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Abstract: Neurological diseases may reduce Tibialis Anterior (TA) muscle recruitment capacity
causing gait disorders, such as drop foot (DF). The majority of DF patients still retain excitable
nerves and muscles which makes Functional Electrical Stimulation (FES) an adequate technique
to restore lost mobility. Recent studies suggest the need for developing personalized and assist-as-
needed control strategies for wearable FES in order to promote natural and functional movements
while reducing the early onset of fatigue. This study contributes to a real-time implementation of
a trajectory tracking FES control strategy for personalized DF correction. This strategy combines a
feedforward Non-Linear Autoregressive Neural Network with Exogenous inputs (NARXNN) with
a feedback PD controller. This control strategy advances with a user-specific TA muscle model
achieved by the NARXNN’s ability to model dynamic systems relying on the foot angle and angular
velocity as inputs. A closed-loop, fully wearable stimulation system was achieved using an ISTim
stimulator and wearable inertial sensor for electrical stimulation and user’s kinematic gait sensing,
respectively. Results showed that the NARXNN architecture with 2 hidden layers and 10 neurons
provided the highest performance for modelling the kinematic behaviour of the TA muscle. The
proposed trajectory tracking control revealed a low discrepancy between real and reference foot
trajectories (goodness of fit = 77.87%) and time-effectiveness for correctly stimulating the TA muscle
towards a natural gait and DF correction.

Keywords: closed loop control; drop foot; Functional Electrical Stimulation; muscle modelling;
neural network; human-robot interface; hybrid control

1. Introduction

Stroke is the leading cause of death and disability globally, often resulting in paralysis
for stroke survivors. Nevertheless, paralyzed subjects still retain excitable peripherical
nerves and muscle tissues that may be re-established with Functional Electrical Stimula-
tion (FES) by bypassing the biological lesion and conducting the necessary stimulus to
induce a muscular contraction [1]. FES generates movement by stimulating the nervous
tissue that innervates muscles. The stimulation pulses can be adapted by tuning parame-
ters such as amplitude, frequency, or width. The pulse parameter modelling is relevant
when considering different muscle types, and their non-linear and time-variant dynamics
behaviour [2].

Drop Foot (DF) is a gait disorder that results from a reduced ability or total inability to
contract the TA muscle. FES-based DF correction systems currently available in the market
fail to take into consideration the time-variant dynamics of the electrically stimulated
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muscles [2], the onset of muscular fatigue, and any external disturbances [3]. This deprives
the user of an assisted-as-needed experience, promoting the early onset of fatigue and
failing to deliver optimal excitation patterns for the muscle’s nervous tissue, generating
coarse movements [4]. Muscular activation patterns are user-specific, depending on their
physical condition, muscular fatigue, and rehabilitation stage. Therefore, FES rehabilitation
treatment should be tailored using a personalized muscle model in order to capture the
user-specific dynamics of the electrically stimulated muscle.

The first methods used to control FES devices to artificially induce motor tasks were
feedforward open-loop controllers [5–7], which relied on manual parameter control, de-
manding high-cognitive effort for continuous FES use. There is a considerable evolution in
the development of drop foot correction strategies based on FES since the first FES system
was proposed in 1961 [8]. Recent research studies have proposed FES systems for drop foot
correction based on inertial sensors [9–11]. In these studies [9–11], electrical stimulation
was delivered through a closed-loop iterative learning control (ILC), which allows control-
ling dorsiflexion and eversion with respect to a given reference trajectory, adjusting the
stimulation intensity between strides. Commercial drop foot systems available today still
follow the same basic principle: detection of foot contact using a foot switch of an inertial
sensor to deliver a square or trapezoidal pattern during the swing phase (e.g., the Odstock
Dropped-Foot Stimulator produced by Odstock Medical Ltd. in the UK).

In the feedforward control paradigm, diverse types of models are used to reproduce
the stimulated muscle dynamics such as biomechanical models or empirical/black-box
models. Biomechanical models (e.g., Hill-type muscle or Hammerstein models) can be
used to reproduce muscle excitation dynamics for control purposes using FES [12]. In [13],
the excitation muscle dynamics were modelled by Hammerstein model with stimulus
pulse width and evoked EMG as input and output variables, respectively. Model predictive
control is integrated into the system to compute the pulse width signals and promising
results were obtained for controlling muscle contraction patterns of an able-bodied subject
using FES. However, the use of biomechanical models may require complex calibration
routines to adjust model parameters, which may not always be feasible in subjects with
pathologies [14,15].

On the other hand, a black-box model is viewed in terms of its inputs and outputs,
often using a transfer function [16]. A neural network is a type of black-box model that
can be trained with the input and output data of the stimulated muscle to output the
correct stimulation pulse depending on the desired trajectory [17]. Multiple studies have
proposed the use of recurrent neural networks for modelling stimulated muscle regard-
ing the upper [7,18] and lower limb movements [5,6,17,19], given their higher ability to
identify dynamic systems with a smaller network structure and less number of parameters
than other neural network types. Considering lower limb applications, Yassin et al. [5]
developed a study to compare the performance of using a NARX or a Cascade Forward
Neural Network (CFNN) to model the quadriceps muscle behaviour (torque) based on
stimulation frequency, pulse width, pulse, and duration of muscle excitation. The approach
proposed in [5], managed to approximate the behaviour of the system well with unbiased
residuals, with CFNN showing better performance compared to the NARXNN. In the
study conducted by Yilei et al. [19], a recurrent neural network model of an agonist and
antagonist pair of muscles and a single skeletal segment of a musculoskeletal model was
proposed and included in a pattern generator/pattern shaper control strategy. The work
proposed in [19] demonstrates the importance of using a neural network for shaping the
desired activation signals to the muscles, enabling a smoother stimulation pattern. Despite
major contributions regarding the use of recurrent neural networks, further exploration of
FES control strategies using user-specific muscle models in human subjects is still needed
towards achieving assisted-as-needed FES. Trajectory tracking control strategies, rang-
ing from using single feedback controllers [17,20,21] to single feedforward models [17]
or feedforward models combined with feedback controllers [22–26]. Müller et al. [27]
proposed the ILC strategy in a learning full-leg supporting neuroprosthesis to control the
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antagonistic muscle pairs for knee flexion and extension and for ankle joint dorsi- and
plantarflexion during all gait phases. The ILC presented promising results in improving
the gait of incomplete spinal cord injury subjects; however, the automatic ILC gain tuning
could not find adequate parameters for all subjects, demanding manual configuration.
Bouri et al. [26] proposed a feedforward and feedback control strategy for tracking the knee
angle trajectory in paraplegic patients, demonstrating the importance of using a single
feedforward component (predefined muscle activation patterns) to effectively reduce time
delay. The works developed by Ferrarin et al. [24] and Ferrante et al. [25] relied on the
use of goniometers to accurately track the knee extension trajectory by determining the
stimulation pulse width. These studies compared the use of an open-loop (single inverse
muscle models), closed-loop (single PID controllers), and a combination of feedback (PID
controllers) and feedforward (neural network muscle models) components, concluding
that the feedback and feedforward control strategy yielded better tracking performance,
achieving a time delay of 0.21 ± 0.02 s and a root mean square error (RMSE) of 3.4 ± 0.3
in [24] and an RMSE of 3.2 in [25]. The trajectory tracking control strategies based on ILC,
or repetitive control demonstrate great potential to adapt stimulation under periodic condi-
tions such as gait. However, tuning the controller parameters to the subject characteristics
still a considerable challenge. The combination of PID and neural network controllers
have shown promising achievements; nonetheless, further exploration of such strategies
considering fully wearable FES systems for real-time gait assistance is currently needed.

