS is all
the clustered spots.

To solve this problem, informative spots are divided into K clusters. K is the number
of groups that the HAUV is supposed to visit. We found the solution to our example by
using the KMEANS solver in MATLAB. The result returned contains the group number of
each spot and the geometric center spots c1, c2, . . . , cn of each group. Therefore, the problem
can be formulated by finding a target spot in each cluster, a GTSP problem.

The GLNS algorithm was presented by Stephen L. Smith and Frank Imeson, based on
adaptive large neighborhood searching [50]. They proved that this algorithm is an efficient
solver for the GTSP problem [51]. It was confirmed to be efficient at finding solutions to
GTSP problems in [16].

In this work, we present a method to calculate the energy costs that the HAUV incurs
in different environments based on the 3D Euclidean distance between each pair of target
spots, and set a weighted edge for each distance according to the environment via heuristics.
Based on the KD tree, we regard the replanning of the path segment as a fixed-radius near
neighbors problem. The inputs for our solver are informative spots clusters, and output is
the optimal path.

3.1. Path Planning Based On Heuristic GLNS

A brief description of the GLNS algorithm is as follows: The input for GLNS is a
weighted graph: G(V, E, ω). The graph contains the information of vertices of clusters and
edges. Each round of a GLNS search starts with an initial tour which is randomly selected;
then a vertex will be inserted according to heuristics. After each iteration, the new tour is
accepted or declined based on an annealing criterion, for which either a fixed number of
non-improving iterations is run or warm restarts.

In this study, we set heuristics according to the domain such that the HAUV would
have minimal energy consumption in the various mission modes. The heuristic GLNS
solver was used to find the solution for the optimization problem of the coverage path.
Each information spot in the target space corresponded to a vertex. KMEANS cluster solver
defined the informative spots. Edges were defined as the Euclidean weighted distances
between pairs of spots. The weight of each edge was related to the specific environment.
For comparison, a common TSP solver, the ant colony algorithm (ACO), was also used to
find target spots with the input of center spots c1,2 , . . . cn .

Recall that for each path segment between pi and pi+1, there are four possible types
of mission environment. The energy cost differs when the HAUV is moving underwater,
aerially, and transitioning between the two. According to the experimental data, we can
assume the energy cost of the HAUV moving underwater is five times that of flying per
meter. Let ξsea be the energy weight of the HAUV moving one meter underwater, and ξsea
equals 5ξair. Under such situations, the HAUV can be regarded as a particle, whereas its
length vehL must be considered when it switches medium. Figure 8a,b gives a comparison
between an output path with a weighted edge and a path without a weighted edge. In the
latter situation, the HAUV may choose a shorter path but with a higher energy cost.
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(a) Example of subpath with weighted edge. (b) Example of subpath without weighted edge.

Figure 8. This figure illustrates a comparison between weighted edge and non-weighted edge path
generation with the same spots set. The underwater part of the path is orange, and the aerial part is
green. Without weighted edges, the HAUV will choose a shorter path that is more energy consuming.

While the HAUV switches transport media, the HAUV will be half underwater and
half aerial at a certain point. Therefore, the energy cost weight function can be generalized
as Equation (6):

ξsur f =

(
ξ ∗ L

2 + 5ξ ∗ L
2

)
L

= 3ξ

(6)

For example, to calculate the cost Ci of the trip between pi and pi+1, the first thing is
to find the cross point p′i. Let Dair

i be the distance between pi and p′i, and Dsea
i be that of

pi+1 and p′i. The cost in a static environment is calculated as Equation (7):

Ci =

(
Dair

i −
L
2

)
∗ ξair +

L
2
∗ ξsur f +

(
Dsea

i −
L
2

)
∗ ξsea

= Dair
i ∗ ξair + Dsea

i ∗ ξsea

(7)

Then the cost Ci in a static environment for each spot is put into an iteration cycle of
removal and insertion functions in the GLNS solver as a parameter.

As we mentioned in Section 2.2.3, we consider the lift for flight and resistance and
lift underwater, based on Equation (2), Equation (3), and Equation (4). We can roughly
calculate the weighted edge parameter caused by currents by Equation (8):

ξair/water
i

ξc
i

=
Yairc/seac −Yair/sea

Yair/sea
(8)

We roughly regard both sides of Equation (8) as equal. Therefore, the overall cost
function can be written as Equation (9):

Ci = Dair
i ∗ ξair + Dsea

i ∗ ξsea + Di ∗ ξc (9)

Given the best path Φ, if the HAUV is required to stop at a specific location and
perform some function, such as sampling, there is no need to generate a smooth trajectory.
For each trip, the HAUV only needs to accelerate from 0 m/s with an acceleration equal
to 0 m2/s. Then, it must slow down to 0 m/s. At each spot, the HAUV can start with an
arbitrary angle. Additionally, it should obey the trapezoidal velocity planning strategy to
achieve the shortest mission time and lowest energy expenditure.

