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Abstract: In this investigation, a closed-chain kinematic model for two-wheeled vehicles is devised.
The kinematic model developed in this work is general and, therefore, it is suitable for describing the
complex geometry of the motion of both bicycles and motorcycles. Since the proposed kinematic
model is systematically developed in the paper by employing a sound multibody system approach,
which is grounded on the use of a straightforward closed-chain kinematic description, it allows for
readily evaluating the effectiveness of two alternative methods to formulate the wheel-road contact
constraints. The methods employed for this purpose are a technique based on the geometry of the
vector cross-product and a strategy based on a simple surface parameterization of the front wheel.
To this end, considering a kinematically driven vehicle system, a comparative analysis is performed
to analyze the geometry of the contact between the front wheel of the vehicle and the ground, which
represents a fundamental problem in the study of the motion of two-wheeled vehicles in general.
Subsequently, an exhaustive and extensive numerical analysis, based on the systematic multibody
approach mentioned before, is carried out in this work to study the system kinematics in detail.
Furthermore, the orientation of the front assembly, which includes the frontal fork, the handlebars,
and the front wheel in a seamless subsystem, is implicitly formulated through the definition of three
successive rotations, and this approach is used to propose an explicit formulation of its inherent set
of Euler angles. In general, the numerical results developed in the present work compare favorably
with those found in the literature about vehicle kinematics and contact geometry.

Keywords: articulated mechanical systems; multibody simulation; vehicle modeling; bicycle dynam-
ics; motorcycle dynamics; kinematic analysis; contact constraints

1. Introduction

This paper investigates the kinematic modeling of two-wheeled vehicles, paying
particular attention to the contact constraints of the wheels with the road profile. As a dis-
tinguishing feature of this study, which is based on a fully nonlinear multibody description
of the system geometry, two methods for the formulation of the contact constraints are
analyzed. This is done without recurring to the common linearization strategy found in
the literature. Additionally, considering a closed-chain multibody approach for modeling
the vehicle kinematics, the angular orientation of the front assembly (the frontal fork,
the handlebars, and the front wheel) is implicitly and explicitly formulated in this work.
In the remaining parts of this section, the background of the research topic, the definition
of the problem of interest for this research work, a discussion of the literature concerning
the issues at hand, the contributions of the present research, and the organization of the
entire manuscript are reported.

1.1. Background Information and Research Significance

The mathematical modeling of two-wheeled vehicles is a well-established research
topic dating back to the end of the 19th century when the first relevant mathematical model
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was proposed [1]. Since then, research about two-wheeled vehicle dynamics has been
evolving. However, it is still challenging to rigorously describe the complex motion of a
two-wheeled vehicle [2], and many questions still need to be resolved [3]. For instance,
despite the apparent simplicity of the topological structure of this mechanical system, there
is no complete model capable of exhibiting and capturing its more representative dynam-
ical aspects in a simple and manageable manner. Thus, unless one considers advanced
multibody models for detailed numerical simulations [4], which offer little insight into
the physical phenomena due to their inherent complexity, the kinematic and dynamic
modeling of two-wheeled vehicles is still an open issue. It is, therefore, desirable to develop
in a parametric fashion a comprehensive mathematical model of a general two-wheeled
vehicle to try to combine the benefits of the simplified physical-based linear models and
the systematic nonlinear multibody approach. Reaching this goal will allow for capturing
the fundamental kinematic and dynamic aspects of this family of mechanical systems by
performing a trade-off between a manageable degree of complexity and high accuracy.

The initial interest of the scientific community in two-wheeled vehicles arose mainly
from the search for an explanation for the self-stability experimentally observed in bicycles.
This phenomenon consists of the fact that a bicycle is statically unstable. Still, it can au-
tomatically self-steer in a specific forward speed range, recovering from relatively small
perturbations that would induce the fall, thereby exhibiting a certain type of dynamic sta-
bility [5]. For instance, the so-called Whipple–Carvallo bicycle model predicted a range of
linear velocity for the bicycle self-stability confirmed by practical experiments [1,6]. At first,
it was considered that this was due to the gyroscopic precession of the bicycle front wheel.
However, a thorough discussion of Kooijman et al. provided a more comprehensive expla-
nation, reporting the possibility of bicycle self-stability without this gyroscopic effect [7].
Subsequently, the interest of motorcycle producers in the mid-1950s stimulated the investi-
gation of more complex and realistic physical phenomena found in two-wheeled vehicles
in general. Fundamental research works by Sharp [8], among other researchers [9–11],
to name a few, made it possible to identify the principal vibration modes of motorcycles
and their leading causes for assessing vehicle stability. In particular, Sharp computed the
principal eigenvalues of the linearized model of a motorcycle, parameterized again by the
vehicle forward velocity [8]. In this way, the three main vibration modes of two-wheeled
vehicles were identified and named as the wobble, the weave, and the capsize, respectively.
Thus, Sharp’s research work is considered the starting point of modern modeling of motor-
cycle dynamics [12].

Due to the research emphasis on accurately reproducing realistic physical effects,
mathematical models of two-wheeled vehicles were developed with as much complexity
as manual calculation allowed. However, the numerical solution of the equations of mo-
tion was not an option at the time, so the linearization approach and subsequent stability
analysis by the eigenvalues criterion was the central methodology used. The gradual
appearance of computational tools would open the doors to the systematic development of
complex models using redundant coordinate approaches typical of advanced multibody
dynamics computational tools. This allowed the use of numerical solutions for kinematic
and dynamic models with a high level of detail, such as those developed by Sharp [13]
and Cossalter [14], to name a few. Further refinements led to the advanced mathematical
models currently available in the literature [15,16], and some of them are based on the
multibody approach to vehicle dynamics [17–21]. These are capable of simulating the
behavior of two-wheeled vehicles with high fidelity, being able to reproduce instabilities
under operating conditions based on data recorded during field operations on the actual
vehicles. For instance, the reproduction through numerical simulation of the chattering
behavior [22,23], the shimmy mode [4,12], or the wheel patter instability [24] showed a
high degree of correlation between the numerical and the experimental results, thereby
demonstrating the considerable level of maturity reached by the research on this topic.
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1.2. Formulation of the Problem of Interest for This Investigation

The number of two-wheeled vehicles in use is constantly increasing. In particular,
motorcycles are an essential mode of transportation, and this trend, combined with the
growing popularity of eBikes, shows that these vehicles are part of future transporta-
tion [25,26]. Two-wheeled vehicles, however, have a high accident rate. The evidence
indicates that they are among the most dangerous modes of transport [27–30]. Alternatives
to address this problem include at least two interventions: (a) the adjustment and improve-
ment of the handling qualities of two-wheeled vehicles; and (b) the inclusion of passive
and active safety features in two-wheeled vehicles. In particular, the fact that human errors
are one of the most contributing factors to the causation of accidents due to loss of control
is highlighted in the literature [31]. Such a situation occurs in 32% of accidents involving
two-wheeled vehicles [32]. Therefore, it is of interest to add two-wheeled vehicles the
safety features implemented in cars, such as anti-lock braking, traction control, or stability
systems, given that such systems resulted in an excellent accident reduction for cars [33–36].
Thus, adequate systems could help the rider stay in control of the two-wheeled vehicle
during dangerous situations and avoid accidents [37,38]. However, the same results do
not occur when applying such systems for two-wheeled vehicles [39,40]. The main reason
for these inefficiencies lies in the incongruity in the two-wheeled vehicle models used to
develop them, the understanding of their dynamics, the simulation of the driver inputs,
and the impact of the infrastructure characteristics [27]. In general, the efficiency related
to the model-based approach is often closely linked to their capability to be faithful re-
garding the actual system dynamics in conjunction with the intervention of the vehicle
driver. Furthermore, vehicle instability is one limiting reason that automated emergency
braking, collision avoidance systems, and similar active safety technologies have not been
developed for motorcycles and two-wheeled vehicles in general [41,42].

In the design and analysis of two-wheeled vehicle systems, it is clear that a better
understanding of vehicle dynamics variables will improve the effectiveness of driving
assistance systems [43,44]. For this reason, many researchers have used the linearized
benchmark model based on the Whipple–Carvallo bicycle system [45]. This benchmark
model comprises four rigid bodies connected by revolute joints, including the wheels
making a knife-edge rolling point contact with the road [46]. Despite its simplifying
assumptions, the Whipple–Carvallo bicycle model can correctly reproduce the stability
features of a wide family of two-wheeled vehicle systems in good agreement with the exper-
imental results. However, linear models only validate a limited range of parameter values
and ignore some features such as zero velocity balancing or hand-free curve riding [47,48].
Besides, to effectively deploy electronic control systems for two-wheeled vehicles, it is
required to know the instantaneous dynamic state of the vehicle, for example, primarily
the roll angle [49], since its dynamics are highly affected by these variables. Therefore, any
control algorithm must consider the two-wheeled vehicle roll angle and should be able
to estimate this variable using a dynamic filter in case this geometric information is not
directly available from the measurement system [39]. More importantly, linear models hold
for only small ranges of this variable, in contrast to nonlinear ones. Thus, nonlinear analytic
models may offer significant insights in understanding complex dynamics behaviors and
develop an efficient model suitable for real-time control outside of the linear regime [50].
On the other hand, in general, the nonlinear dynamic behavior of two-wheeled vehicles
is complex. Thus, it is indispensable for model-based control development to carry out a
trade-off between model accuracy and its simplicity or usability [47]. For instance, the ad-
vanced multibody models can be too large and complex and cannot be used for real-time
control purposes except with significant simplifications. Besides, given the direct correla-
tion between model complexity and the vibration modes it can identify [51], clear criteria
must be set to determine the level of detail required for a useful dynamical model [32].
Therefore, the derivation of a mathematical model of a two-wheeled vehicle with moderate
complexity, which can correctly capture the essential dynamics issues mentioned before, is
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desirable [30], and these requirements represent the main motivations for the development
of the work reported in this paper.