This study presents a real-time trajectory tracking FES control strategy by combin-
ing a feedforward Non-Linear Autoregressive Neural Network with Exogenous inputs
(NARXNN) with a feedback PD controller for personalized DF correction. Based on previ-
ous findings [5,6,19] on modelling of muscle parameters, we hypothesized that the use of a
dynamic inverse model (NARXNN) would capture the nonlinear dynamic behaviour of the
electrically stimulated muscle, and thus predict the pulse width based on the desired joint
kinematic trajectory. The novel aspect of this study relies on the real-time implementation
into a compact embedded system and performance evaluation of a novel user specific
NARXNN model of the TA muscle as a feedforward control. The microcontroller processes
the control strategy based on acquired data from a wearable inertial sensor placed on the
foot and communicates with the ISTim stimulator [28] to impose a user-specific and timely
triggered FES. Additionally, the present work presents a control benchmarking analysis,
comparing the performance of the feedback and feedforward control strategy with the use
of a single feedforward neural network and a single feedback PD. This study presented
promising results indicating that the use of a feedforward and feedback controller provides
considerable improvements in performance potentiating further research with pathologic
end-users.

The present work extends literature findings through (i) the use of a fully wearable
FES system integrating the control and sensor processing algorithms into a microcontroller
system, addressing the high demand for closed-loop control FES systems for daily motion
assistance; (ii) the creation of a real-time NARXNN model that accurately represents the
TA muscle non-linear dynamics as the feedforward component of a trajectory tracking
feedback and feedforward control strategy; and, (iii) the inclusion of a user-specific TA
muscle model into the control strategy, as well as the continuous and real-time feedback
from the user’s foot kinematics promoting a personalized FES assistance.

2. Materials and Methods

FES systems are meant to be small-sized and practical to actively restore motor func-
tion in daily living and allow the execution of everyday-tasks that otherwise would not
be completed. In this sense, we proposed a wearable system for DF correction, extend-
ing our previous work [29]. As demonstrated in Figure 1, it is composed by the STM
NUCLEO-32F303K8® processing unit to execute the control strategy and gait event detec-
tion algorithm; a modular stimulation unit from the ISTim Modular Stimulation System [28]
to deliver the stimulation pulses to the TA muscle according to the desired trajectory; and,
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the MPU6050 wearable Inertial Measurement Unit (IMU) that acquires the foot kinematics
in real-time. The FES system is powered by battery at 3.7 V with a capacity of 1000 mAh
and dimensions of 5.84 × 29.5 × 51 mm3. It ensures autonomy for at least eight hours
considering that the FES system consumption reaches up to 100 mAh. The algorithms
present in the processing unit use the acquired foot kinematics in the sagittal plane (foot
angle and foot angular velocity). The foot angular velocity is the gyroscope pitch value and
the foot angle is calculated by fusing the data from the accelerometer and the gyroscope,
using a complementary filter [30]. The complementary filter is represented by Equation (1),
as follows:

Θ = αg∗θg+αa∗θa (1)

where Θ is the estimated foot angle in the sagittal plane, θg is the foot angle integrated
from the gyroscope pitch axis, θa is the foot angle estimated from the accelerometer pitch
axis and αg and αa are the filter constants, that were tuned to 0.98 and 0.02, respectively.
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recorded after TA muscle stimulation using filtered random noise as pulse width (input). (a) STM NUCLEO-32F303K8®

microcontroller; (b) ISTim stimulator (c) Wearable Inertial Measurement Unit. Pulse width values and foot kinematics
(DATA) are used in NARXNN Building to train, validate and built the inverse NARXNN model (input: foot kinematics;
output: pulse width). The obtained inverse NARXNN is used in the Experimental Procedures to test trajectory tracking
control (TTC) and open loop control strategies under a two-phase experimental protocol.

The proposed FES system was developed to re-establish motor control of the foot
in stroke survivors that present severe walking disability. Consequently, the FES system
will be important to assist gait at reduced self-selected walking speeds, ranging from
1–2.5 km/h [31]. The main goal of the proposed system is to assist drop foot patients
efficiently with a compact, few intrusive, and wearable device. Nevertheless, the system is
modular, allowing to scale up all functionalities namely, the number of sensors, number of
channels, and control strategies according to other application scenarios.

The present work is divided into three main steps, the (i) NARXNN and Muscle
Data Acquisition, the (ii) NARXNN Building, and the (iii) Experimental Procedure, as
demonstrated in Figure 1. The first step addresses the acquisition of foot angle and angular
velocity data retrieved from the TA muscle stimulation modulating the stimulation pulse
width using specific filtered random noise signals. The obtained data was subsequently
used to train, validate, and test a NARX neural network model to create an inverse model
of the TA muscle. In the last step, the NARX neural network performance was tested when
incorporated into different control strategies under experimental procedures divided in
two phases.

