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Abstract: This study focuses on the features of transport (locomotion) systems of mobile mini-robots
(MMR), i.e., small unmanned ground vehicles of a portable type measuring several tens of centimeters
and weighing no more than 15 kg. A distinctive feature of the considered MMR is the possibility of
its both structural reconfiguration (i.e., the ability to function in two options—tracked and wheeled)
and geometric reconfiguration in the tracked option (i.e., chassis geometry variation). Thus, the
transport system of such a mobile robot is divided into two components: a locomotion subsystem
and a chassis geometry variation subsystem. The article examines the factors that are necessary
for the correct mathematical description of such a small-sized and relatively high-speed transport
system. A method for constructing a computer model of the transport system as an electromechanical
device only is proposed. Such a computer model of the MMR transport system is developed for
two types of chassis configurations: tracked and wheeled. The experimental studies performed and
the comparison of the experimental and simulated data obtained showed their close convergence,
within 5 to 7%. Thus, it is shown that the revealed features of the MMR transport systems along
with the proposed method for their computer model development considering these features make it
possible to increase the accuracy and adequacy of the MMR motion simulation in comparison with
previously known approaches used in the computation of larger vehicles. The results obtained make
it possible to consider the proposed computer model of the transport system as an electromechanical
component of the complete model of a mobile robot.

Keywords: mobile robot; mobile mini-robot; transport system; locomotion system; reconfiguration;
chassis; computer model

1. Introduction

The field of application of mobile robotics is very wide, e.g., industry and agriculture,
scientific research, service, entertainment, military tasks, security, and emergency response.
Mobile robots are designed to deliver technological equipment to the working area in order
to perform functional tasks at a distance from the human, whose presence in the working
area is undesirable or impossible. Thus, a mobile robot is a robot, which along with a
control system, comprises two executive subsystems [1,2]:

• Functional subsystem (i.e., manipulators, technological equipment, and tools);
• Transport subsystem (i.e., a subsystem that is necessary for transportation of the

functional subsystem and of other cargo during robot locomotion in conditions of
uncertainties in the external environment).

The miniaturization of all components of robotic systems has led to the emergence
of a new class of mobile robots—compact and lightweight mobile mini-robots (MMR).
MMRs are small-sized rapid response robotic vehicles that can be quickly transported
and deployed by one person (i.e., an operator). Compact size and low weight allow this
type of mobile robot to be classified as portable robotic systems, which fundamentally

Machines 2021, 9, 8. https://doi.org/10.3390/machines9010008 https://www.mdpi.com/journal/machines

https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-7050-5608
https://doi.org/10.3390/machines9010008
https://doi.org/10.3390/machines9010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/machines9010008
https://www.mdpi.com/journal/machines
https://www.mdpi.com/2075-1702/9/1/8?type=check_update&version=3


Machines 2021, 9, 8 2 of 35

distinguishes them from larger mobile robots [3]. Some examples of the MMRs are shown
in Figure 1.
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MMRs are used in the field of security and military operations when solving the
following tasks:

• Situational awareness (i.e., reconnaissance of the operational situation in hard-to-reach
and/or dangerous places, e.g., inside premises, shelters, basements, caves, under
vehicles, in vehicles interiors, etc.);

• Audio and video surveillance;
• Security and inspection of premises and restricted areas;
• Premises mapping;
• Examination and search for dangerous objects;
• Light cargo transportation (delivery).

MMRs are intended for use mainly in the urban environment (indoors and outdoors)
providing round-the-clock and all-weather operation.

The main design challenge for these miniature robots is to ensure their locomotion
in a nondeterministic environment in an urbanized area [4,5], which is characterized by
obstacles that are comparable or exceed the robot’s own dimensions [6]. A key feature of
MMRs is their low weight, which in most known designs ranges from 7 or 8 to 15 kg [3].
The distinctive advantages of MMR are also their low visibility and relatively high mobility.
Typical travel speeds for MMRs are up to 2 or 3 m/s (7 to 11 km/h) with typical dimensions
of the robot not more than 0.5 to 0.8 m (in length), and usual mover sizes (e.g., wheel
diameter) not more than 0.10 to 0.15 m. If we compare these characteristics with larger
robots with ordinary sizes of their movers of about 0.5 m, then this would correspond to
their speeds of up to 15 m/s (more than 50 km/h) or speeds of up to 100 km/h for robots
comparable in size to an average car.