3.2. Obstacle Avoidance Path Re-Planning

When moving in open areas, the HAUV may encounter some obstacles which cannot
be detected beforehand. For example, the trash and creatures in the sea, and birds in air. To
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take such scenarios into consideration, paths will need to be re-planed. Furthermore, the
HAUV should also avoid strong currents. Therefore, we discuss a path replanning method
in this section to solve such problems.

3.2.1. Path Replanning in Current Fields

As currents have different directions, their effects on the HAUV’s path can be positive
and negative. We firstly calculate the absolute value of current fields per meter of movement.
Then its influence (positive or negative) is calculated in regard to the intersection angle βi
between the current vector and subpath vector. Each subpath between pi and pi + 1 will be
traversed by step jx,y,z:

{
pi(xi, yi, zi), pi+j(xi + jx, yi + jy, zi + jz), . . . , pi+1(xi+1, yi+1, zi+1)

}
.

We use indicator η to evaluate the current field. Once ξ
ji
c is greater than ηξi, the weighted

edge ξ
ji
c and coordinate pi+j are recorded as obstacles. The whole framework can be

generalized as shown in Figure 9:

Figure 9. The input of the algorithm is a subpath of the overall path, and the output is the recorded
area having strong currents. In the next Section 3.2.2, we discuss the replanning method to avoid the
strong currents and obstacles.

3.2.2. Obstacle Avoidance

Recall our former assumption of unknown obstacles: we created irregularly shaped
obstacles in random locations. The detailed strategy is shown in Algorithm 1.
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To prevent collisions, we need to search for free spaces surrounding the obstacle. To
replan the whole path to be as short as possible, the replanned path segment should be as
close to the former path as possible. In other words, the newfound points should be as near
as possible to obstacles but ensure no collisions at the same time. To store the information
of obstacles, we use a scapegoat tree to insert them into terTree. We update the treTree
with the scapegoat tree, or simply reconstruct another KD tree obTree with points on the
obstacle’s surface.

Based on space-partitioning, the KD tree is a data structure that is able to organize
points in k-dimensional space. Since the KD tree is balanced, inserting points into it may
lead to very deep sorting. However, reconstruction is unnecessary and increases the time
cost for the whole algorithm. We solve this problem using the scapegoat tree. The scapegoat
tree uses reconstruction criterion α to ensure the balance of a tree. When a new point is
inserted into a tree, trials are conducted to check if any sub-tree contains too many nodes
in one side. Our approach to record unknown obstacles is demonstrated in Algorithm 2.
We get a flat node from the sub-tree by orderly traversal.

Algorithm 1: Generate the randomly unknown obstacles.

Input: Origin Tree of terrain: treTree;
segment path: segpath;
number of spots in segpath: num;
length of vehcle: vehL;
size of corridor for spots in segpath
Output: obstacles spots: obstacles;
center of obstacles: obstacle_C;

1 for i = 1 to num− 1 do
2 q← rand number in [0, 1]
3 if q >= obstacle_rate then
4 odist← the distance between segpathi and segpathi+1
5 calculate the center obstacle_C of obstacle
6 that randomly located between segpathi and segpathi+1
7 1← random number in [0, 1]
8 obstacle_cx,y,z ← l · (segpathx,y,z

i+1 − segpathx,y,z
i ) + segpathx,y,z

i

9 j = 1← number of obstacles appear in seg_path;
10 for i = 1 to j do
11 k = 1
12 for ϕ = 0 : π

10 : 2π do
13 for θ = 0 : π

10 : π do
14 create obstacles with random size
15 under polar coordinates:
16 randrk ← random number in [0, 1]
17 obstaclek

x = obstacle_Ci
x + vehL · randrk · sin θ cos ϕ

18 obstaclek
y = obstacle_Ci

y + vehL · randrk · sin θ sin ϕ

19 obstaclek
z = obstacle_Ci

z + vehL · randrk · cos θ

20 return Obstacle, Obstacle_C;

