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Abstract: Recent years have witnessed the widespread research of the surface defect detection
technology based on machine vision, which has spawned various effective detection methods. In
particular, the rise of deep learning has allowed the surface defect detection technology to develop
further. However, these methods based on deep learning still have some drawbacks. For example, the
size of the sample data is not large enough to support deep learning; the location and recognition of
surface defects are not accurate enough; the real-time performance of segmentation and classification
is not satisfactory. In the context, this paper proposes an end-to-end convolutional neural network
model: the pixel-wise segmentation and image-wise classification network (PSIC-Net). With the
innovative design of a three-stage network structure, improved loss function and a two-step training
mode, PSIC-Net can accurately and quickly segment and classify surface defects with a small dataset
of training data. This model was evaluated with three public datasets, and compared with the
most advanced defect detection methods. All the performance metrics prove the effectiveness and
advancement of PSIC-Net.

Keywords: surface defect detection; pixel-wise segmentation; image-wise classification; convolu-
tional neural network; deep learning

1. Introduction

As one of the applications of machine vision, surface-defect detection is more difficult
than target or object detection, which is caused by the complex shape of surface defects,
small amount of defect data, poor detection environment, etc. [1–4]. The traditional
image processing methods can quickly acquire some features of surface defects, such as
Sobel [5], Canny [6], Prewiit [7], and LBP [8], and use these features to match and recognize
defects. However, these features are greatly influenced by noise, light and a complex
background [9], making the preconditions too harsh to achieve good performance. In
addition, the classic machine learning methods (support vector machine—SVM [10–12],
etc.), which need feature engineering, are difficult to use in defect detection, owing to the
wide variety of defects, random defect shape, unfixed defect position and varying defect
degree. In contrary, deep learning is suitable for defect detection since it is rarely affected
by the environment, does not require feature engineering, and only needs raw images to
complete the task, end to end [13]. With a variety of merits in the field of surface-defect
detection, the neural network can analyze complex image features, and give accurate and
detailed multidimensional expression. Moreover, deep learning has strong transplantation
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ability. The detection of different defects can be transferred by fine tuning with only a small
amount of data [14,15].

Defect detection based on deep learning contains the following research current
topics: (1) Defect detection in the case of small datasets [13]—since the defect data are
usually limited, a small number of samples is almost a prerequisite for surface defect
detection. (2) Online real-time defect detection [16]—considering that the actual defect
detection in the industrial site is basically a pipeline operation, there is a certain speed
(“samples/second” while processing in real-time) requirement. (3) Defect detection based
on physical inference [13]—due to the lack of defect data, data-driven inference is difficult
to improve further. Integrating physics-based inference is likely to be the key to improving
detection accuracy.

PSIC-Net carries out the pixel-level segmentation of the defects and the image-level
classification of the defective images and the non-defective images. The network model
proposed is mainly aimed at the surface defects of industrial products, such as scratches
and depressions on the surface of metal products, discoloration and stains on the surface
of textured products. This end-to-end convolutional neural network model completes
two tasks of defect segmentation and defect classification through a three-stage network
architecture (called feature extraction network, invers convolution network and classifi-
cation network, respectively). This three-stage architecture can acquire key features from
a small number of defective training samples and achieve high segmentation accuracy
and classification accuracy by the improvement of the loss function and the design of the
training mode. In addition, since the segmentation and classification networks share most
of the convolutional network layers, the time cost of inference can be faster. Moreover,
according to the experiment results, it can meet the real-time requirements of the industrial
assembly line.

In this study, three databases (KolektorSDD [17], kolektorSDD2 [18] and DAGM [19])
are used. They contain different defects: KolektorSDD mainly contains scratches of metal
surfaces; KolektorSDD2 has several types defects of metal surfaces; DAGM has the artificial
defects of texture surfaces. Some examples can be seen in Figure 1.

Figure 1. Examples of defect images in the three datasets [17–19].

2. Related Work

Studies on deep learning–based surface defect detection are very extensive, and can be
roughly divided into three categories, according to specific functions: defect classification,
defect detection and defect segmentation.
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Defect classification [20–22] uses the classification network in deep learning to input
the raw image into the network, and the output result is a binary classification judgment of
whether the image contains defects. In the field of computer vision, this method is called
image classification, whose training requires a relatively small amount of data, and whose
data are not so difficult to label. This method, however, cannot locate and segment a defect
in the image, and cannot deal with an image containing several different types of defects.