The chosen microcontroller was the STM NUCLEO-32F303K8® (STMicroelectronics,
Geneva, Switzerland), since it is small but has a high range of peripheric features, with a
length of 50.29 mm and a width of 18.54 mm. It features I2C and USART communication
interfaces and provides 2 USART peripherals. It has an Arm® Cortex®-M4 32-bit CPU with
72 MHz maximum CPU frequency and features 64 Kbytes of Flash memory and 12 Kbytes
of SRAM [32]. The processing unit communicates with the IMU and the ISTim via I2C, and
serial USART, respectively.
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The sampling frequency of the system for data acquisition from MPU6050 was set
to 500 Hz to capture the varying dynamics of the foot movement during gait [27]. This
sampling frequency was used for all procedures conducted in the present study. The pro-
posed wearable system was designed to provide personalized and time-effective assistance,
compensate external disturbances, and provide natural movement detection algorithms.

2.1. Functional Electrical Stimulation

The electrical stimulation was conducted using the ISTim Modular Stimulation Sys-
tem [26,27], which delivers biphasic squared electrical pulses. The electrical pulse param-
eters range between 0–50 V, 0–503 µs, and 0–200 Hz, for pulse amplitude, width, and
frequency, respectively [33]. The electrical stimulation was delivered to the TA muscle
using two skin-surface, self-adhesive electrodes (5 cm; Medel GmbH, Hamburg, Germany)
placed over the common peroneal nerve, allowing dorsiflexion of the foot. Considering the
anode- and cathode-first biphasic stimulation [34], the cathode electrode was placed near
to the head of the fibula and the anode electrode placed on the middle of the fibula.

2.2. Participants

Regarding the creation of the reference trajectories, the participants were approached
through a mailing list across the University of Minho community describing the study
goal, protocol, and duration. The participants were recruited according to a set of inclusion
criteria, as follows: (i) healthy locomotion; (ii) more than 18 years old; (iii) body mass
ranging from 45 to 90 kg; and (iv) body height ranging from 1.50 to 1.90 m. We selected
10 able-bodied subjects (6 males, 4 females) for the data acquisition procedure. The partici-
pants’ mean age was 23.9 ± 1.64 years, with a mean height of 174.9 ± 7.07 cm, and mean
weight of 69.7 ± 7.14 kg.

The trajectory tracking control validation procedures were conducted with an able
23-year-old female subject with 162 cm and 60 kg. All participants provided written and
informed consent, according to the ethical conduct defined by the University of Minho
Ethics Committee (CEICVS 006/2020) that follows the standards set by the declaration of
Helsinki and the Oviedo Convention.

2.3. Modeling the Tibialis Anterior Muscle

The proposed empirical model represents the inverse dynamics of the electrically
stimulated muscle. It predicts the pulse width values needed to deliver a personalized
stimulation signal to control muscle contraction given the desired trajectory, towards
correcting DF in real-time.

2.3.1. NARX Neural Network

NARX is a class of discrete-time non-linear systems that establish non-linear relation-
ships between past observations and future outputs [18]. These models are useful for FES
research purposes due to the small number of required parameters and their ability to
represent the nonlinear dynamic behaviour of the electrically stimulated muscle [35]. The
NARXNN model is represented by Equation (2), as follows:

y(t) = f (u(t), u(t − 1), . . . , u(t − n), y(t − 1), . . . , y(t − m)) (2)

where y(t) is the output predicted by the model, u(t) is the input at time t. f is the non-
linear function that describes the system’s behaviour and n and m are the regression orders
of the input and output, respectively. Since the function f is a Multilayer Perceptron (MLP),
the model represents a NARXNN.

The proposed NARXNN was trained in Series-Parallel mode for more efficient training,
considering that the true output is available (pulse width). The NARXNN is a type of
recursive neural network that only has feedback between the output and input layers [5].
The dynamic inverse NARXNN model represented by Equation (2) was trained using the
foot angle (θ(t)) and its angular velocity (

.
θ(t)) as exogenous reference inputs, represented
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by u(t) in Equation (2). During training, the NARXNN learned the pulse width ( ˆPW) as the
desired output that would generate the considered foot angle (θ(t)) and respective angular
velocity (

.
θ(t)). For real-time operating conditions and validation purposes, NARXNN

considers the estimated pulse width ( ˆPW) as input (feedback loop) in addition to the foot
angle (θ(t)) and its angular velocity (

.
θ(t)), as represented in Figure 2. By trial and error,

we verified that the NARXNN with only one delayed input ˆ(PW(t)) fitted the trade-off
between maximum accuracy and real-time efficiency.
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2.3.2. NARX Model Data Acquisition

A data acquisition procedure was performed to personalize the NARXNN model to
each user’s TA muscle characteristics. It consists of applying different stimulation signals
to the TA muscle and recording the resulting foot kinematics (foot angle and angular
velocity) using the IMU placed on the subject’s foot. This procedure is represented in
Figure 1—NARXNN and Muscle Data Acquisition.

The pulse width was chosen as the controlled variable and the stimulation frequency
was adjusted to 30 Hz, the pulse amplitude to 28 V, and the minimum and maximum pulse
width to 30 µs and 120 µs, respectively. The NARXNN was trained with real foot movement
data from the IMU obtained after stimulating the TA muscle. For this, Filtered Random
Noise (FRN) signals were used to shape the pulse width parameter. A frequency analysis of
foot kinematics when walking with speeds between 1 Km/h and 2 Km/h determined that
the most representative frequencies range between 0.23 and 0.34 Hz (The power spectrum of
kinematic signals for each speed is represented in Figure A1 of Appendix A). For assessing
the model robustness, TA muscle stimulations were performed by adjusting the pulse
width values using FRN signals with three incremental frequencies of 0.1 Hz, 0.2 Hz, and
0.3 Hz to generate slow, intermediate, and fast motion responses, respectively [28]. Three
experimental trials were conducted for each FRN pulse frequency to collect diversified
data for robust model training. The experimental trials were conducted with a healthy
23-year-old female subject. The system must consider no contact forces during the swing
phase; thus, the data acquisition was performed with the subject in a seated position with
both feet elevated from the ground.