For obstacle obss in the path segment between pm+i and pm+i+1, a circumscribed
sphere SPH1

s with the farthest distance r1
s from [obs1

s , obs2
s , ...obsk

s ] as the radius can be drawn
out of SPH1

s , which is free of obstacles. Let SPH2
s be the extension of SPH1

s , whose radius is
denoted as r2

s = vehL + r1
s . Spots on SPH2

s are the nearest spots to obstacles that can ensure
safe flight for the HAUV. With the purpose of generating a smooth, safety trajectory, we
tend to form corridors to record free space, which are used as space constraints (as shown
in the next section). Here we focus on the approach to calculate specific size parameters
of corridors. A trajectory can be generated only if all corridors coincide. With unknown



Machines 2021, 9, 278 14 of 30

environmental information recorded, let Dj
obs be the shortest distance between obstacle

obss and SPH2
s . Dmi is denoted as the minimum distance between pm+i(xm+i, ym+i, zm+i)

and obss. The side length Lmi of each cube corridor is defined as follows:

Lmi =
√

2 ∗ Dmi (10)

As illustrated in Figure 10, a sphere with a radius equal to Dmi is circumscribed to
mark free space.

Algorithm 2: Scapegoat_insert.

Input: spots to be inserted: obstacle;
The orgin tree: treTree;
control parameter: α
Output: newly constructed tree: treTree

1 N← number of obstacle spots
2 for i = 1 to N do
3 Tree← insert obstaclei into Tree
4 for nodei in nTree do
5 leftset← number of elements in nodei’s left subtree
6 rightset← number of elements in nodei’s left right subtree
7 Allset← leftset + rightset
8 if le f tset/Allset ≥ α or < 1− α then
9 flat data← ergodic subtree of nodei

10 nudeTree← KD_constructed (flat data)
11 Tree← use nodeTree to replace nodei’s subtree in Tree

12 return

Figure 10. Generating the corridor size for target spots found on SPH2
s . If the corridor intersects with

the p′m+is and p′m+i+1s corridor, then the spots will be recorded in the target spots set.

We use a square instead of a circle to record the free space, because it can easily set
constraints at each axis out of x, y, z in Cartesian coordinates, as is shown in Figure 11.

Therefore, the trajectory between pm+i and pm+i+1 exists only when:
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Dj
obs√
2

+
Dmi√

2
≥ |xob − xm+i|

Dj
obs√
2

+
Dmi√

2
≥ |yob − ym+i|

Dj
obs√
2

+
Dmi√

2
≥ |zob − zm+i|

Dj
obs√
2

+
Dmi+1√

2
≥ |xob − xm+i+1|

Dj
obs√
2

+
Dmi+1√

2
≥ |yob − ym+i+1|

Dj
obs√
2

+
Dmi+1√

2
≥ |zob − zm+i+1|

(11)

Figure 11. Two-dimensional corridors of pnew and p′m+is and p′m+i+1s. In this condition, if the
corridor of pnew intersects with the p′m+is and p′m+i+1s corridor, then the spots will be recorded as
part of the target spots set.

The points that satisfy the geometric constraints are recorded in expected points set
obset. Given a large enough graph map, each obstacle obss should have at least one such
set of points obsets. The method of searching available points on a collision-free sphere is
demonstrated in Figure 12.
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Figure 12. Algorithmic framework of obset (the set of collision-free spots on SPH2,3,..
s ) searching.

With the coordinates and corridor sizes of spots in the original path segment, the program will run
until spots expected on SPH2,3..

s are found. Let the expected spots be an obset.
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If no expected points on SPH2
s are found, the radius R will be extended by step size

r, and searching will keep going until at least one expected point is recorded. The flow
chart of the whole obstacle avoidance method is shown in Figure 13a (sacpegoat tree) and
Figure 13b (reconstructing trees).

(a) Scapegoat tree (b) reconstruct tree

Figure 13. Flow Chart For obstacle avoidance, both the scapegoat tree and KD tree reconstruction
methods are illustrated. In the scapegoat tree method, the obstacle spots are inserted into the original
treTree, whereas the replanning method constructs a new KD tree from obstacle spots.