Defect detection [23–26] is an improved version of defect classification in which image
preprocessing is added. The raw image is firstly segmented into several patches. After the
patches go through a neural network, the output of the network is whether the patches
have defects or not. In the end, defective patches are framed in the raw image to obtain
the rough localization of the defects. This method segments the raw image only through
sliding windows, which realizes the defect position with high efficiency. However, the
annotation difficulty of training data also increases, and it is also difficult to choose the
appropriate window size for defects of different scales.

Defect segmentation [17,27–35] usually refers to pixel-wise segmentation, that is, to
judge whether each pixel is a pixel of the defect, and then segment the defective pixels
from the raw image. This method can accurately locate the defect position to the greatest
extent, at the cost of pixel-by-pixel annotation of the training data.

Since defect segmentation and defect classification are both applied in this paper,
the following mainly introduces several representative studies similar to the method in
this paper.

Tabernik et al. [17] detect cracks on the surface of industrial product images and
propose a two-stage network, which includes a segmentation network and a decision
network. The first stage is a segmentation network that locates surface cracks at the
pixel level. The second network is a decision network, which can infer whether the image
presents defects or not. Its inputs are the output of the feature extraction network combined
with the output of the segmentation network. Moreover, the network is trained and tested
with the dataset, KolektorSDD. This method acquires satisfactory detection accuracy by
using a small dataset. The method finally obtains 99.9% average precision. In addition,
the inference time is about 10 ms. However, the shortcoming is that the precision of the
segmentation part is not adequate, and the size of the segmentation output image is 1/8 of
the raw image.

The study of [36] is an optimization model of the two-stage neural network model
based on segmentation [17]. It reduces the training time and improves the accuracy
of surface defect detection by introducing the end-to-end training mode. The average
precision in DAGM and KolektorSDD almost reaches 100%. However, the segmentation is
only a means to improve the accuracy of the classification. The results of the segmentation
have not been measured and optimized.

Bozic et al. [18] improve the model in [36], which can adopt weakly supervised
learning on image-level labels and strongly supervised learning on pixel-level labels. This
hybrid supervised model can find a balance between annotation difficulty and classification
accuracy, which is of great significance for practical industrial applications. The model
uses a two-stage network to output segmentation results and classification results; the
classification accuracy of three datasets almost reaches 100%. The disadvantage is that the
study does not focus on the segmentation, which has not been measured and optimized.

Tao et al. [34] propose an algorithm for defect segmentation and defect classification.
The algorithm is divided into detection and classification modules. To be specific, the
detection module uses a cascaded autoencoder (CASAE) to segment the defects, and the
classification module uses tiny CNN to classify the defects. This method uses 50 raw
images containing defects and expands the training data to 3000 images through data
enhancement. The problem of the defect regions being too small to locate is solved by
using the weighted cross-entropy loss function. The segmentation accuracy reaches 89.60%
and the classification accuracy reaches 86.82%.
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He and Liu [27] propose a general industrial defect detection framework based on
regression and classification, which respectively completes the tasks of defect segmentation
and defect classification through detection module and classification module. The detection
module is an improvement of Resnet18 [37], and the output layer is a linear regression unit.
Since the classification module has fewer computations than the detection module, it uses
complex structure Resnet101 [37] to improve the classification accuracy. In this method,
38 images in AigleRN [38] and 1150 images in DAGM are adopted as experimental data.
The final average F-measure values are 93.75% and 91.50%, respectively, and the mean IoU
of segmentation is 84.50%.

Dong et al. [31] propose a pixel-level surface-defect detection network: PGA-NET.
Firstly, this network extracts multi-scale features from the backbone network, and fuses
features with different resolutions by pyramid feature fusion. Then, effective information
is transferred from a low-resolution feature map to high-resolution feature map by a global
context attention mechanism. Through the boundary refinement module, the accuracy
of the defect segmentation is improved. The mean IoU of segmentation results achieves
high accuracy on all four datasets (NEU-SEG [39]: 82.15%, DAGM: 74.78%, MT defect [40]:
71.31%, and Road defect [41]: 79.54%).

Liong et al. [33] propose an automatic detection system for leather defects. This system
adopts a machine vision method based on a convolutional neural network architecture to
identify the location of leather defects and then predicts each defect instance. In order to
make the boundary segmentation more accurate, this study also acquires the boundary
from the deduction of geometric graphics. The segmentation accuracy of this algorithm for
test data reaches 70.35%.