1.3. Literature Review

The development of a good model for a two-wheeled vehicle, as described previously,
is not a trivial task indeed. In particular, considering that the predominant linearized
equations from the literature are not based on a systematic linearization of full nonlinear
differential equations, this task is even more challenging [52,53]. Thus far, systematic
linearizations have not achieved analytical expressions for the linearized equation coeffi-
cients, until recently, when some authors, such as in [15,20,21], have currently achieved it
by developing an automatic computer-aided linearization procedure, finding agreement
with the well-known benchmark models [45]. Therefore, due to the traditional approaches
found in the literature that were followed during the time, most of the models available
are constructed by ad hoc linearization having stability analysis scopes, thereby featuring
lots of simplifications, or are based on nonlinear advanced multibody dynamics models
for accurate numerical simulations that turn out to be too complicated to handle. This
led to a lack of discussion on the relations between the steering and roll angles and the
other system key parameters. In particular, their relation with the effective steering and
camber angles of the front fork and the contact points between the wheels and the ground,
fundamental for the vehicle stability [2], should be further explored. Consequently, a de-
tailed model of a two-wheeled vehicle is complex because this system has many degrees
of freedom, and its geometry is intricate [54]. In particular, the mathematical modeling
presents considerable difficulties in expressing the position of the front and rear frames [55].
This arises from the front contact geometry, being one of the most complex aspects of the
system. In general, establishing the geometric constraint equations is the first challenging
problem to study two-wheeled vehicle dynamics [56]. For instance, it is well known that
the algebraic equations of these geometric constraints are complex implicit expressions
with high nonlinearity [57].

Consequently to the above, a comprehensive, explicit kinematic model of a two-
wheeled vehicle with its steering axis set in a general position is not possible, in principle,
without resorting to approximations. This is also mentioned by Kane [58], who formulates
fundamental kinematic expressions and then resorts to a minimum coordinate approach
by substituting explicit linearized expressions. A similar methodology is presented in [2],
where the kinematic analysis of a bicycle takes place. The main features of the bicycle
position and orientation are expressed as explicit functions of the steering and roll angles.
However, this model also uses partial linearization of the variables, being subjected to the
same limitations as other models. Both works of Kane and Huang presented a discussion
on the formulation of the contact constraint [2,58], particularly on the definition of the
position vector of the contact points on the wheels. In contrast, in Frosali and Ricci [59],
and in Cossalter [60], advanced nonlinear kinematic models are presented, which proved
to be in good agreement with experimental results. However, a discussion on the details of
the formulation of these kinematic models and their implication on the vector quantities of
interest for the geometric analysis is not explicitly provided. This paper, therefore, tries
to address the important issues mentioned before by proposing an advanced kinematic
model of the closed-chain geometry of bicycle systems and discuss all the implications of
the proposed nonlinear model.

In general, the position of the contact points in a local reference frame attached to
the vehicle changes as a function of the system configuration, and this geometric issue is
well-established [61]. Therefore, a contact model is required in the kinematic analysis of
two-wheeled vehicles since the definition of this model has a significant impact on the
numerical results generated by the entire model. However, in the literature, a thorough
discussion on this topic is almost systematically eluded [62]. Thus, geometric considera-
tions on the vehicle kinematics are among the main factors complicating the analysis of
two-wheeled vehicles. In particular, some rather subtle issues must be addressed, explicitly
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or implicitly, during the modeling process. Namely, at least two important problems must
be pointed out and addressed, that is, (a) the identification of the instantaneous contact
points of the wheels given a non zero steering and roll angle, and (b) the formulation of the
relation between the steering angle, the roll angle, and rear frame pitch angle [58,63]. Given
the problem complexity, most researchers introduced simplifications, like the assumption
of proportionality between the steering angle and the roll angle [64], or the assumption
that the contact points on the wheels lie in the plane of symmetry of the vehicle [65]. In par-
ticular, the latter assumption is also due to the linear approximation, since the front wheel
contact point with the road has a constant set of coordinates in the local reference frame
of the frontal fork for a linearized model [45]. This paper, on the other hand, tries to relax
as much as possible all the simplifications mentioned before to develop a fully nonlinear
kinematic model based on a closed-chain multibody approach to vehicle kinematics.

1.4. Scope and Contributions of This Study

The scope and the contributions of this research work can be summarized as follows.
This paper deals with the development of a general kinematic model for the large family
of two-wheeled vehicles that is fully nonlinear, and, therefore, capable of capturing the
complex behavior of this class of articulated mechanical systems, without resorting to
any of the simplifying assumptions usually considered in the literature on this important
topic. To this end, the strategy employed in this work follows a systematic computational
approach, typical of the multibody system dynamics, to analytically formulate an intuitive
nonlinear kinematic model of a general two-wheeled vehicle by using a closed-chain kine-
matic formulation. This is mainly done to minimize in a general scenario the dimension
of the set of redundant Lagrangian coordinates necessary for the identification of the
three-dimensional geometric configuration of the system under examination. Furthermore,
the main objective of the present research work is to analyze and discuss the modeling
approaches used for the definition of the wheel-road contact constraints, the assumptions
behind their formulation, and the quality of the numerical results produced by their com-
puter implementation. This is done by proposing two kinematic models considering the
closed-chain multibody approach devised in this work, by comparing the proposed models
with those found in the literature that were independently developed by other research
groups, and by considering an additional multibody model constructed by the authors in
the MATLAB simulation environment using the SIMSCAPE MULTIBODY software.

The analysis of the wheel-road contact conditions addressed in this investigation
allows for providing a timely discussion on the relations between the steering and roll
angles, and the other key parameters that are kinematically relevant for the family of
two-wheeled systems. In particular, as a peculiar feature of the present research work,
two methods for the formulation of the contact constraints are proposed without recurring
to the linearization strategy commonly found in the literature. Additionally, a detailed
discussion of the displacement of the contact point in the local reference frame of the front
fork is provided, thereby allowing for clarifying the intricate relationship of this variable
with an arbitrary kinematic configuration of the mechanical system of interest. For this
purpose, the kinematic behavior of the vehicle front assembly, which is composed of the
frontal fork, the handlebars, and the front wheel, is studied, and its spatial orientation is
analyzed by implicitly and explicitly formulating a rotation matrix that is a function of the
Lagrangian coordinates of the kinematic models proposed in this work. Thus, the present
work lays the foundations for the subsequent formulation of more general dynamic models
of two-wheeled vehicles with as much complexity as required by any particular application.
For instance, by doing so, the fundamental problems previously described in the devel-
opment of Advanced Driver-Assistance Systems (ADAS), and other active safety features
for two-wheeled vehicles, could be addressed in future research investigations. Therefore,
in the present work, the principal emphasis is given to a detailed and entirely reproducible
description of the mathematical formulation of a general kinematic model of a two-wheeled
vehicle. Also, exhaustive numerical experimentation was carried out for validating the
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proposed models by means of numerical tests and to pave the way for future developments
of dynamic models based on the same closed-chain multibody approach. In particular,
a detailed comparison is made between the two contact constraint formulation methods
proposed in this work, together with the numerical results generated by the principal
analytical approaches taken from the literature. Finally, an additional multibody model
numerically implemented by the authors by using the SIMSCAPE MULTIBODY software
was also employed for thoroughly benchmarking all the developments of this paper.

1.5. Organization of the Manuscript

This paper is organized as follows. In Section 2, the description of the multibody
approach used to derive the kinematic model for two-wheeled vehicles of interest for this
paper and the explicit formulation of the Euler angles of the vehicle front assembly are
reported. Section 3 presents the formulation of the numerical experiments performed
considering the closed-chain multibody model developed in this work, together with its
final results and the corresponding discussion on them. Finally, Section 4 includes the
summary of the paper, the conclusions reached in this study, and some viable directions
for future research.

2. Multibody Approach for the Mechanical Modeling of Two-Wheeled Vehicles as
Kinematic Chains

In this section, the fundamental steps of the systematic analytical approach based on
the multibody system theory that is employed in the paper for the geometric construction
of a general-purpose kinematic model of two-wheeled vehicles are described in detail.
To this end, the formulation of a closed-chain geometric structure is discussed and its use
is demonstrated for the derivation of the kinematic model of interest for this investigation,
whereas its peculiar mechanical features are emphasized.

The remaining part of this section is organized according to the following structure.
Section 2.1 describes the main components of the multibody model considered in this inves-
tigation, while Section 2.2 reports the relevant geometric aspects of the mechanical system
under examination. In Section 2.3, the kinematic analysis of the general multibody model
constructed for two-wheeled vehicles is carried out, whereas Section 2.4 demonstrates the
practical implementation of the geometric concept based on the closed-chain kinematic
structure of this family of mechanical systems. Sections 2.5 and 2.6, being respectively
based on the formulation of a cross-product equation and the introduction of an additional
non-generalized coordinate, both necessary for the identification of the contact point col-
located on the front wheel, describe the two alternative approaches devised in the paper
for the preliminary derivation and the subsequent enforcement of the contact constraint
conditions between the front wheel and the road plane. Finally, Section 2.7 deals with the
kinematics of the steering point, while Section 2.8 focuses on the definition of a proper
set of Euler angles suitable for the identification of the three-dimensional orientation of
the vehicle front assembly, which is composed of the frontal fork, the handlebars, and the
front wheel.

2.1. System Multibody Model

The two-wheeled vehicle of interest for this research work is modeled as a multibody
system composed of the following four rigid bodies:

• The rear wheel.
• The rear frame.
• The front fork/handlebars.
• The front wheel.

Three revolute joints keep the system assembled while it moves freely on the hori-
zontal plane. The permanent contact constraint between each wheel and the plane is also
considered. The first revolute joint links the rear wheel and the rear frame. Perpendicular to
this, a second revolute joint allows the steering of the front fork/handlebars. Finally, a third
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revolute joint allows the rotation of the front wheel with respect to the fork/handlebars.
The horizontal road plane is contained by the XY axes of the inertial reference frame.
Therefore, the multibody system model of the two-wheeled vehicle considered herein has
a seven-dimensional configuration space, as discussed in detail below.

2.2. System Geometry

The geometry of the system under consideration is shown in Figure 1.

λ

d H

L

wc t

fara

Figure 1. The two-wheeled vehicle system geometric parameters: the wheelbase cw, the trail t,
the caster angle λ, the rear and front wheel radii ar and a f , the fork offset d, and the auxiliary
parameters L and H.

The geometric model includes the set of standard geometric parameters used to
describe two-wheeled vehicles. These are defined for the system configuration with a
zero steering angle and considering an upright position on a horizontal plane. This set of
parameters is defined as follows:

• The distance between the contact points of the rear and front wheel, known as wheel-
base and denoted with cw.