2.3.3. NARX Model Building

Data (foot angle, foot angular velocity, and the pulse width signals) obtained from
the NARXNN and Muscle Data Acquisition procedure were normalized between 0 and
1 using the min-max normalization method. The normalized data were used to train the
personalized dynamic inverse model. The goal was to train the model with foot angle,
foot angular velocity as inputs, and the expected pulse width as output in order to build
a stimulation pulse adaptive neural network. The model was created and preliminarily
tested using MATLAB® running on an ASUS® computer with an INTEL® CORETM i73537U
processor at 2 GHz. This procedure is represented in Figure 1—NARXNN Building.

The trials’ data were randomly (using “rand” MATLAB function) divided as 70%
for training, 15% for validation, and 15% for testing. The NARXNN was built using
hyperbolic tangent as activation function and the Levenberg–Marquardt as the training
algorithm. The weights were initialized randomly, between −1 and 1, and the NARXNN
was trained with two different stopping criteria: upon reaching 500 training epochs or
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if the validation error increases six times in a row, to avoid overfitting. The validation
error consisted of determining the Mean Squared Error (MSE) by comparing the expected
values with those output by the NARXNN. We studied NARXNN performance by varying
the number of neurons (5, 10, and 20) and hidden layers (1 and 2) towards finding the
best performing NN with the smaller number of parameters to be used in the real-time
control strategy. The performance of the NARXNN was assessed with the testing dataset,
in terms of the goodness of fit (GOF) and the Pearson correlation coefficient (ρ). The GOF
provides a measure of how similar a signal is when compared to a given reference, in terms
of amplitude. The Pearson correlation coefficient measures linear similarity between the
signals.

2.4. Trajectory Tracking Control Strategy

A trajectory tracking control strategy was implemented in the proposed system using
a PD controller paired with a NARXNN model. Figure 3 depicts the closed-loop control
strategy, where the feedback loop is fed by the foot angle and foot angle velocity, both
measured by the foot IMU sensor in real-time.
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Figure 3. Closed-loop, Trajectory tracking control diagram, including the PD controller as the
feedback component and the Dynamic Inverse Model (NARXNN) as the feedforward component.
The control command Us(t) (pulse width) is generated by combining the feedforward control
command (Um(t)) and the feedback control command (Uc(t)) and is sent to the stimulator, which
delivers the stimulation to tibialis anterior muscle accordingly. The subsequent foot movement is
continuously measured by the IMU placed on the subject’s foot in terms of real foot angular velocity
.
θ(t) and foot angle θ(t). The PD controller only considered the foot angle θR(t) as the reference
trajectory, while the Dynamic Inverse Model (NARXNN), considered as references both the foot
angle θR(t) and the foot angle velocity

.
θR(t).

The error value, e(t), represents the PD controller input and it is computed as indicated
in Equation (3).

e(t) = θR(t)−θ(t) (3)

where θR(t) is the desired foot trajectory angle and θ(t) is the real foot angle measured by
the IMU. The PD control command is given by Equation (4).

Uc(t) = e(t) ∗ Kp −
.
θ(t) ∗ Kd (4)

where Uc(t) is the control variable output of the controller, e(t) is the error value given
by Equation (3),

.
θ(t) is the real foot angular velocity, and Kp and Kd are the proportional

and derivative gains, respectively. The pulse width value that is sent to the stimulator, Us,
is a sum of the value predicted by the model, Um, and the control variable from the PD
controller, Uc, given by Equation (5).

Us(t) = Um(t) + Uc(t) (5)

The trajectory tracking control strategy relies on the gait event detection in order to
evoke muscle contraction according to each stage of the gait cycle. The used gait event
algorithm was proposed in [36], and relies on the foot’s angular velocity to detect in real-
time the Heel Strike (HS), Foot Flat (FF), Middle Mid-Stance (MMST), Heel-Off (HO),
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Toe-Off (TO) and Middle Mid-Swing (MMSW) using an adaptive finite state machine. The
detected gait events are used to trigger the trajectory tracking control during the swing
phase given that this is the most affected phase in DF patients [37].

2.4.1. Response Time Delay Removal

It is important to emphasize that the FES actuation has a subject-specific delay linked
to the subject’s muscular response time. Therefore, it is important to anticipate this delay
in order to track the correct foot angle trajectory in the correspondent gait phase. The
response time delay is continually measured during gait, and the response time delay
removed in each gait cycle is retrieved from the previous gait cycle. The time delay
removal strategy starts by determining the stance phase duration (Tst), by measuring the
time between heel strike and toe-off events, both detected by the gait event algorithm
in real-time [36]. Subsequently, the subject specific time delay (Td) is computed as the
time difference between the toe-off events of the reference foot angle trajectory and the
measured foot angle trajectory. Figure 4 depicts a case example of a subject-specific time
delay removal.

Figure 4. (a) Determination of the subject’s response time and (b) Removal of the subject’s response time. Blue line
represents subject-specific time delay (Td).

The delay removal is achieved by triggering stimulation at a specific time for each gait
cycle, denominated as stimulation time (Tstim), determined as the difference between Tst
and Td, as indicated in Equation (6).

Tstim = Tst − Td (6)

2.4.2. Reference Trajectory Acquisition

The foot reference trajectory was obtained from 10 healthy subjects walking on a tread-
mill at three different speeds (1 km/h, 1.5 km/h, and 2 km/h) as mentioned in Section 2.2.
An IMU was placed on the subject’s foot to measure his/her kinematic behaviour. The foot
angle and foot angular velocity were acquired in real-time during 10 gait cycles for each
speed. Note that each gait cycle starts and begins when foot angle and foot angular velocity
are 0◦ and 0 rad/s, respectively. For each walking speed, the foot angle and foot angular
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velocity reference trajectories were created by performing the average of the 10 retrieved
signals, resulting in three-foot angle reference trajectories (Figure 5a–c) and three foot
angular velocity reference trajectories (Figure 5d–f).
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2.4.3. Trajectory Tracking Control Validation

The trajectory tracking control was validated considering an experimental protocol
divided into two phases. For both phases, the control strategies were applied at a frequency
of 125 Hz. PD controller was tuned manually until the system was stable, achieving values
of 1.5 and 0.7 for Kp and Kd, respectively. The inertial sensor was placed on the surface of
the foot. The system was validated with an able 23-year-old female subject with 162 cm and
60 kg [38,39]. The performance of the trajectory tracking control was assessed using GOF
and the root mean square error (RMSE). The GOF and RMSE provide objective measures
to compare the reference signals with the measured signals obtained by applying the FES
control strategy. The advances in this study may be further explored in disabled subjects,
since the response of the relaxed muscles of able subjects is similar to that of paralyzed
muscle limbs under electrical stimulation [40–44].