Compared with relevant methods, PSIC-Net combines both defect segmentation and
defect classification, and takes into account the difficulties of a small number of sample data,
which performs well in real-time detection. The network shares the convolutional layers
of feature extraction, and the following two parts of network process defect segmentation
and defect classification independently. It not only saves time cost, but also refines the
two tasks.

3. Methods

This paper proposes a convolutional neural network model suitable for surface defect
segmentation and classification: pixel-wise segmentation and image-wise classification
network (PSIC-Net). Composed of a three-stage network architecture, this model can ex-
tract the key features, spatial location information and semantic information, and complete
defect segmentation and image classification tasks, respectively. The model adopts a two-
step training mode so that the parameters of the segmentation network and classification
network are not constrained and will not lead to confusion or non-convergence. Moreover,
the model improves the loss function in the training process so that the parameters can
converge quickly and accurately.

3.1. Network Framework

The framework of PSIC-Net is mainly divided into three parts as shown in Figure 2.
The first part is the feature extraction network, which consists of 10 convolutional layers
and 3 maximum pooling layers. After each convolutional layer, there is a batch normal-
ization (BN) and a rectified linear unit (ReLU). The second part is the invers convolution
network, which connects the last layer of the feature extraction network through a 1 × 1
convolution layer. It consists of 6 deconvolution layers (three of which are used for double
up-sampling), 2 element-wise addition layers and 2 convolution layers. The third part is the
classification network, which consists of 3 maximum pooling layers, 3 convolution layers,
4 global pooling layers and 1 full connection layer. The input of classification network
concatenates the last layer of the feature extraction network and the output layer of the
invers convolution network. Finally, it outputs the probability of defects.
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Figure 2. Simplified structure of PSIC-Net.

3.1.1. Feature Extraction Network

The feature extraction network is composed of 10 convolution layers and 3 maximum
pooling layers. Each maximum pooling layer reduces the resolution of the image by two
times, so the size of the final feature image is 1/8 of the original image. The first nine
convolutional layers use 5 × 5 convolutional kernels, and the tenth layer uses the 15 × 15
convolutional kernel. Moreover, the first and second layers are set with 32 channels, the
third to fifth layers with 64 channels, the sixth to ninth layers with 128 channels, and
the tenth layer with 1024 channels. It can be seen that the convolutional network is set
up in a gradually increasing number of layers and channels. This network structure can
better extract the features of semantic information in the deep layers and still retain better
spatial location features in the shallow layers, which is a win–win network setting mode
for segmentation and classification. In addition, BN and Relu are connected after each
convolutional layer to improve the convergence speed in the training process, make the
model more stable, and prevent over-fitting and gradient disappearance [17]. Dropout is
not used in this network since the weight sharing mechanism of the convolutional layer
provides sufficient regularization. Because the number of defect samples is much smaller
than the number of defect-free samples, not using dropout can prevent the small number
of defect features and tiny defect features from being discarded. Figure 3 demonstrates
the network structure. It should be noted that the size of the image in Figure 3 is just an
example to show how the image size changes as the network deepens. The initial sizes of
the images are not uniform, but have small size changes.

Feature extraction network is the key to the segmentation and classification of defects.
Due to the scarcity of defect samples and the possibility that defects are minor, we increase
the receptive field of the convolution layer in this part and retain all feature details as much
as possible. To be specific, both the pooling operation and the large convolution kernel
in the deep layer are designed to significantly increase the receptive field. The number of
convolution layers between each maximum pooling layer increases successively, which
can increase the capacity of features with the large receptive field. Finally, the selection of
the maximum pooling layer, rather than other down-sampling methods, considers that the
maximum pooling layer can retain small and important features [17].
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Figure 3. Structure of feature extraction network.
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3.1.2. Invers Convolution Network

The invers convolution network consists of 6 deconvolutional layers, 2 element-wise
addition layers and 2 convolution layers as shown in Figure 4. Among them, the first
convolutional layer is used to integrate the features of the last layer of the feature extraction
network to obtain a heatmap. The first 5×5 deconvolutional layer with 64 channels is
responsible for doubling the heatmap, so that the resolution of the heatmap becomes 1/4 of
the raw image. Then, 2 deconvolutional layers with the same size and number of channels
are connected (the deconvolutional layer does not magnify the resolution here). After that,
the skip-layer structure [42] is introduced. That is, the feature map, which is downsampled
twice in the feature extraction network (1/4 of the raw image), is added and fused with
the heatmap that has the same shape here. This structure can re-introduce the features
in the shallow layer so as to ensure the accuracy of the spatial position and the accuracy
of the edge region segmentation. After that, the above structure is repeated once, but
the difference is that the number of deconvolutional layers is reduced to 2 layers (here,
the first layer of deconvolutional is still used for up-sampling, and the resolution of the
heatmap is now 1/2 of the raw image), and the number of channels is reduced to 32. The
feature map in the feature extraction network, which was pooled once, is added and fused
with the heatmap here. Finally, the network is restored to the raw image size through
1-layer deconvolutional up-sampling. A single-channel 1×1 convolutional layer is added
to output the segmentation prediction graph.