• The distance between the front contact point and the steering column intersection
with the road plane, known as trail and denoted with t.

• The rear and front wheels radii respectively denoted with ar and a f .
• The tilt angle of the steering column, known as the caster angle and denoted with λ.

Besides, three additional parameters are used to simplify the kinematic analysis. These
are defined as functions of the standard geometrical parameters, as respectively shown in
Equations (1)–(3).

d = a f sin(λ)− t cos(λ) (1)

L = cw + t− ar tan(λ) (2)

H =
a f − ar − d sin(λ)

cos(λ)
(3)

The fork offset denoted with d is the minimum distance between the center of the
front wheel and the steering column. In addition, the auxiliary parameters L and H can
be geometrically interpreted from Figure 1 since they serve to complete the geometric
description of the model. This process allows for obtaining a schematization of the system
geometry in a simplified skeleton, as shown in Figure 2.
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faH
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d

wc t
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Figure 2. The simplified kinematic skeleton of the geometric model for the two-wheeled vehicle system.

2.3. Kinematic Analysis

With the geometry defined, the reference frames and the coordinates vector are now
considered. The horizontal road plane is defined by the X and Y axes of the global reference
frame OXYZ. Its Z axis direction is opposed to the gravity. Three additional local reference
frames are used to describe the orientation of the multibody system, as shown in Figure 3.

λ

t
1

O

1
X

1
Y

1
Z

2
Z

2
X

2
Y

2
O

3
O

3
Y 3

X3
Z

O X

Y
Z

rP

Figure 3. Reference frames of the two-wheeled vehicle system.

The reference frame O1X1Y1Z1 is fixed on the contact point between the rear wheel
and the road plane. The position vector of its origin is defined as

Pr =
[

Xr Yr 0
]T (4)

where Xr and Yr are the coordinates of the contact point on the ground considering the
X and Y axes of the global reference frame. The orientation of the local reference frame
O1X1Y1Z1 is given by the transformation matrix obtained by two successive rotations. That
is, the yaw of the rear wheel is given by the angle θ, and the roll is associated with the angle
χ. Therefore, its orientation is independent of the rotation of the wheel. The transformation
matrix is defined as follows

A1,0 = Rz(θ)Rx(χ) (5)

where the generic rotation matrix Ai,0 represents the transformation matrix between the
local reference system labeled with i, that is associated with the generic rigid body i, and the
global reference system labeled with 0. Subsequently, one can define the reference frame
O2X2Y2Z2, whose origin is fixed to the center of the rear wheel and its orientation is given
by the yaw angle θ, the roll angle χ, and the pitch angle µ of the rear frame, having the
following transformation matrix

A2,0 = A1,0Ry(µ) (6)
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Then, the origin of the reference frame O3X3Y3Z3 is fixed at the location shown in
Figure 3, and its orientation is given by

A3,0 = A2,0RT
y (λ)Rz(ψ) (7)

where the caster angle λ was considered in the rotation matrix RT
y (λ) in order to have

positive values for a backward tilt of the steering column. In summary, the vector of
Lagrangian coordinates employed to define the spatial configuration of the multibody
system that models the two-wheeled vehicle is

q =
[

Xr Yr θ χ µ ψ φr φ f
]T (8)

where Xr and Yr respectively represent the X and Y coordinates of the rear wheel contact
point, θ is the yaw angle of the rear assembly (rear wheel and rear frame), χ is the roll angle
of the rear assembly, µ is the pitch angle of the rear frame, ψ is the steering angle of the
front fork/handlebars, while φr and φ f are the angular displacements due to the rotation
of the rear and front wheels, respectively.

2.4. System Kinematic Chain

A kinematic model based on a closed chain is proposed to study the two-wheeled
vehicle kinematics, as shown in Figure 4.

λ

O X

Y

Z
1r

2r

3r

4r

rP

fP t
Figure 4. Kinematic chain of the two-wheeled vehicle system.

The kinematic chain can be directly written by using a vector approach as

Pr + r1 + r2 + r3 + r4 = P f (9)

In the following, the components of the kinematic chain are described in detail.
The points Pr and P f respectively identify the position vectors of the contact points of the
rear and front wheel with the road plane, which have their Cartesian components given by
the following expressions

Pr =
[

Xr Yr 0
]T (10)

P f =
[

X f Yf 0
]T (11)
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The vector r1, starting from the contact point Pr to the center of the rear wheel, can be
expressed in the global coordinates of the reference frame O1X1Y1Z1 as

r1 = A1,0


0

0

ar

 =


ar sin(χ) sin(θ)

−ar sin(χ) cos(θ)

ar cos(χ)

 (12)

Subsequently, the vector r2, defined in the reference frame O2X2Y2Z2 with its tail
located on the rear wheel center and its head on the point O3, in global coordinates is
equal to

r2 = A2,0


L− Hsλ

0

Hcλ



=


(L− Hsλ)

(
cµ cθ − sχ sµ sθ

)
+ Hcλ

(
cθ sµ + cµ sχ sθ

)
(L− Hsλ)

(
cµ sθ + sχ cθ sµ

)
+ Hcλ

(
sµ sθ − cµ sχ cθ

)
−cχ

(
Lsµ − Hcλ−µ

)



(13)

Then, the vector r3 having its tail fixed at the point O3 and its head located at the
center of the front wheel, in global coordinates is written as

r3 = A3,0


d

0

0

 =


dcψ

(
cθ cλ−µ + sλ−µ sχsθ

)
− dcχsψ sθ

dcψ

(
sθ cλ−µ − sλ−µ sχ cθ

)
+ dcχ cθ sψ

d
(
sχsψ + sλ−µ cχ cψ

)

 (14)

Finally, two methodologies are studied to write the expression for the position vector
r4, which has its tail fixed on the geometric center of the front wheel and its head located
at the instantaneous contact point of the front wheel denoted with P f . Each of these
methodologies yields a different set of kinematic constraint equations. Therefore, two
different kinematic models are proposed in the present work, as described in detail below.

2.5. Cross-Product Model

An effective approach for mathematically formulating the geometric vector denoted
with r4 consists of determining the direction of the said vector in the global reference frame,
as explained in detail in the following derivations. The unit vector normal to the plane of
symmetry of the front wheel can be written in global coordinates as

n̂4 = A3,0


0

1

0

 =


−sψ

(
cθ cλ−µ + sλ−µ sχ sθ

)
− cχ cψ sθ

cχ cψ cθ − sψ

(
sθ cλ−µ − sλ−µ sχ cθ

)
cψ sχ − sλ−µ cχ sψ

 (15)
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Then, the unit vector tangent to the front wheel at the contact point can be written as

t̂4 =
n̂4 × K̂∥∥ n̂4 × K̂

∥∥ =



cχ cψ cθ−sψ sθ cλ−µ+sλ−µ sχ cθ sψ√
s2

λ−µ
s2

χ s2
ψ+2sλ−µ cχ cψ sχ sψ+c2

χc2
ψ+s2

ψ c2
λ−µ

cθsψ cλ−µ+cχ cψ sθ+sλ−µ sχ sψ sθ√
s2

λ−µ
s2

χ s2
ψ+2sλ−µ cχ cψ sχ sψ+c2

χc2
ψ+s2

ψ c2
λ−µ

0


(16)

where K̂ =
[

0 0 1
]T is a constant unit vector opposite to the direction of the gravity

acceleration and normal to the road plane. It can be proved that the Z component of the
tangent unit vector t̂4 is equal to zero. This is a consequence of the fact that the vector t̂4
must be tangent to the XY plane. Finally, the vector r4 can be written as

r4,c = a f
(
n̂4 × t̂4

)

=



− a f (cψ sχ−sλ−µ cχ sψ)(cθ sψ cλ−µ+cχ cψ sθ+sλ−µ sχ sψ sθ)√
s2

λ−µ
s2

χ s2
ψ+2sλ−µ cχcψ sχ sψ+c2

χ c2
ψ+s2

ψ c2
λ−µ

a f (cψ sχ−sλ−µ cχ sψ)(cχcψ cθ−sψ sθ cλ−µ+sλ−µ sχcθ sψ)√
s2

λ−µ
s2

χ s2
ψ+2sλ−µ cχcψ sχ sψ+c2

χ c2
ψ+s2

ψ c2
λ−µ

−
a f

(
−c2

χc2
ψc2

λ−µ+2c2
χc2

ψ+c2
χ c2

λ−µ−c2
χ+2sλ−µ sχsψ cχ cψ−c2

ψ+1
)

√
s2

λ−µ
s2

χ s2
ψ+2sλ−µ cχcψ sχ sψ+c2

χ c2
ψ+s2

ψ c2
λ−µ


(17)

where the subscript c in r4,c indicates that the cross-product approach has been used in
the geometric determination of this vector. Since n̂4 and t̂4 are mutually perpendicular
unit vectors, the magnitude of the vector r4,c is imposed equal to the radius of the front
wheel. Each of the vectors computed so far is shown in Figure 5, from which the geometric
interpretation of the present formulation approach can be visualized.

