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Abstract: Motor current signature analysis (MCSA) is a useful technique for planetary gear fault
detection. Motor current signals have easier accessibility and are free from time-varying transfer
path effects. If the fault symptoms in current signals are well understood, it will be more beneficial to
develop effective current signal processing methods. Some researchers have developed mathematical
models to study the characteristics of current signals. However, no one has considered the coupling
of rotor eccentricity and gear failures, resulting in an inaccurate analysis of the current signals. This
study considers the sun gear failure of a planetary gearbox and the eccentricity of the motor rotor. An
improved induction motor model is proposed based on the magnetomotive force (MMF) to simulate
the stator current. By analyzing the current, the modulation relationships of gearbox meshing
frequency, fault frequency, power supply frequency, and gear rotating frequency are obtained. The
proposed model is validated to some extent using experimental data.

Keywords: planetary gear dynamics; magnetomotive force; air gap magnetic field; induction motor;
fault detection

1. Introduction

Planetary gears are widely used in the modern industry. The harsh working environ-
ment often leads to damages to gear parts. If the damage is not detected earlier, it may
cause a large economic loss or catastrophe. Therefore, the condition monitoring and fault
diagnosis of the planetary gearbox is very important for the safe and stable operation of
the equipment [1].

Vibration analysis has been used to detect gear faults for a long time, but they need to
install vibration sensors on a gearbox. The motor current signature analysis (MCSA) uses
motor current for analysis without having to install extra sensors in a gearbox, which can
effectively reduce maintenance and inspection costs.

Researchers have developed advanced signal processing methods that can use motor
current signals for fault diagnosis. Toma [2] proposed a feedforward neural network to
diagnose winding short-circuit faults of a three-phase induction motor with a wound
rotor. The neural network model proposed by Leite [3] overcomes the common voltage
imbalance, measurement noise and variable load in practice when diagnosing motor faults.
difficulty. Touti et al. [4] proposed a current signal preprocessing technology to improve the
sensitivity of gear-related frequencies. Singh et al. [5] use resampling technology (IAR) to
diagnose gearbox faults in non-stationary conditions. Zhang et al. [6] propose an algorithm
for detecting gear wear. In the current signals, the fundamental frequency of the power
supply and its harmonics dominate signals. Furthermore, the fault symptoms are very
weak in current signals, especially for early gear damages. Therefore, when using MCSA
to diagnose gear failures, how to identify and extract weak signals becomes an important
research topic.
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In addition to the existing advanced signal processing methods, researchers tried
to develop electromechanical dynamic models to identify fault symptoms in the motor
current signals. Gligorijevic et al. [7] mentions that online detection is one of the effective
means to avoid the deterioration of system faults. The non-invasiveness of current detec-
tion provides favorable conditions for online detection systems. In many actual industrial
processes, process failures will leave a clear trend [8] in the monitored sensors, and the
characteristics of the current that are easy to monitor can identify abnormalities in the
process. Ottewill et al. [9] used the space vector model to simulate the stator current, and
studies showed that planetary gearbox faults could be detected from the motor current.
Capolino et al. [10] proposed a planetary gear dynamics model related to a wound rotor
induction motor based on the equivalent circuit diagram of the rotor-end short-circuit
induction motor. Feki et al. [11] proposed a mechatronic model using the Krone trans-
form (based on the stator current of a motor) and explained the possibility of measuring
the position and size of the spur gear defect through the stator current. Kia et al. [12]
established a coupling model (integration of spur gear dynamic model and stator shafting
reference Frame motor model) and studied the electromechanical system of a spur gearbox.
Later, researchers developed the electromechanical coupling model based on the magnetic
conduction network. Feki et al. [13] established a permeable network model (PNM) and a
dynamic model of spur gears and proposed an iterative solution technique. Han et al. [1]
established a lumped parameter torsion model of the motor-planetary gearbox-coupling
system based on the magnetic equivalent circuit (MEC). An iterative numerical integration
method was proposed to solve the MEC model. The lumped parameter model can perform
qualitative analysis on the gear-motor coupling system, while the model based on the
permeation network can perform quantitative analysis. However, the electromagnetic
conversion relationship is hidden in the above model. If the electromagnetic conversion
relationship of the motor can be extracted, it will be beneficial to understand the effect of
the gearbox on the current signal.

The MMF method has a good effect on the analysis of the electromagnetic conversion
relationship of the motor. A few people used the MMF method to build a stator current
model to study planetary gearbox faults. This method expresses the magnetic permeability
as a function of space and time and expands it with a Fourier series, which reduces the
calculation complexity. Therefore, it is easier to calculate the permeability for a rotor with
eccentricity than the above models. It seems feasible to use this method to study the cou-
pling of rotor eccentricity and gear failures. Moreover, due to the time and space harmonics
of the motor, many frequency sidebands exist in the stator current signals. If these sideband
frequencies are not identified accurately, it will be hard to locate gear damage frequencies
accurately. The MMF method is traditionally used for the calculation of the magnetic airgap
field for rotor and stator slotting or static and dynamic eccentricity [14,15]. It was used
in [16] to identify the effect of bearing fault-related load torque oscillations on the stator
current, but it lacks the connection between mathematical model and experiment. Nandi
et al. [17] used this method to study the stator current of the motor rotor under mixed
eccentricity, extend this method to motors of any structure. Chen et al. [18] established the
AM-FM model of the stator current of the planetary gearbox asynchronous motor using
the MMF method, a new current signal processing method is proposed to improve the
detection success rate. Blotd et al. [19] studied the effect of torque oscillation on the stator
current of induction motors. It shows that time-frequency analysis is an effective tool for
analyzing current. Kia et al. [20] presented a theoretical framework based on the torque
oscillation caused by the unique torsional vibration in the gearbox. In the stator current
model established by the MMF method, the dynamic response of the motor rotor’s speed
and angle is very important.