The invers convolutional network is inspired by FCN [42] and DeconvNet [43] since
they complete the segmentation task in a fairly effective way, which is especially critical
for a model with a small number of sample data. Invers convolutional layers achieves the
lifting of resolution, and element-wise addition layers fuse the feature map and heatmap.
Both of them are conducive to the robustness and accuracy of the whole network.

3.1.3. Classification Network

The design of the classification network refers to the classification network in [17] as
shown in Figure 5. The classification network consists of 3 convolutional layers, 3 maximum
pooling layers and 4 global pooling layers. The input concatenates the last layer of the
feature extraction network and the output of the invers convolution network. The number
of channels of the convolutional layer increases as the image resolution decreases, which
can balance the computing cost of each layer. After three rounds of convolution and pooling,
the network connects one global maximum pooling layer and one global average pooling
layer, respectively, to reduce the parameters and integrate features, and finally obtains two
32× 1 feature vectors. In order to further improve the accuracy of the classification results,
the output of the invers convolution network is also connected to one global maximum
pooling layer and one global average pooling layer, respectively, to obtain two 1× 1 feature
vectors. Because the global pooling layers output a one-dimensional vector for each channel,
it can eliminate the dimension mismatch between the invers convolutional network and
the classification network. Finally, a fully connected layer is used to concatenate the feature
vectors as the output. The output is the probability of whether the image contains defects.

After using the last layer of the feature extraction network as input, the classification
network still carries out three rounds of convolutional and down-sampling operations to
ensure that the overall defect features can be completely retained. The output of the invers
convolutional network is introduced to prevent the classification network from over-fitting.
In the training process, the classification network and invers convolutional network are
adversarial and fuse with each other, making the final classification result more accurate.
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Figure 4. Structure of invers convolution network.

Figure 5. Structure of classification network.
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3.2. Training

Since the whole network is composed of a relatively independent segmentation net-
work (feature extraction network and invers convolutional network are collectively called
the segmentation network) and classification network, a two-step training mode of the
two networks is proposed, which allows the parameters of the two networks to be trained,
according to the different tasks (segmentation or classification). The two-step training mode
can reduce the interference and influences between the two networks to the minimum. In
fact, the end-to-end training mode is also considered. Bozic et al. [36] propose a total loss
function as shown in Equation (1).

Ltotal = λ·Lseg + δ·(1− λ)·Lcls (1)

where Lseg and Lcls represent segmentation loss and classification loss, respectively, δ is an
additional classification loss weight to prevent the classification loss from dominating the
total loss, and λ is a mixed factor which is limited by the super parameter: epoch. It can
balance the contribution of each network in the final loss too.

The experiment in this paper tests this training mode. The results demonstrate that the
training time is indeed shortened, but the output results, especially the segmentation results,
are not comparable to the two-step training mode. The primary analysis is that the weight
parameters of each part may be balanced, due to the restraint of the two networks in the
end-to-end training mode, which not only increases the difficulty of network convergence,
but also affects the implementation of the two networks and fails to achieve any benefits.
Therefore, the final training mode is determined to train the segmentation network first,
then freeze the feature extraction network and invers convolutional network parameters,
and finally train the classification network and perform the fine-tuning. This training
mode can avoid parameter weights over-fitting the invers convolutional network or the
classification network, improving the accuracy of both the segmentation and classification.

The problem of sample imbalance exists in both the segmentation and classification of
PSIC-Net. There are fewer positive samples (defective samples) and much more negative
samples (non-defective samples). If the positive and negative samples are multiplied by
the same weight coefficient, it is easy to predict the positive samples into negative samples.
Therefore, this paper introduces the weighted cross-entropy loss function [44,45]. Assigning
a larger penalty weight to the classification errors of positive samples and multiplying the
classification errors of negative samples by a smaller weight can improve the accuracy of
both segmentation and classification. In addition, since the mechanism of the segmentation
network is to classify every pixel, the weighted cross-entropy function can also improve
the segmentation accuracy of small defects and the boundary. In industry, the influence
of false negative cases is much greater than that of false positive cases, which is another
reason why we introduce weighted cross-entropy loss. The weighted cross-entropy loss
function adopted in this paper is shown in Equation (2).