0
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1

1

0
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0.5
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X
Y
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fP

0.75

0.25
0.75

0.5

 

K̂

4r
t̂4

n̂4

Figure 5. Cross-product approach. A vector formulation based on the fact that the vectors n̂4, t̂4,
and r4 are orthogonal to each other.
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With the components of the kinematic chain defined as described above, a closed-loop
vector equation can be written as follows

P f − Pr = r1 + r2 + r3 + r4,c (18)

Then, due to the continuous contact with the road plane, this expression must satisfy
the following constraint

K̂T
(

P f − Pr

)
= 0 (19)

where, considering Equations (12)–(14) and (17), the fundamental equation for modeling
the contact condition assumes the following form

d
(
sχ sψ + sλ−µ cχ cψ

)
+ ar cχ − cχ sµ (L− Hsλ) + Hcχcλ cµ

−
a f

(
−c2

χ c2
ψ c2

λ−µ+2c2
χc2

ψ+c2
χ c2

λ−µ−c2
χ+2sλ−µ sχsψ cχ cψ−c2

ψ+1
)

√
s2

λ−µ
s2

χ s2
ψ+2sλ−µ cχ cψ sχ sψ+c2

χ c2
ψ+s2

ψ c2
λ−µ

= 0
(20)

Additionally, the X and Y components of Equation (18) are given as follows

X f − Xr = (L− Hsλ)
(
cµcθ − sχ sµsθ

)
+ Hcλ

(
cθ sµ + cµsχ sθ

)
+d
(
cψ

(
cθ cλ−µ + sλ−µ sχ sθ

)
− cχ sψsθ

)
+ ar sχ sθ

− a f (cψ sχ−sλ−µ cχ sψ)(cθsψ cλ−µ+cχ cψ sθ+sλ−µ sχ sψ sθ)√
s2

λ−µ
s2

χ s2
ψ+2sλ−µ cχ cψ sχ sψ+c2

χ c2
ψ+s2

ψ c2
λ−µ

(21)

Yf −Yr = (L− Hsλ)
(
cµsθ + sχ cθ sµ

)
+ Hcλ

(
sµ sθ − cµ sχ cθ

)
+d
(
cψ

(
sθ cλ−µ − sλ−µ sχ cθ

)
+ cχ cθ sψ

)
− arsχcθ

+
a f (cψ sχ−sλ−µ cχ sψ)(cχ cψ cθ−sψ sθ cλ−µ+sλ−µ sχ cθsψ)√

s2
λ−µ

s2
χ s2

ψ+2sλ−µ cχ cψ sχ sψ+c2
χ c2

ψ+s2
ψ c2

λ−µ

(22)

As will be discussed in detail in the presentation of the numerical results, Equations (20)–(22)
allow for fully defining the kinematic configuration of the two-wheeled vehicle system for a
set of values of its degrees of freedom. In particular, these expressions are useful to study the
behavior of the rear frame pitch angle denoted with µ. Also, the current approach leads to
the analytical determination of the relative displacement of the contact points of the wheels as
functions of the system degrees of freedom.

2.6. Surface Parametrization Model

An alternative approach to formulate a consistent analytical expression for the vector
r4 focuses on noting that, when a set of changes in the degrees of freedom takes place,
this fundamental vector experiences an angular displacement in the local reference frame
O3X3Y3Z3. This phenomenon can be modeled by introducing an additional geometric vari-
able that serves as a non-generalized coordinate, that is, an angular position coordinate of
a massless point that plays the role of an auxiliary geometric parameter. Therefore, the vec-
tor of Lagrangian coordinates, when employing this approach, assumes the following
different form

qs =
[

Xr Yr θ χ µ ψ φr φ f β
]T (23)

where β denotes the non-generalized coordinate which identifies the angular position of
the contact point in the local reference frame, as shown in Figure 6a for the system in the
initial configuration and in Figure 6b in the case of an arbitrary configuration.
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Figure 6. The angular migration of the contact point between the front wheel and the road. (a) Upright
initial position. (b) Arbitrary configuration.

In both cases considered in Figure 6, the angles of rotation of the rear and front wheel,
which are respectively denoted with φr and φ f , are set equal to zero. Thus, only changes in
the coordinates χ, ψ, and µ take place in these scenarios. In fact, as it will be shown later in
the paper by means of numerical experiments, the angular displacement β is not a function
of the angle φ f . The coordinate β allows for analytically expressing the geometric vector r4
as follows

r4,s = A3,0
[
−a f cos(β) 0 −a f sin(β)

]T (24)

where the subscript s in the vector term r4,s indicates that the surface parametrization
approach was used. Subsequently, the vector tangent to the wheel at the point of contact
is obtained by partially differentiating Equation (24) with respect to the non-generalized
angular displacement β. This vector has the form

t4 = ∂r4
∂β

= a f



−cβ

(
sλ−µ cθ − sχ sθcλ−µ

)
−sβ

(
cψ

(
cθ cλ−µ + sλ−µ sχsθ

)
− cχ sψsθ

)
−cβ

(
sλ−µ sθ + sχ cθcλ−µ

)
−sβ

(
cψ

(
sθcλ−µ − sλ−µ sχ cθ

)
+ cχ cθ sψ

)
cβ cχ cλ−µ − sβ

(
sχ sψ + sλ−µ cχ cψ

)



(25)

Then, a constraint equation can be written by considering that this vector must be
perpendicular to the unit vector normal to the road plane denoted with K̂. Therefore, one
can write:

K̂Tt4 = 0 (26)

By doing so, the following constraint equation is obtained

sβ

(
sχsψ + sλ−µcχcψ

)
− cβcχcλ−µ = 0 (27)

It is worth mentioning that, given the non-linearity of Equation (27), to obtain an
explicit expression for the angle β without resorting to approximations, being this the
common path in the literature, it is not a trivial task. However, in the present work, the fully
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nonlinear expression will be considered. When all the components of the kinematic chain
are defined, a closed-loop is proposed, as previously done with the cross-product model.
Again, the vector equation associated with the closure of the geometric loop can be written
as follows

P f − Pr = r1 + r2 + r3 + r4,s (28)

Thus, the contact condition of the wheels, as formulated in Equation (19), yields the
second kinematic constraint of the surface parametrized model given by

d
(
sχsψ + sλ−µcχcψ

)
+ arcχ + a f cβ

(
sχsψ + sλ−µcχcψ

)
−cχsµ(L− Hsλ) + Hcχcλcµ + a f cχsβcλ−µ = 0

(29)

Finally, the X and Y components of Equation (28) are equal to

X f − Xr = d
(
cψ

(
cθcλ−µ + sλ−µsχsθ

)
− cχsψsθ

)
+ Hcλ

(
cθsµ + cµsχsθ

)
+a f cβ

(
cψ

(
cθcλ−µ + sλ−µsχsθ

)
− cχsψsθ

)
+ arsχsθ

−a f sβ

(
sλ−µcθ − sχsθcλ−µ

)
+ (L− Hsλ)

(
cµcθ − sχsµsθ

) (30)

Yf −Yr = d
(
cψ

(
sθcλ−µ − sλ−µsχcθ

)
+ cχcθsψ

)
+ Hcλ

(
sµsθ − cµsχcθ

)
+a f cβ

(
cψ

(
sθcλ−µ − sλ−µsχcθ

)
+ cχcθsψ

)
− arsχcθ

−a f sβ

(
sλ−µsθ + sχcθcλ−µ

)
+ (L− Hsλ)

(
cµsθ + sχcθsµ

) (31)

The set of Equations (27), (29)–(31) allows for studying the kinematics of the two-
wheeled vehicle system in detail. In particular, when consistent values are assigned to the
degrees of freedom of the multibody system, the displacement of the contact point of the
front wheel, defined relative to that of the rear wheel, can be readily determined.

2.7. Steering Point Kinematics

As shown in Figure 7, the point in the road plane created by the projection of the
steering axis is named the steering point.

λ

O X

Y

Z
1r

2r
spr

rP

pS
t

h

Figure 7. Position vector of the steering point.

This is also a geometric parameter of interest for the mechanical design, as it can pro-
vide insight into the kinematics of two-wheeled vehicles in general. Specifically, the mag-
nitude obtained from the expression

∥∥∥SP − P f

∥∥∥ , known as the mechanical trail, is also
studied for its influence on the system stability [66]. On the other hand, the trajectory of the



Machines 2021, 9, 245 15 of 34

steering point is studied here, whose position vector is written as a function of the system
generalized coordinates as follows

SP = Pr + r1 + r2 + rsp = Pr + r1 + r2 + A3,0

 0
0
−h

 (32)

where the term h in Equation (32) represents the distance from the point O3 to the steering
point expressed in local coordinates. This is found by noting that the Z component of the
steering point in global coordinates must be equal to zero. Thus, this consideration yields
the following expression

h =
ar − L sin(µ) + H cos(λ− µ)

cos(λ− µ)
(33)

By back-substituting Equation (33) into Equation (32), the steering point position
vector can be written as

SP =


Xr +

cos(θ)(L cos(λ)+ar sin(λ−µ))
cos(λ−µ)

Yr +
sin(θ)(L cos(λ)+ar sin(λ−µ))

cos(λ−µ)

0

 (34)

From this expression, it can be observed that, given a null yaw angle denoted with θ
and when arbitrarily changing the steering angle denoted with ψ, the displacement of the
steering point is not zero only in the X component of the system global reference frame.

2.8. Front Assembly Orientation

Due to the method employed to formulate the transformation matrix of the front
assembly, the set of Euler angles describing the orientation of such subsystem are not
explicitly known. However, these angles can be obtained from the components of the
matrix presented in Equation (7) by noting that three successive rotations can fully describe
the orientation of the front frame assembly. In particular, this can be done by considering a
set of Euler angles based on the sequence Z-X-Y as follows

Ã3,0 =


cφ cδsα sφ sδ −cα sδ cδ sφ + cφ sα sδ

cφ sδ + sα cδ sφ cα cδ sφ sδ − cφ sα cδ

−cαsφ sα cα cφ

 (35)

where δ, α, and φ represent the absolute yaw, roll, and pitch angles of the front frame,
respectively. The explicit expressions for these geometric quantities, as functions of the
generalized coordinates, can be obtained by equating the components of Equation (35) with
those of the matrix reported in Equation (7). For instance, the angle α can be obtained as

A3,0(3, 2) = Ã3,0(3, 2) (36)

which leads to
sin(α) = cos(ψ) sin(χ)− sin(λ− µ) cos(χ) sin(ψ) (37)

An explicit expression for the camber angle as a function of the generalized coor-
dinates results valuable when considering tire models for two-wheeled vehicles [67,68].
In particular, for computing the tire lateral force, which strongly depends on this parameter,
the determination of the camber angle represents a fundamental geometric task which
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must be fully addressed preliminarily to the dynamic analysis. Similarly, the equation
for computing the yaw angle of the front assembly denoted with δ can be formulated
as follows

A3,0(1, 2) = Ã3,0(1, 2) (38)

which leads to
sin(δ) = sin(ψ)(cos(θ) cos(λ−µ)+sin(λ−µ) sin(χ) sin(θ))

cos(α)

+ cos(χ) cos(ψ) sin(θ)
cos(α)

(39)

and
A3,0(2, 2) = Ã3,0(2, 2) (40)

which leads to

cos(δ) = − sin(ψ)(sin(θ) cos(λ−µ)−sin(λ−µ) sin(χ) cos(θ))
cos(α)

+ cos(χ) cos(ψ) cos(θ)
cos(α)

(41)

Finally, the pitch angle of the front assembly denoted with φ can be expressed as a
function of the system generalized coordinates as follows

A3,0(3, 1) = Ã3,0(3, 1) (42)

which leads to

sin(φ) = − sin(χ) sin(ψ) + sin(λ− µ) cos(χ) cos(ψ)
cos(α)

(43)

and
A3,0(3, 3) = Ã3,0(3, 3) (44)

which leads to

cos(φ) =
cos(χ) cos(λ− µ)

cos(α)
(45)

Equations (37), (39), (41), (43) and (45) allow for explicitly defining the orientation
of the front assembly of the complete multibody system and can be useful for further
modeling tasks in the kinematic and dynamic analysis of two-wheeled vehicles.