The inputs of the scapegoat tree are the coordinates of obstacle spots, the centers of the
obstacles, the path segment, and the original treTree. After all obstacle spots are inserted
into treTree, the radius of the collision-free sphere will be updated until expected spots are
found. Obstet contains all the expected spots and is the output of this part of the program.
Details are shown in Algorithm 3. On the other hand, the replanning method constructs a
new KD tree from obstacle spots, as shown in Algorithm 4.
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Algorithm 3: Use scapegoat tree to get collision-free spots around obstacles.
Input: Obstacle, Obstacle_C,
segpath; treTree;
Output: Clusters of collision free sets around obstacles: obset;

1 N← number of obstacle spots
2 for i = 1 to N do
3 nTree← Scapegoat_insert (obstaclei

x, obstaclei
y, obstaclei

z);

4 NC← number of spots in obstacle_C
5 R← vehL
6 while obset to empty do
7 R← R + vehL
8 for θ = 0 : π

10 : π do
9 for ϕ = 0 : π

10 : 2π do
10 setx = obstacle_Ci

x + R sin θ cos ϕ

11 sety = obstacle_Ci
y + R sin θ sin ϕ

12 setz = obstacle_Ci
z + R cos θ

13 Target← (setx, sety, setz)
14 setdist← kd_search(Target, nTree)
15 let setdist /

√
2 be the size of

16 Target’s corridor;
17 if Target’s corridor coincide with neighboor spots’ in seg_path then
18 obset + = target

19 return Obset

Algorithm 4: Reconstructing a KD tree for each obstacle.
Input: obstacle; obstacle_C
Output: obsets, KD tree constructed by obstacles: OBTree, treTree

1 OBTree← KD_construction (obstacle)
2 while obset is empty do
3 R← R + vehL
4 for θ = 0 : π

10 : π do
5 for ϕ = 0 : π

10 : 2π do
6 setx = obstacle_Ci

x + R sin θ cos ϕ

7 sety = obstacle_Ci
y + R sin θ sin ϕ

8 setz = obstacle_Ci
z + R cos θ

9 Target← (setx, sety, setz)
10 Redist1← KD_search(Target OBTree)
11 Redist2← KD_search(Target, Tree)
12 redist←minimum in Redist1 and Redist2;
13 let setdist /

√
2 be the size of

14 Target’s corridor;
15 if Target’s corridor coincide with
16 neighboor spots’ in seg_path then
17 obset + = target

With obset determined, our best path is then updated as Φ {p1, p2, . . . obsets, . . . pn+1}.
The problem is then extended to a GTSP problem again: picking a sequence of spots within
the n + 1 group. All these groups of spots except obset contain only one spot, while obset
contains all the available spots on the free sphere. After that, an updated best path Φ
becomes the input for the trajectory generation algorithm.
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4. Trajectory Generation

With a sequence of target spots, our goal is to find a trajectory that holds the following
properties: For each trip Γi between pi and pi+1, the HAUV should work within its
motion capabilities. The whole trajectory must be collision-free; the position, velocity, and
acceleration at each spot pi are continuous.

Therefore, the function polynomial ft that denotes the position of the HAUV should
be subject to such constraints. Furthermore, we use methods to minimize the snap of ft
and minimize differential thrust to make the whole trip maximally efficient. Therefore,
the problem is converted to a convex problem. using a Bernstein basis that conforms to
the former constraints to represent piecewise trajectory, the output will be guaranteed to
satisfy motion, safety, boundary, and continuity requirements.

4.1. Bézier Curve

We use a Bernstein polynomial basis to represent each trip between two target spots.
The position of HUAV for each trip in each dimension out of [x, y, z] can be written as:

f x,y,z
j (t) =

u

∑
i=0

ci

(
u
i

)
∗ ti ∗ (1− t)u−i (12)

Since variable t of Bernstein polynomials is defined on a fixed interval [0, 1], as in [37],
we use scale s to scale the parameter time t to an arbitrarily allocated time for each segment.
Then the whole trajectory that contains n piecewise trajectory with the degree of u can be
generalized to Equation (13). In the following part of this section, we will briefly use F to
represent the whole trajectory, and f j to describe the jth piecewise trajectory as well.

Fx,y,z(t) =



s1 f x,y,z
0

(
t−T0

s1

)
, t ∈ [T0, T1]

s2 f x,y,z
1

(
t−T1

s2

)
, t ∈ [T1, T2]

...
sn f n

x,y,z

(
t−Tn−1

sn

)
, t ∈ [Tn−1, Tn]

(13)

We set the time Tj to demonstrate the time in which the HAUV is supposed to achieve
the path segment, by assuming the HAUV travels with trapezoidal velocity, which will be
introduced in the following section.