LWCE = −α ∑
j∈X+

log Pr(xj = 1)− (1− α) ∑
j∈X−

log Pr(xj = 0) (2)

where LWCE denotes the weighted cross-entropy loss function. The loss function is com-
puted over all pixels in the training image X = (xj, j = 1, . . . , |X|). α is the class-balancing
factor on a per-pixel term basis. α = |X−|/|X| and 1− α = |X+|/|X|. X− and X+ denote
the defect-free and defect ground truth label pixels, respectively.

3.3. Inference

Once PSIC-Net is trained, images can be input for inference. The input image can be of
any size since the full connected layer of the classification network is obtained after global
pooling. There is no dimension-matching problem. In order to verify the universality of
the network to all kinds of surface-defect data, the public defect datasets used for training
and test in this paper are KolektorSDD [17], KolektorSDD2 [18] and DAGM [19].
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The inference results of PSIC-Net have two outputs, namely, the defect segmentation
and the image classification. The first output is the pixel-wise segmentation output by the
invers convolutional network, which is a mask image obtained by probability. The size of
the output image is the same as that of the raw image. The defect and the background will
be distinguished by different colors, as shown in Figure 6.
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The second output is the probability, which represents whether there is a defect in the
image inferred by the classification network.

4. Experiments and Results
4.1. Datasets

KolektorSDD [17] is constructed from images of defective production items that were
provided and annotated by Kolektor Group d.o.o. The images were captured in a controlled
industrial environment in a real-world case. The dataset consists of 399 images, including
52 images with visible defects and 347 images without any defect. The images in this
dataset are not uniform in size, but have small size changes. The sizes of the images
are about 512 pixels in width and about 1408 pixels in height. There is only one defect
in the image with defect. The remaining 347 images serve as negative examples with
non-defective surfaces. As shown in Figure 7.

KolektorSDD2 [18] dataset is constructed from images of defected production items
that were provided and annotated by Kolektor Group d.o.o. Various types of defects were
observed on the surface of the item. The images were captured in a controlled industrial
environment. The dataset consists of 356 images with visible defects and 2979 images
without any defect. The image sizes are approximately 230 × 640 pixels. Below are four
examples as shown in Figure 8.

DAGM [19] is regarded as one of the most widely recognized public surface defect
datasets, which contains 10 classes of defect images. Each class of images contains about
1000 images, and a small part of each class of image has a random defect generated by the
computer. The backgrounds of the images in the same class are quite similar, but those
of different classes are diverse. Each image is 512 × 512 pixels in size. The label for this
dataset is a weakly supervised label, that is, the defective areas are represented by an ellipse
mask. Figure 9 demonstrates four examples.
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(a) (b) (c) (d)

Figure 7. Example images of KolektorSDD. (a,b) are the raw images without defects and its ground truth; (c,d) are the raw
images with defects and their ground truth.

(a) (b) (c) (d)

Figure 8. Example images of KolektorSDD2. (a,b) are the raw images without defects and its ground truth; (c,d) are the raw
images with defects and their ground truth.

(a) (b) (c) (d)

Figure 9. Example images of DAGM. (a,b) are the raw images without defects and its ground truth; (c,d) are the raw images
with defects and their ground truth.

4.2. Experiment Settings

PSIC-Net can carry out independent experiment without the need for pre-training on
other datasets. The network is randomly initialized, using standard normal distribution
and adopts momentum-free stochastic gradient descent for training. Moreover, the initial
learning rate is set reasonably, and the learning rate decreases dynamically with gradient
descent. Four 1080Ti GPUs are used for both training and inference. In addition, the
experiment adopts the triple cross-validation method, which means that images in each
dataset are randomly assigned for the training sets and the test sets three times. During the
training, three training sets are trained in sequence, and three corresponding test sets are
also tested in turn.
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The experiment is implemented on Tensorflow 1.12, Python 3.5, CUDA 9.0.

4.3. Performance Metrics

We evaluate the performance of PSIC-Net in three public datasets, using the triple
cross-validation method. Intersection over Union (IoU) is generally used to measure the
accuracy of segmentation. It means the ratio of intersection and union of predicted mask
and ground truth mask. In our study, Mask IoU and Boundary IoU [46] are used to measure
the defect segmentation effect of PSIC-Net. Boundary IoU is a sensitive measurement
method for the quality of boundary segmentation. Their calculation formulas are displayed
in Equations (3) and (4) respectively.