3. Numerical Results and Discussion

In this section, a set of numerical experiments is proposed to study the kinematic
models developed in this investigation, namely, the two-wheeled vehicle models arising
from the use of the cross-product method and the surface parametrization approach.
Besides, three additional two-wheeled vehicle models are considered to confront the
numerical results found. In particular, two of these kinematic models used for making
comparisons are found the literature [59,60], while the third model represents a detailed
multibody model created by the authors using the SIMSCAPE MULTIBODY software
implemented in the MATLAB computational environment.

The remainder part of this section is organized as follows. Section 3.1 provides a
detailed description of the numerical experiments proposed, as well as the numerical values
of the physical parameters employed in the two-wheeled vehicle models. Section 3.2 reports
the numerical experiment results and the comparative metrics calculated with respect to
the model results obtained considering the two-wheeled vehicle model developed using
the SIMSCAPE MULTIBODY software. Finally, Section 3.3 provides some final remarks
and a detailed discussion on the numerical results found.

3.1. Description of the Numerical Experiments

The purpose and scope of the numerical experiments proposed in this section are
to study the system kinematic configuration, employ a kinematically driven approach,
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and compare the numerical results obtained from this study with those calculated using
the kinematic models available in the literature. To this end, in order to implement a
kinematically driven approach, the first step consists of analyzing the behavior of the
system redundant coordinates when the set of the known values of the degrees of free-
dom are changed. This is equivalent to analyze the system kinematic constraints, being,
in general, these nonlinear algebraic equations among the most complex features in mod-
eling two-wheeled vehicles. In particular, the main goal is to study and understand the
relationship between the roll angles of the steering and rear frames with the remaining
kinematic variables, primarily resulting from the manipulation of the redundant coordi-
nates in correspondence of the enforcement of the contact between the vehicle wheels
and the road. That is, one fundamental objective is to derive the kinematic relationship
between the pitch angle µ and the migration angle β associated with the contact point of
the front wheel. Similarly, it is of interest for this research to analyze the behavior of the
Euler angles of the front assembly when a consistent change in the values of the degrees of
freedom is performed. This last kinematic problem does not represent a straightforward
task, but it can be readily solved by employing the explicit kinematic expressions found in
the present work.

Two-wheeled vehicles are underactuated multibody mechanical systems, which means
that the number of external control inputs is less than the number of the system degrees
of freedom. Consequently, their complex dynamic behavior cannot be fully described
only with a kinematic model, requiring further development of a suitable dynamic model.
Besides, if the no-slip condition between the wheels and the ground is considered, al-
though the occupiable regions of the position space remain unaffected, these systems have
four nonholonomic constraints and three degrees of freedom in the velocity space [69].
However, the accessible configuration space of the model is still seven-dimensional, as men-
tioned before. Therefore, to study this family of systems with a kinematically driven
approach, seven independent coordinates must be known. For this purpose, it is defined
the vector qmin with a chosen set of independent coordinates as follows

qmin =
[

Xr Yr θ χ ψ φr φ f
]T (46)

where, as already mentioned in the manuscript, Xr and Yr represent the Cartesian coordi-
nates of the contact point collocated on the rear wheel, θ and χ respectively denote the yaw
angle and the roll angle of the rear assembly, composed of the rear wheel and the rear frame,
ψ represents the steering angle of the handlebars, while the angular displacements denoted
with φr and φ f are respectively associated with the rotation of the rear and front wheels
about their axes. Thus, for a known vector of generalized coordinates qmin, the kinematic
constraints of the model can be numerically solved, leading to appropriate values of the
redundant coordinates. In particular, the kinematically driven analysis employed in this
work for the model proposed in Section 2.5, namely the cross-product model, consists of
the following fundamental steps:

• Substitute the components of the given vector qmin into Equation (20).
• Solve numerically this algebraic equation to find the corresponding value of the angle

µ employing the Newton-Raphson method considering an initial estimation µ0 = 0
(rad) and an appropriate small tolerance denoted with ε.

• Input the now known vector of Lagrangian coordinates of Equation (8) into
Equations (21) and (22) to compute the relative Cartesian coordinates of the con-
tact point of the front wheel.

• Input the vector of Lagrangian coordinates into the explicit expressions given in Equa-
tions (37), (39), (41), (43) and (45) for computing the Euler angles of the front assembly.

On the other hand, the surface parametrization model, defined in Section 2.6, includes
two kinematic constraints defined in Equations (27) and (29), respectively. Therefore, its
augmented vector of Lagrangian coordinates defined in Equation (23) has an additional non-
generalized coordinate denoted with β to account for the angular migration of the contact
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point on the front wheel. Thus, the kinematically driven analysis of the parametrized
surface model is summarized as follows

• Substitute the components of the given vector of Lagrangian coordinates qmin into
Equations (27) and (29).

• Solve the set of nonlinear equations resulting from the previous step using the Newton-
Raphson method considering the initial estimations µ0 = 0 (rad) and β0 = λ (rad),
as well as a sufficiently small tolerance denoted with ε.

• Use the now known Lagrangian coordinate vector qs of the kinematic model to
calculate the relative Cartesian coordinates of the front contact point by substituting it
into Equations (30) and (31).

In the set of numerical experiments considered in this work, the numerical results of
two additional models found in the literature are included to confront the behavior of the
proposed analytical approaches. Besides, an additional kinematic model, developed by the
authors based on the SIMSCAPE MULTIBODY toolbox belonging to the MATLAB multi-
paradigm programming platform, is used as a reference for comparing and validating all
the numerical results found in this work. To this end, a performance index based on the
Root-Mean-Squared Error (RMSE) is employed as a quantitative metric useful for making
consistent comparisons. This index is computed as follows

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (47)

where N is the number of data, yi is the reference value, and ŷi is the experimental data.
Figure 8 shows a graphical visualization of the SIMSCAPE MULTIBODY model employed
in this work as a reference model.

Figure 8. SIMSCAPE MULTIBODY model developed by the authors to reproduce the numerical
results of the analytical models proposed in this work. The zoomed window shows the contact
proxies used to measure the position vector of the front wheel contact point during the simulation.

Figure 8 includes a zoom in the region of contact of the front wheel with the road
plane. This shows the approach used to identify the instantaneous point of contact, measure
its migration angle β, and define its global position vector P f . In general, the software
SIMSCAPE MULTIBODY allows for performing measurements of the kinematic variables
of the rigid bodies defined in the dynamical simulation. However, there is a software
limitation of its measurement capacity related to the existence of contact points between
rigid bodies. In fact, it is only possible to carry out measurements in the centers of mass or
fixed local reference frames of two bodies in contact. However, no information regarding
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the location of the instant contact point can be obtained directly. Therefore, as a workaround
for these software limitations, a very large number of contact proxies were created along
the perimeter of the front wheel within the range β = [−85, 85] (deg), that is, Nc = 1000,
where Nc denotes the number of contact nodes. By doing so, the instantaneous point of
contact is identified by the simultaneous measurement of the normal force of the created
proxies. In this way, the migration angle measurement is discretized using a fine grid with
multiples of 0.003 (deg). Regarding the orientation angles of the front assembly, on the other
hand, SIMSCAPE MULTIBODY allows the direct measurement of numerical values of the
transformation matrices associated with each rigid body. Consequently, by implementing
a numerical procedure similar to the one described in Section 2.8, these values can be
indirectly calculated. Furthermore, the numerical values of the parameters employed for
the numerical experiments are reported in Table 1.

Table 1. Numerical values of the physical parameters employed in the numerical experiments.

Symbol Meaning Value (Units)

cw Wheelbase 1.02 (m)
t Trail 0.05 (m)
λ Caster angle 30 (deg)
ar Rear wheel radius 0.3 (m)
a f Front wheel radius 0.35 (m)
ε Solver tolerance 1× 10−8 (m) or (rad)

The numerical values of the physical parameters reported in Table 1 are consistently
used to evaluate the five kinematic models considered in this investigation, namely the
SIMSCAPE MULTIBODY kinematic model, the cross-product kinematic model, the surface
parameterization kinematic model, the Cossalter kinematic model [60], and the Frosali
and Ricci kinematic model [59]. Furthermore, to carry out a consistent comparison, one
should note that there is a discrepancy in the conventions for defining the reference frames
employed in the kinematic models proposed in [59,60], and these differences should be
carefully accounted for in the confront. For the benefit of the interested reader, the key
equations of the kinematic models proposed in [59,60] are reported in Appendix A. For this
reason, the kinematically driven analysis previously described is carried out for a full
rotation of the handlebars of the two-wheeled vehicle models. Thus, the steering angle is
varied between [0, 360] (deg). Additionally, two values of the roll angle of the rear frame,
namely [0,−15] (deg), are considered. Besides, the coordinates Xr, Yr, and θ are set to zero
during the numerical experiments to simplify the comparison. This is possible because
these three generalized coordinates are of interest only to define the system position with
respect to the inertial reference frame, but do not influence the relative configuration of the
front assembly or the constraint of permanent contact of the wheels with the road. These
assumptions on the measures derived from the numerical experiments make it possible to
simplify the adaptations required in the results due to discrepancies in the definition of the
reference frames mentioned above.

3.2. Kinematically Driven Study and Comparative Analysis

In this subsection, the numerical results of the kinematically driven study and the
corresponding comparative analysis developed in this work are presented. More specifi-
cally, the first part of this subsection is devoted to the comparative analysis of the trajectory
followed by the contact point belonging to the front wheel, while the second part of this
subsection focuses on the study of the set of Euler angles representing the orientation of
the front assembly.