Phase I Protocol

The phase I protocol aims the control benchmarking analysis by comparing the perfor-
mance of feedforward and feedback trajectory tracking control strategy (NARXNN & PD)
with the (i) single PD controller (for compensation purposes) and (ii) Open-loop dynamic
inverse NARXNN control strategy (OP), as represented in Figure 6. This comparative
analysis focused on selecting the most effective controller towards the DF correction appli-
cation. The validation was performed with the subject seated, keeping the foot elevated
from the ground, allowing the ankle to move without restriction. These experimental
conditions are easily reproducible in consequent trials and aim at allowing the testing to be
conducted without the existence of ground contact forces to the foot. Figure 7a represents
the experimental setup. The control strategies were validated with the reference trajectory
for three different speeds: 1 km/h, 1.5 km/h, and 2 km/h, conducting 4 trials for each
speed.
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Figure 7. Validation setup: (a) Phase I protocol: The subject remained in a seated position, undergoing
stimulation for the validation of the single feedforward NARXNN model, the single PD controller,
and the feedback and feedforward strategy combing a PD with a NARXNN; (b) Phase II protocol:
The subjects walked in a treadmill for three different speeds, undergoing stimulation to validate the
feedback and feedforward strategy combing a PD with a NARXNN.

Phase II Protocol

The phase II protocol was performed to validate the feedforward and feedback control
strategy (PD & NARXNN) for DF correction during gait with the subject walking on the
treadmill at three speeds: 1 km/h, 1.5 km/h, and 2 km/h. The range of walking speeds
between 1 and 2 km/h aims to focus the system validation on the most severe cases of
walking disability as a consequence of a stroke [31]. The validation setup can be seen in
Figure 7b. During experimental trials, the subject was instructed not to lift the foot during
the swing phase, behaving similar to a DF patient (pseudo-DF-gait). The stimulation was
applied in random gait cycles during the simulated DF gait of the subject. The random
application of the electrical stimulus aimed to minimize the occurrence of voluntary muscle
contractions. Preliminary experimental validations have been performed in literature with
healthy subjects using FES to correct drop foot [38,39]. One trial was conducted for each
walking speed until 10 gait cycles were completed.

3. Results
3.1. NARXNN Testing

The dynamic inverse NARX was tested alone after training and validation, to infer
its ability to predict target FRN signals, under a different number of layers and neurons.
This procedure is represented in Figure 1 as the last step of the NARXNN building block.
Figure 8 shows the predicted signals (pulse width) overlapped to the reference FRN signals,
and respective performance (GOF = 89.05%, 83.9%, and 69.49%) obtained for one trial using
a NARXNN with two hidden layers and 20 neurons.

Machines 2021, 9, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. Inverse dynamic NARXNN model results for the first trial with two hidden layers and 20 
neurons: (a) low-frequency FRN, (b) medium-frequency FRN and (c) high-frequency FRN. 

The NARNN performance for tracking low, medium, and high-frequency FRN sig-
nals was accessed considering a different number of neurons (5, 10, and 20) in a single and 
double-layer configuration. The performance results in terms of average GOF and ρ coef-
ficient were estimated based on the experimental data and are depicted in Table 1. 

Table 1. Results (GOF and 𝜌) for NARXNN trained with acquired data for a different number of 
neurons and hidden layers. 

No. Neurons No. Layers 
Average 

FRN Reference Signal 
GOF 𝜌 

5 
1 55.90% 0.9032 

High Frequency 

2 57.38% 0.9086 

10 
1 55.02% 0.9238 
2 64.41% 0.9288 

20 
1 60.06% 0.9237 
2 68.07% 0.9402 

5 
1 70.22% 0.9206 

Medium Frequency 

2 63.25% 0.9385 

10 
1 70.07% 0.8661 
2 71.44% 0.9573 

20 
1 64.84% 0.9209 
2 76.45% 0.9602 

5 
1 77.32% 0.9644 

Low Frequency 

2 77.30% 0.9632 

10 
1 77.32% 0.9644 
2 80.64% 0.9584 

20 
1 80.13% 0.8858 
2 81.41% 0.9807 

The system computation times were analysed to determine its real-time performance 
when running in the microcontroller architecture. The obtained computation times re-
garding the NARXNN prediction, the IMU data acquisition, the communication with the 
stimulator and the gait event detection algorithm are listed in Table 2. The combination of 
these values represents the system operating frequency which stands higher than the 
stimulation frequency (30 Hz). Therefore, the implemented dynamic inverse models pre-
sent time effective responses, which stand adequate for real-time control. Considering the 
Tables 1 and 2 results, the NARXNN with two hidden layers and 10 neurons in each hid-
den layer was the selected chosen architecture to use in the control strategies of the fol-
lowing experimental procedures (two-phase protocol), to privilege the trade-off between 
accuracy and time-efficiency.  

  

Figure 8. Inverse dynamic NARXNN model results for the first trial with two hidden layers and
20 neurons: (a) low-frequency FRN, (b) medium-frequency FRN and (c) high-frequency FRN.

The NARNN performance for tracking low, medium, and high-frequency FRN signals
was accessed considering a different number of neurons (5, 10, and 20) in a single and
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double-layer configuration. The performance results in terms of average GOF and ρ

coefficient were estimated based on the experimental data and are depicted in Table 1.

Table 1. Results (GOF and ρ) for NARXNN trained with acquired data for a different number of
neurons and hidden layers.