In References [14–20], the authors used transient torque or steady-state torque to
express the motor rotor speed and the potential magnetic angle between the motor stator
and rotor. The use of transient and steady states to express speed and angle is simple
and clear. However, the method lacks correlation with the physical parameters of the
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gearbox (such as gear meshing stiffness). Although the speed of rotor and rotation angle
information can also be obtained using encoders, sometimes, it is inconvenient to install
the sensor. This paper uses the lumped parameter model of the planetary gearbox to
simulate the speed and angle information of the rotor, which can consider more realistic
physical parameters.

The coupling effect of rotor eccentricity and gear failure was rarely considered in
existing studies. Rotor eccentricity can be regarded as static or dynamic eccentricity. When
an eccentric fault occurs in the rotor, the rotor no longer rotates around the center of the
stator, resulting in an uneven air gap magnetic field, which affects the current induced by
the rotor bar on the stator winding and changes the characteristics of the stator current. Due
to the complex and changing operating environment, static eccentricity faults and dynamic
eccentricity faults often exist at the same time. When the center of rotation is between the
stator bore axis and the rotor axis, two types of eccentricity exist (mixed eccentricity) [21].
As shown in Figure 1, If the center of rotation is concentric with the axis of the rotor, but
outside the axis of the stator hole, a static eccentricity occurs. The dynamic eccentricity
occurs if the center of rotation is outside the rotor axis but concentric with the stator axis.
Among them, OsO stands for static eccentricity, and OOr stands for dynamic eccentricity.
The blank part between the stator and the rotor represents the air gap magnetic field of the
motor, which is generally uniform.

Figure 1. Mixing eccentricity.

Fault diagnosis methods can be divided into: model-based methods, signal-based
methods, knowledge-based methods, hybrid methods, and active fault diagnosis meth-
ods [22]. In this paper, the electromechanical dynamics model is established based on
the model method to study the motor current signal used for gear fault detection. The
cou-pling effect of rotor eccentricity and gear failure is considered in this model. The plan-
etary gearbox model reported in [23] is used directly. For a gear-motor coupling system,
the stator current contains a complex of frequency components. It is hard to explain the
generation mechanism of these frequency components. The MMF method can accurately
model the electromagnetic conversion of a motor. It models the magenetic permeability as
a function of time and space, which can be expressed by Fourier series. With Fourier series,
it is very easy to analyze the frequency components and their corresponding sidebands.
Overall, the MMF method can interpret these frequency components and their generation
mechanism more accurately than other method such as the MEC method. Therefore, this
article developed an improved flux model based on the method report in [24]. The speed
and angle dynamic response results of the gear dynamic model is introduced into the
stator current model to obtain the stator current signal under the coupling of two faults
(rotor eccentricity and gear failure). Compared with existing magnetic flux methods, the
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proposed model can represent the coupling effect of two faults and will be more accurate to
analyze the modulation of the meshing frequency, fault frequency, power supply frequency,
and speed frequency in the stator current.

2. Motor Stator Current Modeling

In this section, two models will be developed to simulate the stator current in the
motor-gear electromechanical system, as shown in Figure 2. The lumped parameter model
is used to simulate the planetary gearbox system. This model is the same as the model
created by Kahraman [23]. A MMF method is used to simulate the motor system. The main
factors considered in the model include time-varying speed, angle fluctuation, eccentricity,
and power harmonics.

Figure 2. Motor-gear electromechanical system.

2.1. Planetary Gearbox Dynamic Model

A pure torsional dynamics model of the planetary gearbox is shown in Figure 3.
Each component is treated as a rigid body. Moment of inertia is represented by Jc, Js,
Jj(j = 1, 2, 3); subscripts c, s, and j indicate the planet carrier, sun gear and the j−th planetary
gear, respectively. The torsional angular displacement of each component is expressed
as θi(i = c, s, j). The meshing stiffness of the sun gear and planetary gears, ring gear and
planetary gears along the meshing line is represented by kspj an krpj, respectively. The
equation of equilibrium of the planetary gearbox is obtained as [23]:

M
..
q + C

.
q + K(t)q = T. (1)

where:
M = diag

([
Jc + Nmprc

2 Js J1 J2 J3

])
,

q =
[
θc θs θp1 θp2 θp3

]T ,

T = [−Tc Te 0 0 0]T ,

C = ζK(t).