The trajectory described by the point of contact of the front wheel on the road plane,
given a full rotation of the the handlebars, is shown in Figure 9.
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Figure 9. Front wheel contact point trajectory for a complete rotation of the vehicle handlebars.
(a) presents the trajectory of the contact point for a constant roll angle of the rear frame equal to zero.
(b) presents the trajectory of the contact point for a constant roll angle of the rear frame equal to
χ = −15 (deg).

For a zero roll angle, it is observed that the trajectory is symmetric about the X
axis, as shown in Figure 9a. This not being the case when the roll angle is equal to
−15 (deg), as evidenced in Figure 9b. In particular, restricting the plotting of the numerical
results within the range of the steering angle ψ = [−60, 60] (deg) produces the graphical
representation depicted in Figure 10.
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Figure 10. Front wheel contact point trajectory for a rotation of the vehicle handlebars in the range
[−60, 60] (deg). (a) presents the trajectory of the contact point for a constant roll angle of the rear
frame equal to zero. (b) presents the trajectory of the contact point for a constant roll angle of the
rear frame equal to χ = −15 (deg). The marker B represents the position of the contact point when
the steering angle is zero. The markers O and M indicate the points corresponding to −60 (deg) and
60 (deg), respectively.

Within this interval, considering a null roll angle, 21.9% of the total trajectory range
is covered on the X axis, while 11.8% results on the Y axis. In contrast, having a fixed roll
angle equal to −15 (deg) increases the covered range to 37.6% and 23.3% in the X and Y
axis, respectively. In Figure 10a,b, the marker B represents the position of the contact point
when the steering angle is zero. Also, in Figure 10a,b, the markers O and M indicate the
points corresponding to −60 (deg) and 60 (deg), respectively.

Given the geometry of the trajectory described by the front wheel contact point, it is
of interest to study its similarity with a looped line that is mathematically described by the
Limacon curve. Such comparison is presented in Figure 11.
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Figure 11. Approximation of the trajectory of the front wheel contact point with a looped Limacon
geometrical curve.

The Limacon curve is described in polar coordinates by the following equation

r = a− b cos(ψ) (48)

where r represents the radial distance of a generic point on the Limacon curve, measured
from a reference point set equal to the origin of the global reference system, and ψ denotes
the angular displacement from a reference direction associated with the horizontal axis,
while the constants a and b define the aspect ratio of the inner loop of the curve. This
parametric curve is equivalently described in Cartesian coordinates as follows

r =
[

ξ + cos(ψ + ϕ)(a− b cos(ψ))
η + sin(ψ + ϕ)(a− b cos(ψ))

]
(49)

where ξ and η respectively represent the offset in X and Y axes, while the parameter ϕ
accounts for the rotation of the entire curve with respect to the global reference frame.
The numerical values of these parameters are found by performing a numerical optimiza-
tion using the MATLAB built-in function fmincon. To this end, the goal is to minimize the
following objective function subjected to a proper set of constraints

min ∑ (x̂− x)2 + (ŷ− y)2

subject to :
a ≥ 0
b ≥ 0
a ≤ b

(50)

where x̂ and ŷ are the vectors of numerical results of the cross-product model, and x
and y are the vectors calculated with the use of Equation (49). In addition, the proposed
set of algebraic constraints guarantee the existence of the inner loop that characterizes
the geometry of the trajectory described by the contact point of the front wheel. For the
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particular case study considered herein, the optimized numerical values of the parameters
are a = 0.1188, b = 0.1672, ϕ = 1.7370× 10−10, ξ = 1.0676, and η = 7.2167× 10−11. These
parameters yield a minimized value of the objective function equal to 1.2650× 10−4 within
the interval ψ = [−60, 60] (deg).

Figure 12 shows the behavior of the non-generalized parameter β when the handlebars
is fully rotated.
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Figure 12. Variation of the front wheel contact point migration angle for a complete rotation of the
vehicle handlebars. (a) presents the variation of the angular position of the contact point in the
local reference frame of the front wheel denoted with O3X3Y3Z3 for a constant roll angle of the rear
frame equal to zero. (b) presents the variation of the angular position of the contact point in the local
reference frame of the front wheel denoted with O3X3Y3Z3 for a constant roll angle of the rear frame
equal to χ = −15 (deg).

In the cross-product model, the vector r4,c in Equation (17) is defined a priori in
the global coordinate system. Therefore, one does not have an explicit expression for
the geometric parameter β. However, it is found that the third Euler angle of the front
assembly, defined in Equations (43) and (45), is closely related to the angular displacement
β. In particular, the numerical values reported in Figure 12 using the cross-product model
have been obtained by the following equation

tan(β) = − tan(φ) (51)

This expression is obtained from Equations (27), (43) and (45). The results from the
numerical approach with the surface parametrized model show a very good agreement.
In particular, after considering an offset equal to λ, the plot in Figure 12 for the surface
parametrized model is produced. For the entire rotation of the handlebars, the angle β has a
range of 69.4912 (deg) given a null roll angle, and 76.4907 (deg) when the roll angle is equal
to −15 (deg). In contrast, when restricting the angular displacement ψ within the interval
[−60, 60] (deg), the ranges of variation of the geometric parameter β are 13.9493 (deg) for
a null roll angle and 28.3808 (deg) for a roll angle equal −15 (deg), respectively. Based
on this behavior, the assumption that the front wheel contact point is contained in the
symmetry plane of the rear frame, which is equivalent to assuming a null non-generalized
coordinate β, is very frequently considered as a valid hypothesis in the literature. However,
for nonlinear analysis, the present results show that this assumption cannot be considered
valid in general and represents a non-negligible source of error, as is apparent from the
nonlinear kinematic analysis reported and discussed in this work.

Figure 13 presents the behavior of pitch angle of the the rear frame.
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Figure 13. Variation of the rear frame pitch angle for a complete rotation of the vehicle handlebars.
(a) considers the case of a constant roll angle of the rear frame equal to zero. (b) shows the pitch
angle variation for a constant roll angle of the rear frame equal to χ = −15 (deg).

It is observed that, for a zero roll angle within the steering interval between 0 (deg)
and 45 (deg), the rear frame descends as indicated by the positively increasing trend of
µ. Moreover, the range of variation of the angle µ is equal to 0.1779 (deg) in this interval.
With the steering angle greater than 45 (deg), the rear frame rises, and the angle µ has
negative values. In fact, the plot represented in Figure 13a is symmetric with respect to
a vertical line located at the angle ψ = 180 (deg), where the maximum absolute value
of the angle µ equal to 9.4912 (deg) is located. In contrast, for a roll angle of −15 (deg),
as shown in Figure 13b, there is no symmetry. Furthermore, the change in the pitching
sense of the rear frame occurs when ψ = 24 (deg), with a range of variation for the angle
µ in the interval [0, 24] (deg) equal to 0.1775 (deg). In general, the range of variation
of the angle µ is narrow for steering angles of typical magnitudes, i.e., ψ = [−60, 60]
(deg). This is the reason why linearization approaches for this variable are common in the
literature. An expression of this type can be obtained in the framework of the present work
by considering Equation (37) to obtain

cos(α) =
√

1− (cos(ψ) sin(χ)− sin(λ− µ) cos(χ) sin(ψ))2 (52)

Then, this expression, which is a function of the Lagrangian coordinates, is substituted
into Equations (43) and (45). This yields two explicit expressions for sin(φ) and cos(φ)
as follows

sin(φ) = − sin(χ) sin(ψ) + sin(λ− µ) cos(χ) cos(ψ)√
1− (cos(ψ) sin(χ)− sin(λ− µ) cos(χ) sin(ψ))2

(53)

cos(φ) =
cos(χ) cos(λ− µ)√

1− (cos(ψ) sin(χ)− sin(λ− µ) cos(χ) sin(ψ))2
(54)

Subsequently, considering the relation reported above in Equation (51), one can
eliminate the parameter β from Equation (24) by noting that sin(β) = − sin(φ) and
cos(β) = cos(φ). In turn, by substituting this analytical result into Equation (29) pro-
duces a nonlinear implicit constraint that can be used to solve for the angle µ. Expanding
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this with first-order Taylor series with respect to the angle µ and isolating the relevant
terms produces 

µ ≈ µ̃ =
dσ1+cχ (ar+Hcλ)−

a f
σ2
(σ1

2−cχ
2 cλ

2)
a f (η2−η1)+cχ((L−Hsλ)+dcλ cψ)

η1 = cχcλσ1

(
2cψ

σ2
− sψ σ1 σ4

σ3

)
η2 = cλcχ

2
(

2sλ
σ2

+
cχcλ

2 sψ σ4
σ3

)
σ1 = sχ sψ + cχ cψ sλ

σ2 =
√

1− σ4
2

σ3 =
(
1− σ4

2)3/2

σ4 = cψ sχ − cχ sλ sψ

(55)

where µ̃ is the approximation obtained for µ. Equation (55) allows for avoiding the
numerical iterative solution employed with the use of the cross-product and surface
parametrized models. The comparison of the numerical results generated by the previous
analytical expression and the SIMSCAPE MULTIBODY model results for the angle µ is
shown in Figure 14.
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Figure 14. Variation of the rear frame pitch angle approximation in Equation (55) for a complete
rotation of the vehicle handlebars. (a) considers the case of a constant roll angle of the rear frame
equal to zero. (b) shows the pitch angle variation for a constant roll angle of the rear frame equal to
χ = −15 (deg).

In general, a good agreement between the proposed approximation and the SIM-
SCAPE MULTIBODY results is observed in Figure 14. This is confirmed by noting that the
RMSE between both results is equal to 0.0257 for χ = 0 (deg), and 0.0420 for χ = −15 (deg).

The steering point displacement on the X axis is shown in Figure 15.
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Figure 15. Steering point displacement in the global X axis for a complete rotation of the handlebars.
(a) considers the case of a constant roll angle of the rear frame equal to zero. (b) presents the case of a
constant roll angle of the rear frame equal to χ = −15 (deg).

A close observation of the numerical results for a zero roll angle and a roll angle equal
to −15 (deg), represented respectively in Figure 15a,b, reveals a pattern in the effect of that
variable. In fact, the presence of a nonzero roll angle eliminates the symmetry concerning
a vertical axis located at ψ = 180 (deg). Moreover, the maximum absolute value of the
variable increases. This also holds for the geometric parameters β and µ.