Mask IoU(G, P) =
|G ∩ P|
|G ∪ P| (3)

Boundary IoU(G, P) =
|(Gd ∩ G) ∩ (Pd ∩ P)|
|(Gd ∩ G) ∪ (Pd ∩ P)| (4)

where G and P denote ground truth and prediction of the mask image. Gd denotes pixels
within the distance of d from the boundary of ground truth mask. Similarly, Pd denotes
pixels within the distance of d from the boundary of the prediction mask.

The performance metrics used to measure the effect of classification are area under
ROC curve (AUC), average precision (AP) and accuracy. To be specific, AUC represents the
area between receiver operating characteristic curve (ROC) and the horizontal axis. AUC
can intuitively evaluate the quality of the classifier, and the larger the value is, the better
the model is. Average precision (AP) is the area between the precision–recall curve (PR)
and the horizontal axis. As a recognized metrics, AP has the advantage of measuring the
effectiveness of a model on highly unbalanced datasets. In addition, the mean average
precision (mAP) in this paper represents the mean value of AP of each test set.

4.4. Experiment Results
4.4.1. Experiment Results of Defect Segmentation

Firstly, the defect segmentation results are introduced. Figures 10–12 respectively
demonstrate some typical defect segmentation results of KolektorSDD, KolektorSDD2,
and DAGM.

Figures 10–12 intuitively demonstrate that the segmentation network of the model
can perform defect segmentation well under the condition of different defect types, shapes
and sizes. The model is able to not only accurately segment defects, but also predict the
shapes of the defects that are basically the same as labels.

In order to further analyze the segmentation results, we sort out all predicted output
images of defect segmentation, and find corresponding ground truth images. According to
the calculation of mask IoU and boundary IoU, all defect segmentation images are tested,
and the results are demonstrated in Table 1.

According to Table 1, the mask mIoU of KolektorSDD reaches 88.49% and boundary
mIoU 73.99%. The mask mIoU of KolektorSDD2 reaches 86.13% and boundary mIoU
reaches 70.98%. The mask mIoU of DAGM reaches 89.10% and boundary mIoU reaches
82.55%. On the whole, PSIC-Net achieves a good segmentation effect in various datasets,
especially in DAGM. This is because DAGM is a weakly-labeled dataset, all defects are
artificially generated ellipse defects, PSIC-Net is quite effective for this simple defect
segmentation. The mask IoU of KolektorSDD and KolektorSDD2 reduces slightly compared
to that of DAGM. The reason is that KolektorSDD and KolektorSDD2 come from real
industry, so the defects are much more complex. So the difficulty of segmentation is, thus,
upgraded. Moreover, the boundary IoU decreases more. The reason is that the boundary
of defects in real industry are usually uneven. When segmenting this dataset, PSIC-Net
needs to process more complex edge pixel segmentation, resulting in the decrease in
boundary IoU.
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Figure 10. Examples of KolektorSDD defect segmentation results.
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Figure 11. Examples of KolektorSDD2 defect segmentation results.
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Figure 12. Examples of DAGM defect segmentation results.

Table 1. Defect segmentation results of PSIC-Net.

Datasets Mask mIoU (%) Max Mask IoU (%) Min Mask IoU (%) Boundary mIoU (%) Max Boundary IoU (%) Min Boundary IoU (%)

KolektorSDD 88.49 89.25 86.88 73.99 80.63 69.46
KolektorSDD2 86.13 87.79 83.05 70.98 73.99 65.98

DAGM 89.10 89.93 87.01 82.55 88.21 77.56
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In order to further verify the segmentation effect of PSIC-Net, we compare the seg-
mentation effect of several great defect segmentation methods with that of PSIC-Net, as
shown in Table 2.

Table 2. Comparison of segmentation effects of various methods and PSIC-Net.

Methods Datasets Mask mIoU (%) Boundary mIoU (%)

FCN[42] DAGM 73.86 -
DeepLab[47] DAGM 74.61 -

[27] DAGM 84.50 -
[48] DAGM 73.56 -
[31] DAGM 74.78 -

[18,36]
KolektorSDD 76.21 -
KolektorSDD2 71.69 -

DAGM 79.46 -

[17]
KolektorSDD 87.77 71.23
KolektorSDD2 84.20 63.59

DAGM 87.79 77.13

PSIC-Net(ours)
KolektorSDD 88.49 73.99
KolektorSDD2 86.13 70.98

DAGM 89.10 82.55

It can be seen from the data in Table 2 that both mask IoU and boundary IoU are ahead
of other methods, especially in the performance of DAGM, which exceeds 15.54% at most.
Compared with [17], which has relatively good segmentation results, PSIC-Net also has a
small advantage. This proves that PSIC-Net is effective in defect segmentation.