M, C, and K(t) represent the inertia matrix, damping matrix, and time-varying
meshing stiffness matrix, respectively; Tc represents the load torque, and Te means the
electromagnetic torque; mp represents the mass of the planetary gear, and rc is the center
distance between the sun gear and the planetary gear; damping is expressed by propor-
tional damping, and the damping coefficient is ζ; K(t) represents the average meshing
stiffness matrix.
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Figure 3. Planetary gearbox torsional model.

2.2. Stator Current Modeling

The MMF of the stator winding is generated by the current on the stator winding, and
the current is generated by the voltage applied to the end of the three-phase stator winding.
Assuming the symmetrical three-phase power supply is connected, the m−th (m = 1, 2, 3,
corresponding to A, B, C phase) voltage can be expressed as

Vm(t) = Vs,k cos(kwst− (m− 1)2π/3), (2)

where Vs,k is the peak value of the k−th harmonic of the stator winding phase current, and
ws is the power angular frequency (ws = 2π fs). The MMF of the stator winding of each
phase is synthesized, and the MMF of the stator winding produced by the harmonics of
the k−th power supply is obtained as [25]:

Fs
s (θ

s
s , t) = Fs,k ∑∞

µ

(
kwv

v

)
cos(kwst− vpθs

s),
k = 1, 3, 5, 7, . . . , v = 6µ + 1, µ = 0,±1,±2,±3, . . . ,

(3)

where Fs,k is the amplitude of the harmonic MMF, kwv is the v−th winding coefficient of the
stator winding, and the specific calculation methods of kwv and Fs,k can be found in [25], v
is the number of spatial harmonics of the harmonic MMF, p is the number of pole pairs
of the motor, and θs

s represents the mechanical angle of the stator in the stator coordinate
system.

Due to the influence of stator and rotor slotting and iron core magnetic saturation, the
air gap permeability is varying. The carter coefficients Kcs and Kcr are introduced for the
effect of stator and rotor slotting, and the saturation coefficient Ks is introduced for the
effect of iron core saturation. The expression of the air gap permeability of the eccentric
mixing rotor is as Equation (4) [26].

λ(θs
s , t) = Λ0 + Λ0es cos(θs

s) + Λ0ed cos(θs
s − θt),

Λ0 = µ0
KcsKcrKsδ . (4)

In Equation (4), µ0 is the vacuum permeability, δ means the average air gap length of
the motor, es represents the static eccentricity, ed means the dynamic eccentricity, and θt is



Machines 2021, 9, 277 6 of 16

shown in Figure 4. The stator flux density is obtained by Formulas (2) and (3), as shown in
Equation (5).

Bs
s(θ

s
s , t) = Fs

s (θ
s
s , t)λ(θs

s , t)
= Bs,k,µ cos(kwst− vpθs

s)

+(
Bs,k,µes

2 ) cos(kwst− (vp± 1)θs
s)

+
( Bs,k,µed

2

)
cos(kwst− (vp± 1)θs

s ± θt)

Bs,k,µ = Fs,k,µΛ0 ∑∞
µ

(
kwv

v

)
.

(5)

Figure 4. Coordinate system conversion.

Convert the stator flux density Bs
s(θ

s
s , t) to the rotor coordinate system, and calculate

the size of the flux linkage generated on the rotor. The conversion relationship between the
stator coordinate system and the rotor coordinate system is shown in Figure 4 where θt
represents the angular difference between the stator and the rotor when the rotor speed
fluctuates, XsYs represents the stator coordinate system, and XrYr represents the rotor
coordinate system.

The mathematical expression for the conversion of the stator and rotor coordinate
system is θs

s = θr
r + θt; θr

r represents the mechanical angle of the rotor in the rotor coordinate
system. The transformed stator flux density in the rotor coordinate system is shown in
Equation (6).

Bs
r(θ

r
r , t) = Bs,k,µ cos(kwst− vpθr

r − vpθt)

+
Bs,k,µes

2 cos(kwst− (vp± 1)θr
r − (vp± 1)θt)

+
Bs,k,µed

2 cos(kwst− (vp± 1)θr
r − vpθt).

(6)

The stator flux density in the rotor produces flux linkage in the rotor windings,
as shown in Figure 5. Here, ar represents the mechanical slot pitch angle of the rotor
(ar = 2π/Nr) and Nr represents the number of rotor slots. The symbols Rr and Rb represent
the resistance of the rotor end ring and the bar resistance, respectively.
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Figure 5. Diagram of single-turn squirrel cage rotor winding.

Calculate the flux linkage in the n−th winding of the rotor, as shown in Equation (7).
In Equation (7), le f represents the axial length of the motor and Ds represents the inner
circle diameter of the stator.

ψs
r,n =

∫ (n−0.5)ar
(n−1.5)ar

le f DsBs
r(θ

r
r , t)dθr

r

= ψs
r,n,o,vp cos(kwst− vp(n− 1)ar − vpθt)

+ψs
r,n,s,(vp±1) cos(kwst− (vp± 1)((n− 1)ar + θt)

+ψs
r,n,d,(vp±1) cos(kwst− (vp± 1)(n− 1)ar − vpθt)

ψs
r,n,o,vp =

2le f DsBs,k,µ
vp sin

( vpar
2
)

ψs
r,n,s,(vp±1) =

le f DsBs,k,µes

(vp±1) sin
(
(vp±1)ar

2

)
ψs

r,n,d,(vp±1) =
le f DsBs,k,µed

(vp±1) sin
(
(vp±1)ar

2

)
.