The study of the theory and practice of designing wheeled and tracked vehicles, as
well as mobile robots, shows that existing methods and approaches cannot be formally
transferred to MMR small-sized transport systems [7], which have some features that
distinguish them from larger machines (e.g., larger mobile robots, tracked and wheeled
tractors, etc.). These features include:

• Small size of all components of drives and chassis, which leads to differences in the
nature of interaction with the supporting surface;

• Functioning in an environment with macro obstacles (i.e., obstacles comparable to or
larger than the robot itself);

• Need for more accurate accounting of internal losses in all components of a miniature
transport system, which begin to play a significant role in relation to useful forces,
especially taking into account relatively high speeds.

In the design practice of automotive and tractor vehicles, when carrying out traction
prediction studies and choosing powertrain components, a widely used approach is to
take into account internal losses in the transmission (gears, gearbox, final gear) in the form
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of constant efficiency [8–13]. Of course, the works on the design of electric vehicles and
hybrid electric vehicles are much closer to the subject of this article. However, the same
situation is observed in such works too [14–19].

This approach, in the general case, is justified for automotive and tractor vehicles,
where the problem of accurately estimating internal losses in powertrain components is
not so crucial during the design process. At the same time, this is not acceptable for the
problem of modeling miniature transport systems of MMRs, where internal resistances
may be comparable with useful forces in some load modes.

Consideration of the internal resistance in the tracks also plays a significant role
in the design of tracked vehicles. Quite often, to simplify design calculations of the
efficiency of tracks, they are also taken as constant values [13,20]. This is largely due to
the lack of experimental data and the great complexity of analytical accounting for all
components of the mechanical losses of a specific design of the tracked mover unit. In
some studies [10,12], methods of experimental determination of the efficiency of tracks are
given. In [10–12], empirical dependencies obtained on some specific transport vehicles
are also given. However, these and similar dependencies are difficult to apply in practice,
and even more, they are of little use for small-sized transport systems of mobile robots
considered in this article.

The coefficients of rolling resistance and adhesion, which are given in the literature on
common wheeled and tracked vehicles [9–11,21], are also inapplicable for MMRs.

Most of the research on small-sized mobile robots (e.g., [22–29]) is focused on the
problem of a robot following a path and do not touch on the issues of modeling the
robots’ drivetrains, determining the mechanical loads on their components and energy con-
sumption, and assessing the computational accuracy of these items. Other studies [30–32]
present and describe certain designs of the small-sized off-road mobile robots, simulate
obstacles negotiation, but without considering analysis of drivetrain loads.

In this situation, following directly the recommendations and approaches that can
be found in the literature on the theory of automotive and tractor vehicles, as well as on
mobile robots of various types, when transferred to the field of development and modeling
of miniature transport systems of MMRs can lead to great errors and incorrect results.
This fact, which was confirmed during preliminary experimental tests, determined the
relevance of this study.

This work is aimed at developing a methodology for a computer model composition
of the MMR transport system based on identifying the particularities (factors) of the
mathematical description of small-sized transport systems that are critical in terms of
the calculated results. The article proposes a sequence for the development of a reliable
computer model that allows for obtaining accurate simulation data. The resulting model
is verified by experimental research. In conclusion, a comparative analysis of the model
based on the proposed methodology is carried out with models built without taking into
account the factors listed in the article, i.e., based on “traditional” approaches that follow
from the analysis of the literature on the design of large transport vehicles and mobile
robots. An evaluation of the convergences of the experimental data and the simulated data
obtained using the proposed model and the simplified models showed that the proposed
approaches to the computer models development can increase the accuracy of simulations
(as a difference in the calculated errors) by 10 to 25% at maximum loading modes, and up
to 30 to 70% at low and medium loading modes.