No. Neurons No. Layers
Average

FRN Reference Signal
GOF ρ

5
1 55.90% 0.9032

High Frequency

2 57.38% 0.9086

10
1 55.02% 0.9238
2 64.41% 0.9288

20
1 60.06% 0.9237
2 68.07% 0.9402

5
1 70.22% 0.9206

Medium Frequency

2 63.25% 0.9385

10
1 70.07% 0.8661
2 71.44% 0.9573

20
1 64.84% 0.9209
2 76.45% 0.9602

5
1 77.32% 0.9644

Low Frequency

2 77.30% 0.9632

10
1 77.32% 0.9644
2 80.64% 0.9584

20
1 80.13% 0.8858
2 81.41% 0.9807

The system computation times were analysed to determine its real-time performance
when running in the microcontroller architecture. The obtained computation times re-
garding the NARXNN prediction, the IMU data acquisition, the communication with
the stimulator and the gait event detection algorithm are listed in Table 2. The combina-
tion of these values represents the system operating frequency which stands higher than
the stimulation frequency (30 Hz). Therefore, the implemented dynamic inverse models
present time effective responses, which stand adequate for real-time control. Considering
the Tables 1 and 2 results, the NARXNN with two hidden layers and 10 neurons in each
hidden layer was the selected chosen architecture to use in the control strategies of the
following experimental procedures (two-phase protocol), to privilege the trade-off between
accuracy and time-efficiency.

Table 2. Mean computation times obtained from the FES system operations.

Task Characteristics Computational Time (ms)

NARX Neural Network
prediction (2 hidden layers)

20 Neurons 5.10 ± 0.03
10 Neurons 4.61 ± 0.01
5 Neurons 4.53 ± 0.04

IMU data acquisition - 1.4 ± 0.32

Communication with stimulator - 0.8 ± 0.35

Gait event detection - 0.2 ± 0.02

3.1.1. Phase I Protocol

The results (GOF) obtained regarding the three different control strategies validated
at three different speeds are presented in Table 3 and Figure 9.
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Table 3. Control strategies performance (GOF) for phase I protocol.

1 km/h 1.5 km/h 2 km/h

Open-Loop Model (NARXNN) 68.16% 23.86% 22.19%

Trajectory Tracking Control (PD) −30.30% −19.55% −60.73%

Trajectory Tracking Control
(PD & NARXNN) 77.87% 63.32% 23.72%
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Figure 9. Performance comparison between the different control strategies for phase I protocol for
1 km/h, 1.5 km/h, and 2 km/h speeds. (a–c) Foot angle signal obtained from each control strategy
for 1 km/h, 1.5 km/h, and 2 km/h, respectively. (d–f) Pulse width signal used for stimulation for
1 km/h, 1.5 km/h, and 2 km/h, respectively. OP: open-loop model composed of NARXNN; PD: a
single feedback PD controller; TTC: the trajectory tracking control strategy combing a PD with a
NARXNN. PW stands for pulse width and FA stands for foot angle.

The dynamic inverse model in open-loop showed moderate and low performance for
the low-speed and higher-speed reference signals, respectively (68.16% (1 km/h), 23.86%
(1.5 km/h), 22.19% (2 km/h)). These results indicate that this open-loop control strategy
may yield an unstable reference trajectory tracking under walking speed variation, which
may result in an inadequate stimulation.

3.1.2. Phase II Protocol

The system validation under phase II protocol was conducted with a healthy subject on
a treadmill at 1 km/h, 1.5 km/h, and 2 km/h. Results under phase II protocol for the speed
of 1 km/h can be seen in Figure 10. By analysing Figure 10a, at the beginning of the swing
phase, the foot angle is 20◦ lower than the reference trajectory (the reference trajectory
retrieved as described in Section 2.4.2). In order to compensate for this disturbance, the
controller increases the applied pulse width, as shown in Figure 10c. As the real foot angle
approaches the desired trajectory the applied pulse width decreases, as expected, in order
to avoid unneeded muscle stimulation, and consequently to prevent the early onset of
fatigue (Figure 4). The reference trajectory was set to zero from heel-strike to push-off
events to assist only when needed for drop foot correction, aiming at delaying the muscle
fatigue. The pulse width is not constant throughout the swing phase, since it changes
according to the difference between the desired trajectory and the real foot angle. The foot
angle is able to reach the desired reference angles before the heel strike and, due to the
pulse width decrease at the heel strike, it is also able to slowly descend towards the ground,
generating a natural movement.
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Figure 10. Real-time trajectory tracking control strategy validation at 1 km/h: (a) Measured foot
angle (black solid line) and reference foot angle trajectory (dashed green line). (b) Control activation
(Gait phase and Control State). The vertical dashed line with blue arrow represents stance-swing
transition, while the green arrow indicates the swing-stance transition. (c) Applied pulse width.

The gait cycles related to corrected DF gait by FES were averaged and compared with
the pseudo-DF gait and with the healthy gait, to determine if the applied control strategy
improved the pseudo-DF gait pattern. The obtained RMSE results comparing the foot angle
from healthy gait with pseudo-DF and corrected DF gait are depicted in Table 4. These
results suggest that the proposed trajectory tracking control was able to improve the foot
motion in 21.41%, 45.82%, and 37.76% for the walking speeds of 1 km/h, 1.5 km/h, and
2 km/h, respectively.

Table 4. RMSE values obtained by comparing healthy gait cycles with the pseudo-DF and the
corrected DF gait cycles for three walking speeds.

1 km/h 1.5 km/h 2 km/h

RMSE
(Healthy Gait vs.
Pseudo-DF Gait)

31.065 ± 6.025 29.990 ± 2.968 30.813 ± 5.205

RMSE
(Healthy Gait vs.

Corrected DF Gait)
24.413 ± 4.243 16.249 ± 4.327 19.178 ± 3.113

Figure 11 shows that in the pseudo-DF gait the foot does not rise above 0◦ at heel
strike. However, when the trajectory tracking control strategy is applied, the foot follows
the desired trajectory, raising above 0◦, and demonstrating a healthy behaviour.
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Figure 11. Foot angle obtained by measuring DF gait (blue line) in comparison with foot angle
measured during DF correction (black line) using the feedback and feedforward control strategy at a
walking speed of 1.5 km/h. The black line represents the average of all gait cycles obtained in DF
correcting conditions. The green line represents a healthy foot angle trajectory.

4. Discussion

A real-time wearable FES system for DF correction was presented and validated in a
two-phase protocol to compare different control approaches and to infer about the system’s
ability to correct DF during gait.