(7)

Calculate the current of the n−th winding of the rotor in Figure 5 as Equation (8). In Equa-
tion (8) Rnr represents the resistance of the n−th rotor winding, Rnr = Rb + N2

r Rr/2π2 p2; ksv
represents the rotor skew coefficient [20].

Ir,n(t) = −
dψs

r,n
dt

ksv
Rnr

= Is
r,n,o,vp sin(kwst− vpθt − vp(n− 1)ar)

+Is
r,n,s,(vp±1) sin(kwst− (vp± 1)((n− 1)ar + θt)

+Is
r,n,d,(vp±1) sin(kwst− (vp± 1)(n− 1)ar − vpθt)

Is
r,n,o,vp =

ψs
r,n,o,vpksv

Rnr
(kws − vpwr)

Is
r,n,s,(vp±1) =

ψs
r,n,s,(vp±1)ksv

Rnr
(kws − (vp± 1)wr)

Is
r,n,d,(vp±1) =

ψs
r,n,d,(vp±1)ksv

Rnr
(kws − vpwr).

(8)

The MMF generated by the induced current of the n−th winding of the rotor is

Fs
r (θ

r
r , t) = Ir,n(t)Nr

n(θ
r
r) (9)

where Nr
n(θ

r
r) represents the winding function of the n−th winding of the rotor, and its

expression is [27]:

Nr
n(θ

r
r) =

∞

∑
λ=1

2 sin
(

λπ
Nr

)
cos(λ(θr

r − (n− 1)ar))

λπ
. (10)
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After calculation, the total rotor winding MMF harmonics are as shown in Equation (11):

Fs
r (θ

r
r , t) =

Nr
∑

n=1

{
Fs

r,n,o,vp,λ sin(kwst− (vp± λ)(n− 1)ar − vpθt ± λθr
r)

+ Fs
r,n,s,(vp±1),λ[sin(kwst− (vp± 1 + λ)(n− 1)ar − (vp± 1)θt + λθr

r

+ sin(kwst− (vp± 1− λ)(n− 1)ar − (vp± 1)θt − λθr
r)]

+ Fs
r,n,d,(vp±1),λ[sin(kwst− (vp± 1 + λ)(n− 1)ar − vpθt + λθr

r)

+ sin(kwst− (vp± 1− λ)(n− 1)ar − vpθt − λθr
r)]}

Fs
r,n,o,vp,λ =

∞
∑

λ=1
Is
r,n,o,vp

sin( λπ
Nr )

λπ (kws − vpwr)

Fs
r,n,s,(vp±1),λ =

∞
∑

λ=1
Is
r,n,s,(vp±1)

sin( λπ
Nr )

λπ (kws − (vp± 1)wr)

Fs
r,n,d,(vp±1),λ =

∞
∑

λ=1
Is
r,n,d,(vp±1)

sin( λπ
Nr )

λπ (kws − vpwr).

(11)

Then, multiply Equation (11) with the air gap permeability λ(θs
s , t) to obtain the rotor

flux density. The rotor flux density will form a turn chain with the stator winding, thereby
generating an induced electromotive force on the stator winding. However, not all the rotor
flux density harmonics can produce induced electromotive force in the stator windings, as
shown in Figure 6. A motor with a pole pair number p generates vp or vp± 1 magnetic
fields in the air gap. Due to the mismatch of the number of pole pairs, the vp± 1 magnetic
field generated by the rotor cannot induce the back electromotive force on the stator side.

Figure 6. Motor magnetic field harmonics.

Take the motor pole pair number p = 2 used in this article as an example. Considering
the fundamental wave (v = 1), the rotor flux density harmonics that can generate induced
electromotive force in the stator windings are shown in Equation (12).

Br
s(θ

s
s , t) = NrFs

r,n,o,2,2Λ0 sin(kwst− 2θs
s)

+NrFs
r,n,s,1,1Λ0es sin(kwst− 2θs

s)

+NrFs
r,n,s,3,3Λ0es sin(kwst− 2θs

s)

+NrFs
r,n,d,1,1Λ0ed sin(kwst− 2θs

s)

+NrFs
r,n,d,3,3Λ0ed sin(kwst− 2θs

s)

+NrFs
r,n,d,1,1Λ0es sin(kwst− θt − 2θs

s)

+NrFs
r,n,d,3,3Λ0es sin(kwst + θt − 2θs

s)

+NrFn
r,n,s,1,1Λ0ed sin(kwst + θt − 2θs

s)

+NrFn
r,n,s,3,3Λ0ed sin(kwst− θt − 2θs

s).