Subsequently, Figure 16 represents the numerical results for the system camber angle
denoted with α, namely the absolute roll angle of the front assembly.
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Figure 16. The absolute roll angle of the front assembly or camber angle denoted with α. (a) considers
the case of a constant roll angle of the rear frame equal to zero. (b) presents the case of a constant roll
angle of the rear frame equal to χ = −15 (deg).

Finally, the remaining two Euler angles of the front assembly are shown in Figures 16 and 17.
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Figure 17. The absolute yaw angle of the front assembly denoted with δ. (a) considers the case of a
constant roll angle of the rear frame equal to zero. (b) presents the case of a constant roll angle of the
rear frame equal to χ = −15 (deg).

In particular, Figure 17 represents the absolute yaw angle of the front assembly denoted
with δ. In contrast, the third Euler angle of the front assembly denoted with φ is shown in
Figure 12 that is based on Equation (51).

As a final remark, in all the numerical results presented in this subsection, a good
agreement is found by confronting the proposed analytical approaches based on the cross-
product method, the surface parametrization method, the numerical analysis arising from
the use of the three-dimensional kinematic model specifically developed in this work
using SIMSCAPE MULTIBODY, the independent analytical developments of Cossalter [60],
and those by Forsali and Ricci [59] found in the literature. Furthermore, the optimization of
the geometric parameters of the Limacon curve served as an additional analytical reference
in the representation of the Cartesian coordinates of the contact point located on the
front wheel.

3.3. Discussion and Final Remarks

In this subsection, a comprehensive discussion on the numerical results found is
provided together with some final remarks. In order to consider a quantitative metric to
evaluate and compare the quality of the numerical results, the multibody model developed
using the SIMSCAPE MULTIBODY software based on the MATLAB computational envi-
ronment was considered as the reference model. Assuming the numerical results produced
by this multibody model as the reference, the RMSE of the two multibody models proposed
in this work, as well as the one of Cossalter [60], and Frosali and Ricci [59], were calculated.
The fundamental equations of these two different kinematic models developed by Cossalter,
as well as by Frosali and Ricci, are provided in Appendix A. The complete set of numerical
values is reported in Tables 2 and 3. In particular, in Table 2, the calculation of the RMSE
for comparing the kinematic models is carried out by setting the SIMSCAPE MULTIBODY
simulation results as the reference with a fixed roll angle equal to zero, while, in Table 3,
the SIMSCAPE MULTIBODY simulation results are obtained with a fixed roll angle equal
to −15 (deg) for comparing the kinematic models through the computation of the RMSE.

Table 2. Calculation of the RMSE for comparing the kinematic models. The SIMSCAPE MULTIBODY
simulation results are set as the reference with a fixed roll angle equal to zero.

Model Xf (m) Yf (m) βββ (deg) µµµ (deg) ααα (deg) δδδ (deg)

Cross-prod. 7.0868E−4 5.8779E−4 1.5087E−1 1.4063E−3 1.3947E−3 2.0042E−1
Sur. param. 7.0868E−4 5.8779E−4 1.5087E−1 1.4063E−3 - -
Cossalter’s 5.8103E−3 8.9220E−3 4.0693 2.5703E−2 5.3286E−1 7.1457E−3
Frosali’s 7.0293E−4 6.0487E−4 - 2.5703E−2 - -
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Table 3. Calculation of the RMSE for comparing the kinematic models. The SIMSCAPE MULTIBODY
simulation results are set as the reference with a fixed roll angle equal to −15 (deg).

Model Xf (m) Yf (m) βββ (deg) µµµ (deg) ααα (deg) δδδ (deg)

Cross-prod. 7.4645E−4 5.6539E−4 1.5338E−1 1.3769E−4 1.3784E−3 6.4266E−4
Sur. param. 7.4645E−4 5.6539E−4 1.5338E−1 1.3769E−3 - -
Cossalter’s 8.3303E−3 1.0530E−2 4.3484 4.2048E−2 6.8937E−1 2.3850E−1
Frosali’s 7.5011E−4 6.1499E−4 - 4.2048E−2 - -

In general, as shown in Tables 2 and 3, there is good agreement among the five
models studied considering the quantitative and qualitative comparison based on their
numerical values. In the case of the cross-product and the surface parametrization models,
it is pertinent to note that the RMSE values reported in the Tables 2 and 3 are the same
due to the display of the numerical format, which includes only four decimal places.
Therefore, for the sake of clarity, Table 4 reports the calculated RMSE between these last
two models developed in this work, namely the cross-product and surface parametrized
models, for performing a further comparison.

Table 4. Calculation of the RMSE between the cross-product and surface parametrized models for
comparing the two models.

χχχ (deg) Xf (m) Yf (m) βββ (deg) µµµ (deg)

0 3.8706E−17 8.4832E−18 3.3141E−15 1.5307E−17
15 3.3009E−17 1.3945E−17 2.7059E−15 7.064E−17

From the analysis of the numerical results presented herein, it is possible to state that
the two methods described in this work, namely the cross-product model and the surface
parametrization model, are equivalent and were validated through numerical experiments
since these were also performed in comparison with other fundamental models found in
the literature. However, both the kinematic models developed in this work, being fully
nonlinear, do not resort to any simplifying assumptions or linearization procedures, thereby
extending their scope of applicability to a wide range of kinematic and dynamic behaviors
of the large family of two-wheeled vehicles. Furthermore, the present work presents a
detailed description of a systematic and intuitive methodology to formulate kinematic
models for two-wheeled vehicles having a general geometric structure. These models are
based on the closed-chain kinematic approach, which represents a smart multibody tech-
nique capable of avoiding large amounts of redundant coordinates, leading to multibody
system simulations that can be easily performed and readily handled considering a small
set of redundant coordinates.

Some further comments on the strategy behind the development of the kinematic
models are provided below. In general, in the development of the kinematic models
presented in this work, the definition of the reference frames turned out to be a funda-
mental aspect of the model construction since these reference frames were collocated at
key geometric points of the two-wheeled system. Besides, the rotation matrices of the
reference frames having their origins corresponding to these points were formulated. Then,
the analytical expressions for the component vectors of the proposed kinematic chain were
derived considering such reference frames. Finally, the wheel contact constraints were
formulated, and this step represents another fundamental facet of paramount importance
for the kinematic model definition. One particular aspect of the approach employed for the
geometric construction followed herein consists of fixing a local reference frame, namely
the reference system labeled as O1X1Y1Z1, at the contact point collocated on the rear wheel.
Thus, the resulting equations arising from the closed kinematic chain are highly simplified.
Furthermore, an advantage of the proposed modeling approach lies in the location of the
reference frame O3X3Y3Z3, which allows for formulating the kinematic chain equations in
a compact form. This choice proved to be helpful when writing the holonomic constraint
of permanent contact between the front wheel and the ground, from which the angle µ is
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calculated. In fact, in virtue of such a choice of reference frames, the value of the angle µ
for the system trivial configuration is zero. In general, it is well known that the kinematic
loop employed in Equation (19) is highly nonlinear and prevents the reduction of the set
of redundant coordinates to a minimal one. Consequently, the numerical solution of the
kinematic constraints associated with this geometric feature of the kinematic model was
considered in the present study.

At the fundamental intermediate stage of the model definition, two methods were
considered to formulate the position vector of the contact point collocated on the front
wheel and denoted with r4, giving rise to the two kinematic models presented in this
work, namely the cross-product model and the surface parametrization model. These two
kinematic models were confronted numerically by performing several experiments and
proved to be equivalent, as well as consistent with other kinematic models found in the
literature. This being one of the main contributions of this investigation. Additionally,
this paper presents an approximation of the geometric angle µ, which is of fundamental
importance in vehicle dynamics, by the linearization of the kinematic constraint reported in
Equation (29), together with the details of the procedure for its formulation. The resulting
expression presents an optimal agreement for large values of the Lagrangian coordinates,
as evidenced in Figure 14, as well as by observing the numerical values obtained for the
RMSE, namely 0.0257 for χ = 0 (deg), and 0.0420 for χ = −15 (deg).

Finally, a detailed discussion on the explicit formulation of the position vector of the
wheel-ground contact point was presented in this work as well. In particular, the modeling
pitfalls concerning the contact point displacement represented in the global and local refer-
ence frames were analyzed. The reason for the interest in the study of this fundamental
aspect is that it is generally the most complex feature of the kinematic analysis of the tire-
road contact mechanics, mainly because a specific material point of the rigid wheel has fixed
local coordinates, but the instantaneous point of contact is a function of the Lagrangian
coordinates that describe the kinematic model. That is, the position of the instantaneous
contact point in a local frame attached to the rear or front frame of the wheels moves when
the system configuration changes during the time evolution. However, the simplifying
assumption that the local position vector of the contact point will always aim vertically
and, consequently, modeling the angular migration of this point as a counter-rotation of
the angle φ f in the local wheel disk coordinate system, is geometrically incorrect, leading
to physically inconsistent numerical results. This simplified approach, which is not used
in this work, is common in the development of linearized models, where the hypothesis
is acceptable due to the elimination of the higher-order terms in the algebraic equations
that describe the kinematic constraints. Therefore, to address this issue, an effective so-
lution that is consistent with the complex geometry of the problem at hand is presented
herein, and an analytical expression for the contact point migration angle is systematically
derived by noting that it is related to the third angle of the Z-X-Y sequence of Euler angles,
specifically defined for this purpose for the front assembly. In particular, for the proposed
kinematic model, Equation (51) was found by means of symbolic manipulations and it
was subsequently validated numerically through numerical experiments. In this way,
it was possible to eliminate the second constraint equation of the surface parametrized
model using Equations (53) and (54), thereby proving the independence between the non-
generalized parameter β and the angle φ f . To conclude, it is appropriate to mention that
the final equation obtained to solve this issue is similar to that proposed by Cosalter [60].
However, the detailed derivation procedure for the solution of this geometric problem is
presented herein and its comparison with a nonlinear numerical solution is discussed as
well. In fact, as shown Tables 2–4, the equation proposed in this work presents a higher
agreement with the nonlinear kinematic model developed by the authors in SIMSCAPE
MULTIBODY, that was employed as a further external reference. This result, to the best
of the authors’ knowledge, was not performed before by other researchers since does not
appear in the literature.
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4. Summary, Conclusions, and Future Directions of Research

From a general perspective, the authors’ research work is grounded on three main
pillars that are multibody dynamics, nonlinear control, and system identification [70–72].
In particular, in continuation with the authors’ previous work and for being more specific,
this paper treats the fundamental geometric aspects necessary for the development of a gen-
eral kinematic model, based on a readily viable closed-chain multibody approach, suitable
for describing the most relevant kinematic features of a vast class of two-wheeled vehicles.