Table 1 analysis suggests that the difference in GOF between the results for the
NARXNN with 20 neurons trained with 1 and 2 hidden layers is reduced, being 1.28% and
1.3% for low and medium-frequency FRN signals, respectively. For the high-frequency
FRN signals, the difference in GOF increases to 8.01%. Despite this difference for high-
frequency FRN signals, the ρ values stood similar with average difference values of 0.095,
0.007, and 0.017 regarding low, medium, and high-frequency FRN signals respectively. The
NARXNNs showed higher performance for low-frequency signal predictions, with a GOF
of 81.41%, when compared to the performance for high-frequency signal predictions, with
a GOF of 68.07%. The prediction time responses of the models were also studied, showing
that the NARXNNs with 10 neurons had the fastest response (7.0 ± 0.327 ms).

The obtained results for phase I protocol show that the feedforward and feedback-
based trajectory tracking control strategy had the best performance when compared to the
other control strategies. However, for the highest speed reference (2 km/h) the accuracy has
decreased 69.54% (GOF = 23.72%), which might be related with the fact that the NARXNN
was trained with FRN signals with frequencies ranging from 0.1–0.3 Hz. The inclusion of
a NARXNN into a closed-loop PD controller increased prediction performance (Table 3),
and a visual inspection of Figure 9 shows that the corrected DF gait trajectory presents
higher similarity comparing with the healthy gait trajectory. The lower performance for
the 2 km/h speed might be related to the considerable differences in initial conditions, i.e.,
the difference between the initial real foot angle and the initial reference trajectory values,
creating a delayed pulse width, which results in a delayed tracking response. This issue
was not observed in the phase II protocol since the initial conditions were fixed, i.e., the user
started the walking on a treadmill in foot flat event, where the foot angle is approximate 0◦.
The results obtained for phase I protocol point show considerable improvements (62%) in
using a feedback and feedforward control strategy (combining a PID and a neural network),
as previously advances in similar studies [17].

Additionally, the proposed feedback and feedforward control strategy presents consid-
erable improvements when comparing pseudo-DF gait and corrected DF gait with healthy
gait, namely, 21.41%, 45.82%, and 37.76% for the walking speeds of 1 km/h, 1.5 km/h,
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and 2 km/h, respectively. These results suggest that the use of FES under the proposed
feedback and feedforward control strategy allowed a healthier motor control of the foot
during gait. Despite promising results, the existing angle error between reference trajectory
and corrected DF trajectory may be related to the used reference. The creation of the angle
reference included subject with considerable difference in height which may not be the
most adequate for the subjected that conducted the system validation. Nevertheless, the
results from our study regarding the feedback and feedforward control strategy during
gait stand in accordance with a study with a similar experimental setup [9]. The trajectory
tracking control strategy proposed in our study achieved normalized RMSE of 0.305, 0.203,
and 0.239 degrees for walking speeds of 1, 1.5, and 2 km/h, respectively. The iterative
learning control proposed in [9,45] presented similar performance in the initial iterations
(normalized RMSE of 0.25 degrees); however it converged to a minimal error performance
in the subsequent control iterations (normalized RMSE of 0.05 degrees). Moreover, the
study [11] advances in the use of FES to control the foot pitch and roll motion in paretic
gait, while achieving promising results, having normalized RMSE values for the foot pitch
of 0.08 degrees. Despite requiring further experimental trials, our study contribution
regarding similar studies [9] relates to the use of a fully wearable FES system that runs in
real-time a feedback and feedforward control strategy to correct drop foot gait.

Similar trajectory tracking strategies have been proposed in the literature [17,46].
However, the study conducted in this paper advances [17] by embedding a feedforward
and feedback control strategy in a completely wearable and real-time FES system. Moreover,
the work in [21] proposes a wearable FES prototype using a fuzzy logic control, however,
the obtained results suggested the need to include a parameter adjustment algorithm
to run during the stimulation. The present study tackles the need to develop wearable
FES systems with embedded control, and the use of a NARXNN allows the automatic
parameter adjustment to provide an optimized stimulation pattern. The FES system was
created to be personalized for each subject, requiring minimal-to-null inputs from the
end-user for real-time use. In this sense, the pulse intensity and frequency parameters
are initially fixed to the best-suited values, not requiring any type of adjustment during
stimulation. Moreover, the NARXNN automatically adjusts the pulse width in real-time to
the subject’s needs.

5. Limitations and Future Directions

In this study, we presented an initial design of feedback and feedforward control
strategy by combining a PD and a NARX neural network-integrated in an FES wearable
system, for real-time DF correction during gait. Our main goal was to conduct initial tests
aiming for the system validation and to evaluate the NARX as a feedforward component
from the feedback and feedforward control strategy. The main limitation of this study
relies on the reduced number of subjects used for validation purposes. In fact, despite
promising results and the real-time validations conducted, the proposed system will
undergo extensive validation with an increased population size by including patients
with drop foot as the target end-users. The NARX neural network was able to modulate
TA muscle for slow walking speeds. Despite this, the model will be improved to allow
assistance in faster walking speeds, by training the NARXNN with FRN signals with higher
frequency. Additionally, future developments on this research will include the execution of
the stimulation strategies in different days for the same subject to assess the stimulation
response variability day by day. This research will also progress to improve the control
time-effectiveness and time-delay quantification during gait at different speeds.

6. Conclusions

This paper proposes a real-time trajectory tracking control strategy, based on a
NARXNN combined with a PD, to control the foot angle trajectory using a newly de-
signed wearable FES system for assist-as-needed DF correction. Under DF gait conditions,
the assistance was focused on the swing phase, which was timely detected through an
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adaptive gait event detection algorithm. The findings suggest that combining feedforward
NARX and a feedback PD controller may yield the best performance when compared to
the use of a single feedforward NARX or a single feedback PD controller. Furthermore, the
optimized NARXNN architecture showed to be adequate in correcting DF of the participat-
ing subject in real-time settings and its inclusion in the feedback and feedforward control
strategy enabled personalized and time-effective assistance by considering the user-specific
non-linear TA muscle characteristics.