(12)

It can be seen from Equations (5) and (12) that when considering the speed fluctuation
of the planetary gearbox and the rotor eccentricity, the total air gap flux density in the
motor is

B(θs
s , t) = Bs

s(θ
s
s , t) + Br

s(θ
s
s , t). (13)
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According to the virtual displacement method, the general formula of the electromag-
netic torque of the motor can be derived [28]:

Te = −p
∂Wm

∂δsr
, (14)

where δsr represents the motor power angle and Wm is the magnetic energy in the air gap
magnetic field, which can be expressed as

Wm =
∫ v

0

B(θs
s , t)2

2µ0
dv =

Dsle f δ

4µ0

∫ 2π

0
B(θs

s , t)2dθs
s . (15)

The flux linkage produced by the air gap flux density B(θs
s , t) at the x−th coil of the

m−th phase is

ψx(t) =
∫ α2

α1

le f DsB(θs
s , t)dθs

s , (16)

where α1, α2 represents the mechanical angle of the effective side of the x−th coil in the
inner circle of the stator, as shown in Figure 7. Add the flux linkages of all coils of phase m
to get the total flux linkage ψm(t).

Figure 7. Mechanical angle of the stator winding coil.

According to the stator loop voltage equation [28], the m−th phase stator current is

Im(t) =
Vm(t)− dψm(t)

dt
Rs

, (17)

where Vm(t) represents the m−th voltage of the stator winding, and Rs represents the m−th

stator winding resistance.

3. Stator Current Simulation Analysis

In this section, the model in Section 2 is used to simulate the motor stator current.
The entire system is simulated using Matlab. The planetary gear dynamics equations are
solved by the Runge–Kutta method. Each response of gear dynamics is submitted to the
MMF equation to obtain the current, as shown in Figure 8. The physical parameters of the
gearbox are shown in Table 1. The planetary gearbox consists of one sun gear, one fixed
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ring gear and three planetary gears. The planetary gears are evenly distributed around the
sun gear.

Figure 8. Model structure for Matlab coding.

Table 1. Gearbox parameters [1].

Parameters Ring Gear Sun Gear Planet Gear

Number of teeth 143 63 16
Module (mm) 2.25
Pressure angle 20

The time-varying meshing stiffness is evaluated using the potential energy method [29].
When the single and double teeth alternately mesh, or the sun gear has a localized tooth de-
fect, the gear stiffness will change suddenly. Figure 9 shows the change of the sun gear stiff-
ness with time in one cycle. The meshing frequency is fm = frZring/(1 + Zring/Zsun) (Hz),
where fr is the rotation frequency of the sun gear. The failure frequency of localized tooth
defect of the sun gear is fw = N fm/Zsun (Hz) .

Figure 9. Time-varying gear meshing stiffness of sun-planet.

The motor selected for the simulation is a small three-phase asynchronous motor. The
motor parameters are given in Table 2.
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Table 2. Y100L2-4 Motor parameters.

Parameters Stator Rotor

Number of slots 36 32
Number of turns 31 1

Winding type Single cross Squirrel cage
Rated voltage (U/v) 220
Inner diameter (mm) 98
Core length (L/mm) 135
Number of poles (p) 2

Rated slip (s) 0.02
Air gap length (g0/mm) 0.3

PF 0.83

The size of each phase of the motor flux is related to the winding form. In order to
accurately calculate Equation (16), the space angle of each phase winding inside the stator
needs to be accurately given. The Y100L2-4 motor adopts single-layer cross winding as
shown in Figure 10. The A-phase coil group is represented by red; the B-phase coil group
is represented by green, and the C-phase coil group is represented by blue. Each phase
coil group is composed of 6 coils, and each coil occupies two slots of the stator. Taking the
left side of the coil as the upper side and the right side as the lower side, and calculate the
mechanical angle of each phase winding side based on slot 1, as shown in Table 3.

Figure 10. Schematic diagram of single layer cross winding.

Table 3. Mechanical angle of each phase wind side.

Phase Number Mechanical Angle (Left/Right)

A
π
18 / π

2
π
9 / 5π

9
11π
18 /π

19π
18 / 3π

2
10π

9 / 14π
9

5π
3 /0

B
7π
18 / 5π

6
4π
9 / 8π

9
17π
18 / 4π

3
25π
18 / 11π

6
13π

9 / 17π
9

35π
18 / 7π

18

C
13π
18 / 7π

6
7π
9 / 11π

9
23π
18 / 5π

3
31π
18 / π

6
16π

9 / 5π
18

π
3 / 2π

3

3.1. Stator Three-Phase Current

The MMF model of Y100L2-4 is established with the above-mentioned motor parame-
ters, and common harmonic orders (k = 1, 3, 5, 7) are introduced into the simulated input
voltage. The simulation obtains the stator current under the gearbox-motor coupling, as
shown in Figure 11. The current information contained in each phase of the symmetrical
three-phase winding is the same but is 120◦ behind in phase. Therefore, the article will
only analyze the phase A current to get the gear-related information in the current signal.