4.4.2. Experiment Results of Defect Image Classification

Table 3 shows the results of PSIC-Net in defect image classification.

Table 3. The results of PSIC-Net in defect image classification.

Datasets AUC (%) mAP (%) Accuracy (%)

KolektorSDD 98.05 96.43 98.53
KolektorSDD2 96.34 93.27 97.50

DAGM 100 100 100

As can be seen from Table 3, PSIC-Net performs well in classification, especially in
the DAGM, where the classification accuracy can reach 100%. The mAP of KolektorSDD2
can also reach 93.27%. The overall classification accuracy is positively correlated with the
complexity of the dataset. After analyzing the misclassified false positive (FP) images, we
find that most FP are caused by missing labels in the ground truth of the dataset. As shown
in Figure 13, KolektorSDD only considers significant scratches when labeling defects, but
tiny defects may be omitted. In KolektorSDD2, there are also some cases, where small
color difference patches and small scratches are not labeled, as shown in Figure 14. In fact,
the appearance of these FP images also shows the strong segmentation and classification
ability of PSIC-Net. The false negative (FN) images in KolektorSDD2 are misjudged since
the defects are too obscure, as shown in Figure 15. It is worth mentioning that PSIC-Net
actually assigns a small probability to the defects of the segmentation images in Figure 15,
but the classification network finally determines it as being defect-free. The tradeoffs here
are worth studying in the future.
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Figure 13. Examples of FP in KolektorSDD.

Figure 14. Examples of FP in KolektorSDD2.

Figure 15. Examples of FN in KolektorSDD2.

To further verify the performance of PSIC-Net, we compare it with several defect
classification methods, as shown in Table 4.
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Table 4. Comparison of classification effects of various methods and PSIC-Net.

Methods Datasets AUC (%) mAP (%) Accuracy (%)

[49] DAGM - - 99.90
[50] DAGM 99.60 - 99.40
[19] DAGM - - 99.20
[51] DAGM 99.00 - 99.80
[23] DAGM - - 99.40
[52] DAGM - - 99.80
[53] DAGM - - 99.90
[54] KolektorSDD - 98.80 -
[55] KolektorSDD - 100 -

[36] KolektorSDD - 97.36 98.12
DAGM - 100 100

[18]
KolektorSDD - 97.36 98.12

KolektorSDD2 - 95.40 -
DAGM - 100 100

[17]
KolektorSDD 88.49 89.24 87.41

KolektorSDD2 83.86 68.65 86.67
DAGM 100 100 100

PSIC-Net(ours)
KolektorSDD 98.05 96.43 98.53

KolektorSDD2 96.34 93.27 97.50
DAGM 100 100 100

As can be seen from the data in Table 4, the classification performance of PSIC-Net on
each dataset is good. In DAGM, the three performance metrics have reached 100%, which
is consistent with the studies of [17,18,36]. In KolektorSDD and KolektorSDD2, the metrics
of PSIC-Net decreased slightly. As mentioned earlier, the false classification basically
comes from the missing labeling of defects. The designs presented in studies [17,18,36]
were reproduced, and the data about them in Table 4 are the real measured data. In
KolektorSDD, the AUC and accuracy are the highest in PSIC-Net. The mAP of the study [55]
is the highest, reaching 100%. However, due to the missing labeling in KolektorSDD, we
have reason to suspect that the study [55] does not use the missing labeling data. As we
are unable to reproduce this paper, we have reservations about the result of it for the time
being. Compared with other methods, PSIC-Net still has certain advantages. Similarly, in
KolektorSDD2, the mAP of PSIC-Net is almost consistent with that of the study [18].

4.4.3. Time Cost of Training and Inference

Firstly, the clock synchronization function is used to synchronize the clock of software
and hardware. Then, we set the timing starting point before the input and the timing
ending point after the output of both the training and inference. Finally, the time cost can
be calculated by the timing ending point minus the timing starting point. Four 1080Ti
GPUs are executed in parallel to lift the speed.