4.2. Constraint Settings
4.2.1. Motion Constraints

As we mentioned before, the trip Γi between pi and pi+1 may not be in a single
domain. Considering the specific environment between each pair of spots, the mode
of travel for the HAUV between pi and pi+1 can be divided into four types. Further-
more, the velocity and acceleration should be set pre-mission according to the modes:
underwater, aerial, transitioning(betweenwaterandair). Given the hodograph property of
the Bézier curve—that the derivative F′ of the trajectory function F still satisfies the
constraints—the motion capabilities of the HAUV involving consideration of the con-
trol points

{
c′1, c′2, . . . , c′n

}
of F′t are denoted as:

c(n)i = n ∗ (c(n−1)
i+1 − c(n−1)

i ) (14)

As F illustrates the trajectory, velocity can be determined by F′j , and acceleration
can be determined by F′′j . Therefore, for each piece of trip the motion, constraints can be
generalized to:

|vk
max| ≥ n · (ck+1 − ck)

|ak
max| ≥ n · (n− 1) · (ck+2 − 2 · ck+1 + pk)

(15)
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The constraints of velocity and acceleration are taken into consideration in this way.

4.2.2. Safety Constraints

To guarantee the safety constraints, we use flight corridors to illustrate safe zones
for the HAUV; in these corridors, it can move safely without collision. Since most of the
obstructions in the underwater environment come from the terrain of the sea bed, by
constructing a KD tree treTree for all known terrain information TE, we can quickly figure
out the shortest distances disti between the pi and the obstacles’ spots mi∈TE. By setting
a corridor whose width equals disti, the safety of the trajectory is ensured. However, for
some spots far away from obstacles or terrain barriers, such constraints may be too loose.
In this case, let di be the shortest distance between pi and its neighboring spot/spots. We
define the smaller one as disti and di as the width Wi of the ith corridor.

4.2.3. Time Allocation

To allocate time, we assume HAUVs travel with trapezoidal velocity: HAUVs always
move at maximal acceleration. To enable an HAUV to cover all the target spots, we allow
the duration to be as flexible as possible, assuming the HAUV accelerates from 0 m/s at
each spot. For each target spot pi, we quickly search the widths of corridors by the former

methods. Let Di =
2v2

max
amax

be a criterion that demonstrates the distance the HAUV covers
when it moves at maximum velocity and acceleration. If disti ≥ Di, the HAUV accelerates
until maximum velocity and then slows down to 0 m/s at the destination. It cannot cover
the whole lengths of most trips that way, so we assume that the HAUV moves at maximum
velocity for a while and then slows down. Otherwise, the HAUV will not have enough
time to accelerate to full velocity, so we assume it keeps moving at maximum acceleration.
Therefore, reasonable corridors and time duration have been set for trajectory generation.
Details are in Algorithm 5.

Algorithm 5: Arbitrary time duration t1, t2, ..., tn for HUAV to travel through spots.
Input: The sequence of spots Φ;
The maximum velocity,vmax,accelerateamax;
The nearest distances between each spots and obstaclesdist1, dist2, ..., distn;
Output: Time duration T1, T2, ..., Tnfor each trip;

1 nseg ← length of Φ;
2 for i=1 to nseg do
3 calculate Di = 2 ∗max v2/amax
4 if Di>disti then
5 ti = v2

max/amax;
6 else
7 ti = 2

√
disti/amax

8 return t1, t2, ..., ti;

4.2.4. Continuous Constraint

During a real-time operation, the position, velocity, and acceleration at the spot pi
must be continuous to make the curve consecutive:

f j(Tj) = f j+1(Tj)

f (1)j (Tj) = f (1)j+1(Tj)

F(2)
j (Tj) = F(2)

j+1(Tj)

(16)

With all the constraints mentioned above, we used the QP-solver in MATLAB to seek
control points in each piece of the trajectory that minimized the snap of the trajectory function:
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minimize : F(4)
t (t) (17)

The output trajectory function is discussed in Sections 5.1.2 and 5.2.2. The velocity
and acceleration data are illustrated in Section 5.1.3.

5. Simulation Results

Through simulations, we evaluated the efficiency of the proposed algorithm and drew
conclusions about motion control parameters: velocity and acceleration of the whole trip.
All experiments were performed in MATLAB 2018a in Windows 10 on a computer with Intel
i7-750U, 3.5 GHZ, and 8GB RAM. Based on fractional Brownian motion, we drew several
3-dimensional maps via a simple algorithm with a strictly geometrical interpretation.