In order to analyze the influence of the mixed eccentricity on the gear signal in the
current, the current signals with and without eccentricity were simulated. In the case of
eccentricity, set dynamic eccentricity ed = 0.3, static eccentricity es = 0.1, and in the case of
no eccentricity ed = es = 0. The obtained current curve is shown in Figure 12. Figure 12a
shows the signal with or without eccentricity in the time domain. In the time domain,
the difference between the two is very small, and only the current without eccentricity
at the peak is slightly smaller than the current with eccentricity. Their frequency domain
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signals are shown in Figure 12b. It should be noted that the power frequency is the main
factor in the current signal, while the frequency related to the gear is relatively small.
In order to suppress the power frequency and its harmonics and enhance the frequency
related to the gear, this paper selects the spectrum to analyze the current signal. When
there is no eccentricity, the current signal contains the fundamental frequency fs and its
harmonics such as 3 fs,5 fs,7 fs. Due to the electromechanical coupling effect and the gear-
related frequency is modulated by the power supply frequency, the modulated frequency
is: fm ± k fs(k = 1, 3, 5, 7). When there is eccentricity, the speed frequency ( fr) will also be
modulated by the power frequency and its harmonics due to the eccentricity effect. The
modulated frequency is: k fs ± fr(k = 1, 3, 5, 7). At the same time, the information related
to the gear will also be modulated by frequency conversion. The obvious frequencies are
fm ± fs ± fr and fm ± 3 fs ± fr.

Figure 11. Stator current.

Figure 12. A phase stator current with or without eccentricity. (a) Time domain and (b) frequency
domain.

3.2. Stator Winding Current for Sun Gear Failure

Considering the tooth chipping of the sun gear, the stator current of the induction
motor is calculated by the MMF model. And the current spectrum shown in Figure 13 is
obtained. As a comparison, the graph also shows a fault-free current spectrum. It can be
seen that regardless of whether the fault is considered, the main frequency components
in the stator current are the power frequency fs and its harmonics (3 fs, 5 fs, 7 fs). The sun
gear’s faulty tooth meshes with all planetary gears (in this study, the number of planets
is N = 3), resulting in a fault frequency, fw = 3 fm/Zsun (Hz) and its harmonics 2 fw. In
the spectrum related to the sun gear defect, the power supply frequency fs and fr are also
found due to the electromechanical coupling effect and the eccentric effect. Therefore,
the fault characteristic frequency of the solar fragmentation defect is summarized as
i fm + j fw ± fs ± fr(i = 0, 1 j = 1, 2, . . .).
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Figure 13. Simulated stator current spectra for the chipping defect at the sun gear.

4. Experimental Validation

In this section, experiments are used to test the accuracy of the proposed model. As
shown in Figure 14, the test rig consists of a three-phase asynchronous induction motor
(Y100L2-4), a 2K-H planetary gearbox, and a magnetic powder brake (maximum torque
50 N·m). A current sensor (FLUKE 80i-110s) is used to measure the instantaneous current
after passing through the stator winding. A defect is manually created on the sun gear by
removing a part of the tooth. The number of gear teeth and the gear module are given in
Table 1.

Figure 14. Gearbox test rig and the sun gear defect.

The speed of the motor is set as fr = 25 Hz. The gear meshing frequency and
characteristic fault frequencies are fm = 359.75 and fw = 67.44, respectively. Figure 15
shows the measured time domain signal of the stator current. In the time domain, almost
no-fault symptoms can be seen.

Figure 16 shows the stator current spectrum when the sun gear is healthy or the
sun gear tooth is defective, measured under experimental conditions. The current model
established in terms of frequency content. The working conditions of Figure 16a,b are
torque 0 N·m and 10.5 N·m, respectively. Similar to the simulation results, spectra under
the two working conditions are respectively given in order to confirm the robustness of
the measurement and the main component in the current spectrum is the power supply
frequency and its harmonics ( fs, 3 fs, 5 fs). It can be seen from Figure 16a,b that the influence
of the sun gear failure on the stator current is more obvious in the frequency domain.
Some characteristic frequencies can be found in the frequency domain, such as fw ± fs
and fm ± fw ± fs, which are in good agreement with the results of other researchers [6].
In addition, when the motor rotor is eccentric, the fault characteristic frequency can be
found in the test spectrum, such as fs ± fr, which indicates that the motor system has
an eccentric fault [10,11]. Due to electromechanical coupling, if the planetary gear is not
damaged, but the motor system has an eccentric fault, the characteristic frequencies are
fm ± fs ± fr and fm ± fs. If the sun gear fails and the motor is eccentric, the characteristic
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frequencies are fw ± fs ± fr, fm ± fw ± fs ± fr and fw ± fs. These frequencies are very
consistent with the results generated by the mathematical model in Section 3, which
verifies our mathematical model to some extent. Therefore, the results of this study can
give a more accurate fault-related frequency of the sun gear tooth defect when the motor
rotor is eccentric.

Figure 15. Time domain signal of stator current.

Figure 16. Stator current spectrum at different torques tested for the chipping teeth at the sun gear.
(a) Torque = 0 N·m and (b) torque = 10.5 N·m.
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5. Conclusions

In this study, a torsional dynamic model of the planetary gear system is combined
with an MMF motor model to study the electromechanical coupling effect of the motor-gear
system. The characteristics of stator currents coupled with different internal factors such as
time-varying gear meshing stiffness and rotor eccentricity are studied. The fundamental
frequency of the current and the gear speed can be found in the proposed stator current
model. The modulation frequency of meshing frequency, sun gear failure frequency, rotor
speed frequency, and power supply frequency are observed, which reveals the motor-gear
coupling effect of the system based on the MMF motor model. Besides, the motor eccentric
effect has a significant influence on the diagnosis of sun gear faults. If the eccentricity of the
motor is not considered, the rotation frequency of the motor may be incorrectly diagnosed
as the failure frequency of the sun gear. The experimental tests validate the proposed
model to some degree. Still, there are many frequency components not predicted by this
mathematical model. It will be further improved by considering the transmission error
and friction.