The average training time of the segmentation network with the training set of Kolek-
torSDD is 68 min; the average training time of the classification network is 23 min; and the
average inference time of a single image is 1.03 s (a total of 264 images are used in each
training, and the size of a single image is about 1408 × 512 pixels). The average training
time of the segmentation network with KolektorSDD2 is 27 min; the average training time
of the classification network is 20 min; and the average inference time of a single image
is 0.7 s (a total of 334 images are used in each training, and the size of a single image is
about 640 × 230 pixels). The average training time of segmentation network with DAGM
is 31 minutes; the average training time of classification network is 24 min; and the average
reasoning time of single image is 0.95 s (a total of 575 images are used in each training, and
the size of a single image is about 512 × 512 pixels).
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In the actual industry, the defect detection time of a product is about 1–2 s. It can be
seen that the inference time of PSIC-Net has reached the detection time required by the
actual industry, and can complete the online detection task.

5. Discussion

Extensive experiments have proved that PSIC-Net has a significant result on the
classification and segmentation of surface defects. Through the design of the network, the
selection of the training mode and the improvement of the loss function, the PSIC-Net can
acquire features from a small number of sample data, and can classify and segment the
defect quickly and accurately. At the academic level, PSIC-Net has achieved state-of-the-art
classification and segmentation. In the intelligent manufacturing scenario, PSIC-Net can
also provide some practical ideas for defect detection.

Generally, in actual industrial production, it is only necessary to know whether the
product is defective. However, people need to segment defects when they study the
causes of defects or specific defect features. The two networks address different problems.
Because the three sub networks are relatively independent, the segmentation network
and classification network have the ability to operate independently. The reasons why we
propose the classification network are as follows. Firstly, whether training or inference, the
speed of the classification network is much faster than that of the segmentation network.
This is because the defect segmentation is, essentially, to classify each pixel, which will
take a long time to classify the pixels of the whole image. We can disable the output of
segmentation network when some tasks that require faster detection speed are accepted.
Secondly, only from the accuracy of classification, the effect of the classification network is
much better than that of the segmentation network. The segmentation network classifies
each pixel, which will lose many defective spatial and overall features, resulting in the
decline of the classification accuracy. However, the classification network is continuously
refined from the overall features of the image, which can better extract the features of defects
and improve the accuracy. This is why most of the existing defect detection applications
use defect classification rather than defect segmentation, which contains more information.

PSIC-Net still has some topics that need to be improved and studied in depth:

1. The network is sensitive to data, and the results may fluctuate slightly even if the
data remain unchanged. Making the network more stable during training is needed.

2. The guidance of the segmentation network results to the classification network needs
to be improved. In the experiment, it is found that a small number of defect data
successfully segmented by the segmentation network are not successfully classified by
the classification network. Strengthening the synergy of the two networks to improve
the accuracy of the classification network also needs to be further explored.

6. Conclusions

This paper proposes a novel surface defect classification and segmentation network:
pixel-wise segmentation and image-wise classification network, which consists of a three-
stage architecture of feature extraction network, invers convolution network and classifica-
tion network. This network can classify the surface defect images and segment the defects
at the pixel level, and obtain the two outputs simultaneously. The advantage of PSIC-
Net is that it can acquire key features from a small number of defective training samples.
Moreover, by improving the loss function, this network can solve the problem of the poor
training effect caused by the imbalance of positive and negative samples. By training the
segmentation network and classification network step by step, high segmentation accuracy
and classification accuracy can be obtained simultaneously. The validation and comparison
experiments were carried out on three public datasets, and the experimental results of both
classification and segmentation are satisfactory.
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Abbreviations
The following abbreviations are used in this manuscript:

PSIC-Net Pixel-wise Segmentation and Image-wise Classification Network
LBP Local Binary Patterns
CASAE Cascaded Autoencoder
CNN Convolutional Neural Network
FCN Fully Convolutional Networks
BN Batch Normalization
ReLU Rectified Linear Unit
IoU Intersection over Union
mIoU mean Intersection over Union
AP Average Precision
mAP mean Average Precision
ROC Receiver Operating Characteristic Curve
AUC Area Under ROC Curve
Nomenclature Full Name Brief Introduction
BN Batch Normalization Data standardization
ReLU Rectified Linear Unit Activation function
IoU Intersection over Union Measure the accuracy of segmentation
mIoU mean Intersection over

Union
Measure the accuracy of segmentation

AP Average Precision Measure the accuracy of classification
mAP Mean Average Precision Measure the accuracy of classification
ROC Receiver Operating Charac-

teristic Curve
Measure the accuracy of 2-class classification

AUC Area Under ROC Curve Measure the ability to distinguish +/− examples
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