This paper presents a methodology for the formulation of kinematic models for two-
wheeled vehicles, having a general geometry, by using a closed-chain kinematic approach.
For this purpose, the most relevant system kinematic features were explored and described
through the creation of a proper set of local reference frames that allows for a straight-
forward derivation of the transformation matrices that define the spatial orientation of
the bodies that form the mechanical system, as well as for the geometric construction
of its closed-chain geometric shape. Besides, the formulation of global position vectors
connecting these frames was performed in such a way so that the geometry of the artic-
ulated mechanical system is fully described. In particular, special attention was paid to
the methodology employed for deriving the system kinematic constraints modeling the
wheel-ground contact, which represents one of the most challenging aspects concerning
the mathematical modeling of the closed-chain geometry of two-wheeled vehicles in gen-
eral. For this purpose, two kinematic models with different methods of formulating the
holonomic contact constraint are presented in the paper, that is, an analytical approach
based on the cross-product of some fundamental geometric vectors, which appear in the
description of the vehicle closed-chain structure, and an analytical technique that lever-
ages the use of a particular non-generalized coordinate, which is specifically introduced
to take into account the inherent motion of the contact point on the vehicle front wheel.
Additionally, in the last part of the analytical developments presented in this paper, the ge-
ometric derivation of the set of Euler angles associated with the vehicle front assembly is
performed, and their mathematical form is expressed as an explicit function of the cho-
sen set of Lagrangian coordinates. Furthermore, in the numerical study proposed in the
paper, a kinetically driven analysis based on local and global Cartesian and generalized
coordinates was proposed to study the kinematic behavior of the contact point collocated
on the front wheel. Also, the numerical experiments carried out in the paper, aimed at
demonstrating the correctness and effectiveness of the proposed kinematic model, allowed
for studying the kinematic behavior of the pitch angle of the vehicle rear frame, as well as
the analysis of other kinematic variables of interest. Finally, two paths were followed to
establish an appropriate comparison of the proposed kinematic models with the existing
ones found in the literature or for confronting other different models specifically devised
for this purpose. First, another completely different model was developed by the authors
in the MATLAB simulation environment employing the general-purpose software called
SIMSCAPE MULTIBODY. Then, two additional kinematic models were taken from the liter-
ature for performing meaningful comparisons, namely, those of Cossalter [60], and Frosali
and Ricci [59]. These kinematic models, whose mathematical structure is fully available
in the literature and is often assumed as a benchmark, were implemented in MATLAB to
enable a systematic analysis. By doing so, as shown in details in the numerical results part
of the manuscript, an extensive numerical study was carried out in order to validate the
proposed kinematic models through numerical experiments, and the Root-Mean-Squared
Errors (RMSEs) between the models were calculated to qualitatively and quantitatively
confront the numerical results produced by these models.

In summary, the main contributions of this research work include the development
of two kinematic models for a general class of two-wheeled systems through the use of a
closed-chain kinematic approach that follows the modeling strategy typically employed
in multibody systems dynamics. In particular, in the development of this work and in
the redaction of the manuscript, the authors gave special attention to reporting in detail
all the steps for the formulation process of the characteristic equations that describe the
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kinematic models illustrated herein. This to present a full and easily reproducible work,
allowing also for its use in different model-based developments, where other multibody
formulation approaches in redundant coordinates are incompatible or impractical. In this
respect, one of the possible viable directions for future research is the development of
feedforward and feedback control policies for this family of articulated mechanical sys-
tems. In particular, the development of new control systems, where the emerging ADAS
applications for two-wheeled vehicles demand nonlinear models with low dimensionality,
is one of the most interesting paths for future research [73–75]. Additionally, this work
provides a discussion confronting two alternative methods suitable for the formulation
of the contact constraints. As far as the wheel-road contact is concerned, a campaign
of numerical experiments allowed for comparing the numerical results arising from the
proposed approach with those obtained from two models taken from the literature and
one model specifically developed for this purpose by the authors in MATLAB using the
software called SIMSCAPE MULTIBODY. This thorough comparison yielded a numerical
verification of the equivalence between the two analytical approaches devised in this in-
vestigation, namely the cross-product method and the surface parameterization method.
Besides, a detailed discussion on the definition of the local and global position vectors of
the contact point on the front wheel was presented in the paper. In particular, the equiv-
alence of the migration angle, associated with the contact point expressed using a set
of local coordinates, with the third Euler angle of the Z-X-Y sequence was found. This
is a timely discussion, since, during recent years, the problem of the formulation of the
holonomic contact constraint for bicycles and motorcycles, despite being non-trivial and
giving rise to much of the general difficulties in modeling two-wheeled vehicles, has been
systematically eluded in the literature. This is mainly attributable to the literature approach
employed during the early stages of the research on two-wheeled vehicles, where ad-hoc
linearization approaches were the norm since the full emphasis on the self-stability analysis
by eigenvalue criteria was the main topic of interest. This approach was subsequently
replaced by multi-degree-of-freedom models having different degrees of complexity, de-
veloped by more sophisticated computational tools employing multibody software based
on redundant coordinate formulations, and considering contact models that allowed for
the separation of the vehicle wheels from the ground with different numerical techniques,
such as the penalty method. This transition substantially led to a lack of discussion on the
kinematic analysis of the wheel-ground contact suitable for modeling two-wheeled vehicles.
Therefore, this issue, which has also recently been highlighted by other authors [2,59,62],
was addressed in detail in the present study.

Future works will include further refining the model presented herein, leading to the
development of a multibody dynamic model that shares the same closed-chain kinematic
approach devised in this investigation. Additionally, once a comprehensive but low-
dimensional multibody model is constructed for effectively and efficiently simulating the
dynamic behavior of the class of mechanical systems of interest for this study, a systematic
formulation of the system equations of motion will be carried out for their subsequent use
as a plant in the iterative development and the computer implementation of data-driven
nonlinear control strategies, such as those based on the set of Deep Reinforcement Learning
(DRL) algorithms [61,70], where the computational cost of a high-dimensional multibody
model is restrictive.
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Appendix A

Appendix A.1. Kinematic Model Proposed by Cossalter

The following equations were employed in this work to confront the kinematic model
proposed by Cossalter in [60] with that herein developed.

β′ = −atan
(

cos(δ) sin(ε)− sin(δ)tan(φ)
cos(ε)

)
(A1)

c1 = tr − t f − d sin(ε)(cos(δ)− 1) (A2)

c2 = −
(

R f − t f

)
(cos(δ) sin(ε) sin(β’− ε)− cos(ε) cos(β’− ε) + 1) (A3)

c3 = d sin(δ) + sin(δ) sin(β’− ε)
(

R f − t f

)
(A4)

c4 = p + d cos(ε)(cos(δ)− 1) (A5)

c5 = (sin(ε) cos(β’− ε) + cos(δ) cos(ε) sin(β’− ε))
(

R f − t f

)
(A6)

µ =
t f − tr + cos(φ)(c1 + c2) + c3 sin(φ)

cos(φ)(c4 + c5)
(A7)

xP f = cos(µ)(c4 + c5) + sin(µ)(c1 + c2) (A8)

yP f = t f − tr − sin(φ)(cos(µ)(c1 + c2)− sin(µ)(c4 + c5)) + c3 cos(φ) (A9)

β = atan
(

cos(β’− ε)(cos(δ)tan(φ) + sin(ε + µ) sin(δ))
cos(ε + µ)

)
(A10)

∆ = atan
(

cos(ε + µ) sin(δ)
cos(δ) cos(φ)− sin(ε + µ) sin(δ) sin(φ)

)
(A11)

To clarify the meaning of the symbols used in the previous equations, the interested
reader is referred to the literature [60].

Appendix A.2. Kinematic Model Proposed by Frosali and Ricci

The following equations were employed in this work to confront the kinematic model
proposed by Frosali and Ricci in [59] with that herein developed.

d =
(

R f + r f

)
sin λ− a cos λ (A12)

l =
(

r f − r + R f − R
) sin λ

cos ε
+ w

cos λ

cos ε
− d

cos ε
(A13)

b =
(

r− r f + R− R f

)cos ϕ

cos ε
+ w

sin ϕ

cos ε
+ d tan ε (A14)

RA = R2(−α)R1(θ) (A15)

RB = R3(−µ)R2(−α)R1(θ) (A16)

RD = R4(ψ)R3(−µ− ε)R2(−α)R1(θ) (A17)

R̃D = R̃3(−µ̃)R̃2(−α̃)R̃1(θ̃) (A18)

x f = x− R sin α sin θ + l(cos µ cos θ − sin α sin µ sin θ)+

+b(sin(µ + ε) cos θ + sin α cos(µ + ε) sin θ)+
+d cos ψ(cos(µ + ε) cos θ − sin α sin(µ + ε) sin θ)+
−d cos α sin ψ sin θ + R f sin α̃ sin θ̃

(A19)
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y f = y + R sin α cos θ + l(cos µ sin θ + sin α sin µ cos θ)+

+b(sin(µ + ε) sin θ − sin α cos(µ + ε) cos θ)+
+d cos ψ(cos(µ + ε) sin θ + sin α sin(µ + ε) cos θ)+
+d cos α sin ψ cos θ − R f sin α̃ cos θ̃

(A20)

ĉ1 = b cos ε− d sin ε cos ψ− R (A21)

ĉ2 = R f

√
1− ĉ2

6 +
(

r f − r
)

(A22)

ĉ3 = d sin ψ (A23)

ĉ4 = l + b sin ε + d cos ε cos ψ (A24)

ĉ5 = R f ĉ6
cos ε sin ψ√

1− ĉ2
6

(A25)

ĉ6 = cos α sin λ sin ψ + sin α cos ψ (A26)

µ =
ĉ1 cos α + ĉ2 + ĉ3 sin α

(ĉ4 + ĉ5) cos α
+ ϕ (A27)

To clarify the meaning of the symbols used in the previous equations, the interested
reader is referred to the literature [59].
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