In addition, uncertainties are not considered in the proposed method. They should
be considered for the simulations to match real measurements [30]. In the future, we
will further improve our model by considering uncertainties such as measurement noise,
structured and unstructured uncertainties. The comparison between our proposed method
and the key graph will also be one of the future works.

Author Contributions: X.X. agrees with the content of the article and is responsible for the authentic-
ity and reliability of the resulting article. G.L. is responsible for the writing and revision of the paper.
X.L. is responsible for the structure of the paper, the acquisition of data, the polishing of the content
of the article, and the submission of the article. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Foundation of National Natural Science of China (No.
51975078) and the Scientific Research Key Fund of Chongqing Municipal Education Commission
(No. KJZD-K202000703).

Acknowledgments: Many thanks to Qinkai Han at the Tsinghua University (THU) for sharing their
experimental dataset to validate our model.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Han, Q.; Wang, T.; Ding, Z.; Xu, X.; Chu, F. Magnetic Equivalent Modeling of Stator Currents for Localized Fault Detection of

Planetary Gearboxes Coupled to Electric Motors. IEEE Trans. Ind. Electron. 2020, 68, 2575–2586. [CrossRef]
2. Toma, S.; Capocchi, L.; Capolino, G.A. Wound-Rotor Induction Generator Inter-Turn Short-Circuits Diagnosis Using a New

Digital Neural Network. IEEE Trans. Ind. Electron. 2013, 60, 4043–4052. [CrossRef]
3. Leite, D.F.; Hell, M.B.; Costa, P.; Gomide, F. Real-Time Fault Diagnosis of Nonlinear Systems. Nonlinear Anal. Theory Methods Appl.

2009, 71, e2665–e2673. [CrossRef]
4. Touti, W.; Salah, M.; Bacha, K.; Amirat, Y.; Chaari, A.; Benbouzid, M. An Improved Electromechanical Spectral Signature for

Monitoring Gear-Based Systems Driven by an Induction Machine. Appl. Acoust. 2018, 141, 198–207. [CrossRef]
5. Singh, A.; Parey, A. Gearbox Fault Diagnosis under Fluctuating Load Conditions with Independent Angular Re-Sampling

Technique, Continuous Wavelet Transform and Multilayer Perceptron Neural Network. IET Sci. Meas. Technol. 2017, 11, 220–225.
[CrossRef]

6. Zhang, R.; Gu, F.; Mansaf, H.; Wang, T.; Ball, A.D. Gear Wear Monitoring by Modulation Signal Bispectrum Based on Motor
Current Signal Analysis. Mech. Syst. Signal Process. 2017, 94, 202–213. [CrossRef]

7. Gligorijevic, J.; Gajic, D.; Brkovic, A.; Savic-Gajic, I.; Gennaro, S.D. Online Condition Monitoring of Bearings to Support Total
Productive Maintenance in the Packaging Materials Industry. Sensors 2016, 16, 316. [CrossRef]

8. Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II: Fault Diagnosis With
Knowledge-Based and Hybrid/Active Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3768–3774. [CrossRef]

9. Ottewill, J.R.; Ruszczyk, A.; Broda, D. Monitoring Tooth Profile Faults in Epicyclic Gearboxes Using Synchronously Averaged
Motor Currents: Mathematical Modeling and Experimental Validation. Mech. Syst. Signal Process. 2017, 84, 78–99. [CrossRef]

10. Capolino, G.A.; Far, Z.D.; Henao, H. Modeling and Simulation of Planetary Gearbox Effects on a Wound Rotor Induction Machine.
In Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), Hangzhou, China, 28–31 May 2012.

http://doi.org/10.1109/TIE.2020.2973894
http://doi.org/10.1109/TIE.2012.2229675
http://doi.org/10.1016/j.na.2009.06.037
http://doi.org/10.1016/j.apacoust.2018.07.019
http://doi.org/10.1049/iet-smt.2016.0291
http://doi.org/10.1016/j.ymssp.2017.02.037
http://doi.org/10.3390/s16030316
http://doi.org/10.1109/TIE.2015.2419013
http://doi.org/10.1016/j.ymssp.2016.07.007


Machines 2021, 9, 277 16 of 16

11. Feki, N.; Clerc, G.; Velex, P. An Integrated Electro-Mechanical Model of Motor-Gear Units-Applications to Tooth Fault Detection
by Electric Measurements. Mech. Syst. Signal Process. 2012, 29, 377–390. [CrossRef]

12. Kia, S.H.; Henao, H.; Capolino, G.A. A Modeling Approach for Gearbox Monitoring Using Stator Current Signature in In-
duction Machines. In Proceedings of the Industry Applications Society Annual Meeting, IAS’08, Edmonton, AB, Canada,
5–9 October 2008.