The inputs for our algorithm were k groups of information spots in a map of size
xmax ∗ ymax ∗ hmax. Spots in each group obey a Gaussian distribution. For each dimension
out of x,y,z, the covariance COVi for the ith group is denoted as COVi = hmax/2 ∗ r, where
r means a random real number varies from 0 tp 1. The expectations ei

x,y,z are explained in
Equation (18):

ei
x = xmax ∗ rand(K, 1)

ei
y = ymax ∗ rand(K, 1)

ei
z = hmax ∗ rand(K, 1)

(18)

The number num that describes the amount of spots that each group contains is also
randomly defined as an integral number at given ranges: num ∈ [1, 2xmax].

Furthermore, we set a case that take the current fields into consideration. The current
fields are created based on real-world data and have velocity in 3 dimensions. They may
cost more or less energy cost of the HAUV mission, which refers to the direction and value
of the currents surrounding the HAUV. An example of the current fields in our work is as
Figure 14.

Figure 14. An example of current fields. The field are for underwater and aerial environments. We
made the assumption that the surface of the water will remain flat during transitions of the vehicle
from air to water, and vice versa.

5.1. Multi-Domain Coverage Planning in Static Environments
5.1.1. Path Searching

Firstly we clustered the random spots into groups via KMEANS solver. Then, the
coordinate and set number of each spot were put into the GLNS algorithm. The coordinates
of the center of each spot were the input of ACO.In our work, the parameters selected for
ACO were as in Table 2.
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Table 2. The parameters chosen for the ACO in this work.

The Parameters Value

Number of ants 75
Volatilization of pheromone trail 0.2

Influence of pheromone 1
Influence of heuristic values 4

The constant Q 10
The max times of iterations 100

Heuristic function 1/D; where D is the weighted distance
between two spots.

A comparison is illustrated in Figure 15. The output of GLNS is shorter than that
of ACO.

(a) The output path of ACO and KMEANS (b) The output path of GLNS and KMEANS

Figure 15. A comparison of the paths generated by ACO and GLNS. In this scenario, 189 spots were
divided into eight groups. The HAUV began at one spot and went back to the starting spot when the
mission was finished. With the conditions in the table above, the total length of the path found by
ACO was 719.0682 within 1.037 s, whereas GLNS’s path was 528.578, found in 3.0140 s.

The total weighted distance of the path output by GLNS is much shorter than that of
ACO, whereas ACO was faster. Furthermore, we present the weighted lengths of paths
under five scenarios. The numbers of sets and information spots and lengths of GLNS and
ACO outputs are in Table 3.

Table 3. The distances of GLNS and ACO paths. On average, the paths of ACO were 1.6587 times the
weighted lengths of those of GLNS.

Sets In f ormation Spots GLNS ACO

5 25 209.48 390.795
10 205 564.75966 909.442
15 426 640.2459 1076.1183
20 421 197.42732 199.3851
25 525 769.062302 1373.5974

5.1.2. Trajectory Generation

The output paths of GLNS and ACO were put into the trajectory generator. Through
searching in KD tree treTree built of terrain map Map, the length of the corridor was set.
Then, trajectories were generated for the GLNS and ACO paths. Output examples are
illustrated in Figure 16.
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(a) The output trajectory of ACO and Bézier Curve (b) The output trajectory of GLNS and Bézier curve

Figure 16. A comparison of the trajectories generated with the GLNS path and the ACO path using a
Bézier curve. KD trees, corridors, and whole trajectories are illustrated. In this scenario, the weighted
length of the ACO trajectory was 924.6468, and GLNS’s was 645.4758.

5.1.3. Velocity and Acceleration

The HUAV is commanded to follow the waypoints provided by its path planning
system. The dynamic states of the vehicle achieving this trajectory are shown in Figure 17.
In this case, the HAUV performed differently in multiple environments. The maximum
velocity in the air was 9.5 m/s, and it was 2.74 m/s underwater; and the maximum acceler-
ation in the air was 3 m2/s, and it was 0.78 m2/s underwater. All the outputs of the motion
parameters conform to the HAUV’s motion capability. The trajectory passed through
all the target spots given by the GLNS solver safely. Figure 17 shows the corresponding
resultant velocity and acceleration of the HAUV as it tracked through the trajectory. It
can be clearly seen that the HAUV was in a different mode when operating in dynamic
environments: moving in the air or moving underwater. Therefore, the values of velocity
and acceleration would be helpful for HAUV control.

(a) Velocity (b) Acceleration

Figure 17. The velocity and acceleration of one HAUV on a typical mission. The underwater and
aerial modes can be distinguished from this figure: aerial velocity and acceleration constraints are
looser than underwater condition ones.