The study conducted in this paper allowed to conclude that the FES system stood
as an effective tool for real-time electrical stimulation of the TA muscle. Moreover, the
proposed control strategy combining a NARXNN with a PD controller revealed promising
results, despite the reduced number of participants in the experimental trials. These results
potentiate further investigation with the proposed system with an heterogenous group
of participants.
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Appendix A

Figure A1 represents the spectral frequency analysis conducted for the kinematic
signals depicted in Figure 5. Results of Figure A1 state that the frequencies with the
highest power for the speeds of 1 km/h (Figure A1a), 1.5 km/h (Figure A1b), and 2 km/h
(Figure A1c) are 0.23 Hz, 0.29 Hz, and 0.34 Hz, respectively. Furthermore, Table A1 presents
the frequencies with highest power and energy share below 0.3 Hz for the speeds of 1 km/h,
1.5 km/h and 2 km/h.
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Table A1. Results from spectral frequency analysis for the kinematic foot signals at the speeds of 1 km/h, 1.5 km/h and
2 km/h.

Velocity (km/h) Frequency with
Highest Power

Energy (W/Hz) for
Interval [0–0.3] Hz

Energy (W/Hz) for
Interval [0–0.2] Hz

Energy (W/Hz) for
Interval [0–0.1] Hz

1 0.23 Hz 3.09 × 10−2 2.20 × 10−2 1.4 × 10−2

1.5 0.29 Hz 9.2 × 10−4 6.9 × 10−4 4.6 × 10−4

2 0.34 Hz 1.8 × 10−3 1.3 × 10−3 8.8 × 10−4

References
1. Kesar, T.; Chou, L.W.; Binder-Macleod, A.S. Effects of stimulation frequency versus pulse duration modulation on muscle fatigue.

J. Electromyogr. Kinesiol. 2008, 18, 662–671. [CrossRef]
2. Hunt, K.J.; Munih, M.; de Donaldson, N.; Barr, F.M.D. Investigation of the Hammerstein hypothesis in the modeling of electrically

stimulated muscle. IEEE Trans. Biomed. Eng. 1998, 45, 998–1009. [CrossRef]
3. Melo, P.L.; Silva, M.T.; Martins, J.M.; Newman, D.J. Technical developments of functional electrical stimulation to correct drop

foot: Sensing, actuation and control strategies. Clin. Biomech. 2015, 30, 101–113. [CrossRef]
4. Brunetti, F.; Garay, A.; Moreno, J.C.; Pons, J.L. Enhancing functional electrical stimulation for emerging rehabilitation robotics in

the framework of hyper project. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich,
Switzerland, 29 June–1 July 2011; pp. 1–6.

5. Yassin, I.M.; Jailani, R.; Ali, M.S.A.M.; Baharom, R.; Hassan, A.H.A.; Rizman, Z.I. Comparison between cascade forward and
multi-layer perceptron neural networks for NARX functional electrical stimulation (FES)-based muscle model. Int. J. Adv. Sci.
Eng. Inf. Technol. 2017, 7, 215–221. [CrossRef]

6. Ghani, N.A.M.; Kamaruddin, S.B.A.; Ramli, N.M.; Nasir, N.B.M.; Kader, B.S.B.K.; Huq, M.S. The quadriceps muscle of knee joint
modelling using neural network approach: Part 1. In Proceedings of the 2016 IEEE Conference on e-Learning, e-Management
and e-Services (IC3e), Langkawi, Malaysia, 10–12 October 2016; pp. 52–57.

7. Imatz-Ojanguren, E.; Irigoyen, E.; Valencia-Blanco, D.; Keller, T. Neuro-fuzzy models for hand movements induced by functional
electrical stimulation in able-bodied and hemiplegic subjects. Med. Eng. Phys. 2016, 38, 1214–1222. [CrossRef]

8. Liberson, W.T.; Holmquest, H.J.; Scot, D.; Dow, M. Functional electrotherapy: Stimulation of the peroneal nerve synchronized
with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 1961, 42, 101–105.

9. Valtin, M.; Seel, T.; Raisch, J.; Schauer, T. Iterative learning control of drop foot stimulation with array electrodes for selective
muscle activation. IFAC Proc. Vol. 2014, 19, 6587–6592. [CrossRef]

10. Seel, T.; Laidig, D.; Valtin, M.; Werner, C.; Raisch, J.; Schauer, T. Feedback control of foot eversion in the adaptive peroneal
stimulator. In Proceedings of the 22nd Mediterranean Conference on Control and Automation, Palermo, Italy, 16–19 June 2014;
pp. 1482–1487. [CrossRef]

11. Seel, T.; Werner, C.; Schauer, T. The adaptive drop foot stimulator–Multivariable learning control of foot pitch and roll motion in
paretic gait. Med. Eng. Phys. 2016, 38, 1205–1213. [CrossRef] [PubMed]

12. Pedrocchi, A.; Ferrante, S.; de Momi, E.; Ferrigno, G. Error mapping controller: A closed loop neuroprosthesis controlled by
artificial neural networks. J. Neuroeng. Rehabil. 2006, 3, 1–13. [CrossRef] [PubMed]

13. Li, Z.; Hayashibe, M.; Andreu, D.; Guiraud, D. Real-time closed-loop FES control of muscle activation with evoked EMG feedback.
Proceedings ot the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April
2015; pp. 623–626. [CrossRef]

14. Lynch, C.L.; Popovic, M.R. Functional Electrical Stimulation. IEEE Control Syst. 2008, 28, 40–50.
15. Riess, J.A.; Abbas, J.J. Adaptive neural network control of cyclic movements using functional neuromuscular stimulation. IEEE

Trans. Rehabil. Eng. 2000, 8, 42–52. [CrossRef] [PubMed]
16. Le, F.; Markovsky, I.; Freeman, C.T.; Rogers, E. Identification of electrically stimulated muscle models of stroke patients. Control

Eng. Pract. 2010, 18, 396–407. [CrossRef]
17. Chen, Y.L.; Chen, S.C.; Chen, W.L.; Hsiao, C.C.; Kuo, T.S.; Lai, J.S. Neural network and fuzzy control in FES-assisted locomotion

for the hemiplegic. J. Med. Eng. Technol. 2004, 28, 32–38. [CrossRef]
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