13. Feki, N.; Clerc, G.; Velex, P. Gear and Motor Fault Modelling and Detection Based on Motor Current Analysis. Electr. Power Syst.
Res. 2013, 95, 28–37. [CrossRef]

14. Cameron, J.R.; Thomson, W.T.; Dow, A.B. Vibration and Current Monitoring for Detecting Airgap Eccentricity in Large Induction
Motors. IEE Proc. B Electr. Power Appl. 1986, 133, 155–163. [CrossRef]

15. Dorrell, D.G.; Thomson, W.T.; Roach, S. Analysis of Airgap Flux, Current, and Vibration Signals as a Function of the Combination
of Static and Dynamic Airgap Eccentricity in 3-Phase Induction Motors. IEEE Trans. Ind. Appl. 1995, 1, 24–34.

16. Schoen, R.R.; Habetler, T.G.; Kamran, F.; Bartfield, R.G. Motor Bearing Damage Detection Using Stator Current Monitoring. IEEE
Trans. Ind. Appl. 1995, 31, 1274–1279. [CrossRef]

17. Nandi, S.; Ilamparithi, T.C.; Lee, S.B.; Hyun, D. Detection of Eccentricity Faults in Induction Machines Based on Nameplate
Parameters. IEEE Trans. Ind. Electron. 2011, 58, 1673–1683. [CrossRef]

18. Chen, X.; Feng, Z. Time-Frequency Space Vector Modulus Analysis of Motor Current for Planetary Gearbox Fault Diagnosis
under Variable Speed Conditions. Mech. Syst. Signal Process. 2019, 121, 636–654. [CrossRef]

19. Blodt, M.; Faucher, J.; Dagues, B.; Chabert, M. Mechanical Load Fault Detection in Induction Motors by Stator Current Time-
Frequency Analysis. In Proceedings of the IEEE International Conference on Electric Machines & Drives, San Antonio, TX, USA,
15–18 May 2005.

20. Kia, S.H.; Henao, H.; Capolino, G.A. Analytical and Experimental Study of Gearbox Mechanical Effect on the Induction Machine
Stator Current Signature. IEEE Trans. Ind. Appl. 2009, 45, 1405–1415. [CrossRef]

21. He, Y.-L.; Deng, W.-Q.; Tang, G.-J.; Sheng, X.-L.; Wan, S.-T. Impact of Different Static Air-Gap Eccentricity Forms on Rotor UMP of
Turbogenerator. Math. Probl. Eng. 2016, 2016, 5284815. [CrossRef]

22. Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-
Based and Signal-Based Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [CrossRef]

23. Kahraman, A. Natural Modes of Planetary Gear Trains. J. Sound Vib. 1994, 173, 125–130. [CrossRef]
24. Balan, A. Theoretical and Experimental Investigations on Radial Electromagnetic Forces in Relation to Vibration Problems of

Induction Machines. Ph.D. Thesis, The University of Saskatchewan, Saskatoon, SK, Canada, 1997.
25. Lipo, T.A. Introduction to AC Machine Design; Wiley-IEEE Press: Hoboken, NJ, USA, 2004.
26. Bao, X.; Cheng, Z.; Wang, H. Monitoring Magnetic Field of Stator Yoke to Detect Eccentricity Fault in Induction Motor. In

Proceedings of the Industrial Electronics & Applications, Kota Kinabalu, Malaysia, 20–22 November 2016.
27. Joksimovic, G.; Djurovic, M.; Penman, J. Cage Rotor MMF: Winding Function Approach. Power Eng. Rev. IEEE 2001, 21, 64–66.

[CrossRef]
28. IEEE. Electric Machinery; Institute of Electrical and Electronic Engineers: Minneapolis, MN, USA, 1995.
29. Liang, X.; Zuo, M.J.; Hoseini, M.R. Vibration Signal Modeling of a Planetary Gear Set for Tooth Crack Detection. Eng. Fail. Anal.

2015, 48, 185–200. [CrossRef]
30. Djeziri, M.A.; Nguyen, L.; Benmoussa, S.; Msirdi, N. Fault Prognosis Based on Physical and Stochastic Models. In Proceedings of

the Control Conference, Seattle, WA, USA, 26–28 July 2017.

http://doi.org/10.1016/j.ymssp.2011.10.014
http://doi.org/10.1016/j.epsr.2012.08.002
http://doi.org/10.1049/ip-b.1986.0022
http://doi.org/10.1109/28.475697
http://doi.org/10.1109/TIE.2010.2055772
http://doi.org/10.1016/j.ymssp.2018.11.049
http://doi.org/10.1109/TIA.2009.2023503
http://doi.org/10.1155/2016/5284815
http://doi.org/10.1109/TIE.2015.2417501
http://doi.org/10.1006/jsvi.1994.1222
http://doi.org/10.1109/39.916355
http://doi.org/10.1016/j.engfailanal.2014.11.015

	Introduction 
	Motor Stator Current Modeling 
	Planetary Gearbox Dynamic Model 
	Stator Current Modeling 

	Stator Current Simulation Analysis 
	Stator Three-Phase Current 
	Stator Winding Current for Sun Gear Failure 

	Experimental Validation 
	Conclusions 
	References