5.2. Multi-Domain Informative Path Planning for Unknown Obstacles and Current Fields

The inputs of the path replanning solver are subpaths of the original path and un-
known obstacles. Within the succession of spots, obstacles may appear in arbitrary locations
between pairs of neighboring spots with certain probabilities.

We present two methods to replan the path: reconstructing a KD tree for unknown
obstacles or insert unknown obstacles into the treTree through the scapegoat tree. The
outputs of these two methods are all the same, but the duration can vary. A detailed
comparison is shown in Table 4.
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Table 4. This table shows a comparison between the scapegoat tree and KD tree reconstruction
replanning methods. Map refers to the size of the original terrain map; R refers to the radius in which
expected points are located; obs refers to the number of points this obstacle contains; sets refers to the
number of potential expected points; Tsp refers to the time cost of scapegoat; Tre refers to the time
cost of reconstruction treTree.

Map R(/vehL) obs Sets Tsp(/s) Tre(/s)

100*100 100 121 121 0.6950 0.6240
20*20 100 441 121 0.2030 0.2710
20*20 10 441 121 0.4490 0.2840
20*20 10 121 411 0.2070 0.1900
20*20 100 36 121 0.940 0.1080

5.2.1. Replan Methods

The time complexity of KD tree construction is O(log2n)—the insert has O(log2n)
complexity; searching in k-dimensions is O(n1− 1

k + 1)-complex, and using a scapegoat
tree to insert can be generalized to O(logn). Paths replanned by the scapegoat tree and the
reconstructed tree were the same most of the time. For each round of obset searching, the
performances of the two methods were different: when inserting/reconstructing many
discrete target points, the scapegoat method performed better; when coping with dense,
small numbers of points, the reconstructed tree method performed better. A possible
reason is: consider the additional time taken to reconstruct a whole tree compared to a
few insertions; but traversal through and insertion into a sub-tree is time consuming, so
many points could reverse the situation. The geometric density of obstacle points can lead
to unbalancing of the KD tree. When inserted into a tree, they are high-probability in the
same sub-tree. Similarly, when there are a small number of discrete obstacles on a relatively
large-scale map, few reconstruction processes for sub-tree are required. Another probable
reason for our observations is that, since a map is much larger than any obstacle, the time
taken to insert an obstacle into the map is longer than that taken to reconstruct a new tree
for obstacle information.

In conclusion, the scapegoat tree should be used for small areas with discretely
located obstacles having simple geometrical features. In large maps with dense obstacles,
reconstructing a KD tree would improve performance.

5.2.2. An Example of a Replanned Path and Its Trajectory

Compared to the former path, the new path should avoid obstacles. Trajectory genera-
tion methods also provide smooth, safe outputs. Figure 18 gives an example of a replanning
path. The replanned path segment is marked in red:

(a) origin Path (b) replanned Path

Figure 18. A comparison of an entire original path and a replanned path. Two obstacles appeared
within the duration. The weighted length of the original path was 505.301308. The partly replanned
path is red.
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The regenerated whole trajectory is shown in Figure 19. The number of spots for the
obstacle set was 49; each iteration of R 100 spots on the collision-free sphere was traversed:

(a) Origin Trajectory (b) replaned Trajectory

Figure 19. A comparison of a whole original path and a replanned path. Two obstacles appeared
within the duration. The weighted length of the trajectory was 863.7285. The partly replanned path is
marked in red. Collision-free spots on the free sphere around obstacles are illustrated as free obsets.
The number of spots in the obstacle set was 49. Each iteration of R 100 spots on the collision-free
sphere was traversed.

A detailed look at the replanned path and the trajectory of a path segment are shown
in Figure 20. The number of spots in the obstacle set was 49. Each iteration of R 100 spots
on the collision-free sphere was traversed.
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(a) Replaned Path segment (b) replaned Trajectory segment

Figure 20. Details of the replanned trajectory and path. Collision-free spots on the free sphere around
obstacles are illustrated as free obsets. The number of spots in the obstacle set was 49. Each iteration
of R 100 spots on the collision-free sphere was traversed.

5.2.3. Path Replanning and Trajectory Generation in Current Fields

As in the previous cases, we reconstructed a path, only, one that passed through
current fields, which can have a significant influence on an HAUV. In this case we set
the influence indicator η = 0.3. In Figure 21, the replanned path is marked in red. A
comparison between paths in environments with and without current is demonstrated
in Table 5. The overall costs of the original path and the path with current have no big
gaps. That may be because currents can have both positive and negative influences on the
energy costs in a trip, depending on their directions. These two kinds of influence may
offset each other.
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Table 5. The weighted distance costs of planned paths with and without current fields. There are
small differences between the outputs of these two scenarios. A possible reason is the positive and
negative influences of current fields offsetting each other.

Sets In f ormation Spots Origin Path Path with Currents

5 25 209.48 212.3
10 205 564.75966 541.3
15 426 640.2459 650.2432
20 421 197.42732 205.4523
25 525 769.062302 777.8012

(a) Original Path (b) replanned Path

(c) Original Trajectory (d) Regenerated Trajectory

Figure 21. The replanned path and trajectory in current fields. The weighted costs of recorded strong currents fields are
illustrated. The original path and trajectory passed through or quite near to (distance < vehicle length) strong current
fields, which would be unsafe and involves a high energy cost. The replanned path and trajectory avoided such areas. The
weighted cost of avoiding the current was 770.2315, and to not avoid it was 810.1669 in this case.

5.3. Monte Carlo Simulations

Under static conditions, we performed Monte Carlo experiments with 100 runs in five
scenarios. The solutions drawn by GLNS are much better than those drawn by ACO. The
number of sets varied from 5 to 25, average 15; the number of information spots varied
from 20 to 587, average 336.

With the unknown obstacles, we performed Monte Carlo experiments with 100 runs
in five scenarios. The number of sets varied from 5 to 25, average 14.7100; the number of
obstacle sets on each path averaged 5.8. The average radius of the collision-free spheres
around obstacles when free spots were found was R = 2.3vehL. Over 90% percent of
runs could figure out the free spots within the first iteration of the collision-free sphere.
Each iteration of R 100 spots on the collision-free sphere was traversed. The number of
obstacle spots in each set varied from 49 to 100. The results of static and unknown obstacle
simulations are both illustrated in Figure 22. One-hundred runs with a current field are
illustrated in Figure 23. We considered a scenario in which the currents were weak. The
average velocity of currents in the air was 0.97 m/s, and underwater, 0.26 m/s.
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The original trajectory drawn by heuristic GLNS + KMEANS + KDtree was better
than ACO 88 times out of 100 runs. The average weighted cost of the former was 279.4952,
and that of the latter was 432.5474. However, when it comes to the regeneration, heuristic
GLNS + KMEANS + KDtree performed better 72 times out of 100 runs, especially when
the number of sets was enormous. The average weighted cost of the heuristic GLNS’s
regenerated trajectory was 585.8950, and that of ACO’s trajectory was 674.8518.

(a) Results of trajectory generation of heuristic GLNS
method and ACO methods.

(b) Results of trajectory regeneration of heuristic
GLNS method and ACO methods.

Figure 22. Outputs of 100 runs are scattered, and the average values are illustrated as lines. Generally
speaking, heuristic GLNS + KMEANS + KDtree performed better than a common TSP solver.
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(a) Results of origin trajectory generation of heuris-
tic GLNS method and ACO methods with current
fields.
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(b) Results of trajectory regeneration of heuristic
GLNS method and ACO methods with current
fields.

Figure 23. Outputs of 100 runs are scattered, and the average values are illustrated as lines. Gener-
ally speaking, with current fields, heuristic GLNS + KMEANS + KDtree performed better than a
common TSP solver. The total weighted cost changeed slightly with currents. The average velocity of
current was 0.26 m/s underwater, and it was 0.97 m/s in the air.

6. Conclusions

This paper proposed a general framework for multidomain environmental monitoring,
which is especially beneficial for the novel multidomain vehicles. The presented heuristic
GLNS with KMEANS methods can plan an efficient path that satisfies the information
selecting requirements. The approach combines the Bézier curve and the KD-tree to
generate an optimal trajectory in a multidomain environment while conforming to the
vehicle’s motion capabilities. We also considered scenarios that contain random obstacles
and current fields. The problem is generalized to a fixed-radius near neighbors problem,
and the path is rebuilt based on a KD-tree or scapegoat tree.

Our approach was evaluated through numerical MATLAB simulations using real-
world terrains and current data. Our method adopts the k-means clustering process to
discrete informative spots. The path planning method performed better than common
TSP solvers, such as the ACO algorithm. Two path replanning approaches were presented,
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and a comparison of their appropriate usage conditions was listed. Furthermore, field
experiments will be performed once our HAUV is equipped with visual devices.

In the future, the theoretical work will focus on more complex dynamic environments.
We also intend to challenge our HAUV with multi-robot missions. Cooperation tasks with
other vehicles, such as UAVs, UUVs, and UGVs, will be the focus.
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