The main contribution of this article is to increase the efficiency of design work on the
development of highly mobile small-sized ground robots, due to increasing the accuracy of
dynamic calculations of their locomotion subsystems when following the proposed method-
ology. The results of the study can be useful for building computer models of small-sized
mobile robots to study their operating modes, both at the stage of robot development and at
the stage of assessing the characteristics and critical operating modes of an existing robot.

This article is based on and significantly expands and supplements a conference
paper [33]. Note that the methodology for the design of the MMR transport system
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development and its structural composition is beyond the scope of this article. Therefore,
the article provides only a brief description of the considered design “as is”. Also, note
that the proposed methodology is used to build a complete computer model of the MMR
transport system, including a subsystem for chassis geometric variation. This model allows
for simulating both MMR locomotion on a flat non-deformable surface and overcoming
obstacles (e.g., a single step, a stair). However, this article only considers the study of
locomotion on a flat solid surface.

2. Fundamentals
2.1. Definition of the Term “Transport System”

The item of research of this article is the transport system of the MMR as an elec-
tromechanical device only. Therefore, the robot control system has been excluded from the
concept of the term “transport system” in order to simplify its analysis. In this case, the
control actions during the analysis are transmitted directly to the executive motors.

The term “transport system” in this study is understood as a set of elements directly
involved in the process of sequential conversion of the energy of the on-board power source
into mechanical energy of motion [34]. This energy transformation consists of three stages:
distribution, conversion, and consumption.

A distributor is a set of devices that provide separation of the energy stream. Con-
verters (actuators of the transport system) are divided into converters of electrical energy
(i.e., executive motors) and converters of mechanical energy (i.e., mechanical transmission
components). The undercarriage (running gear) acts as a consumer, which is considered
in interaction with the support surface and thus forms the system known as the “terrain-
vehicle system” [35]. The undercarriage is designed to ensure the movement of the mobile
robot, to support its body, to reduce shocks, and to dampen vibrations. Thus, in the general
case, the undercarriage comprises movers and a suspension system.

This approach to the definition of the research item allows us to consider the proposed
computer model of the transport system as a component of the full model of a mobile robot,
focusing on the development of the reliable model of this electromechanical component.

2.2. Description of the MMR Transport System

The transport system design decisions greatly affect both the final entire robot ap-
pearance and its functionality (including adaptability to locomotion conditions, energy
consumption, etc.). The validity of these decisions plays a key role in the design of a
mobile robot. This is especially crucial for robots of mini- and micro-sizes since their
transport systems are subject to increased requirements for passability due to their small
dimensions [3,36]. As mentioned above, these MMRs must be able to navigate the terrain
with obstacles comparable to or larger than the robot itself.

In this study, the task was to develop a transport system for MMR with a length of no
more than 400 mm and a height of no more than 100 mm, which would nevertheless allow
the MMR to:

• Have a mass of no more than 15 kg;
• Move along stairs inside buildings;
• Overcome single obstacles in the form of steps of 300 mm high;
• Move at a speed of at least 1 m/s;
• Have a battery life of at least 3 to 4 h.

The result of the proposed solution for the MMR chassis in the form of a kinematic
layout is shown in Figure 2. This design layout was obtained in accordance with the
methodology of [37] and represents chassis in two configuration options: tracked (indicated
in the figure with formula 6T2A) and wheeled (indicated as 4W2T). Hereinafter, the
designations of the chassis formulas are given in accordance with [38].
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Figure 2. Kinematic layout of the MMR chassis.

The tracked configuration 6T2A is a six-track chassis (6T) with two tractive drives
and two active (2A) degrees of freedom (DoF) of the chassis geometry variation (CGV)
mechanisms with drives for tilting of the front and rear pairs of the levers (also known as
flippers) with additional tracks. The following designations are shown in Figure 2: Pt1 and
Pt2 are the traction forces on the left and right tracks, Mp1 and Mp2 are the torques on the
front and rear CGV drives.

Thus, we can say that the transport system of the MMR under consideration comprises
two subsystems: the locomotion subsystem (which this article is mainly devoted to) and
the chassis geometric reconfiguration subsystem (i.e., CGV).

The wheeled configuration 4W2T is obtained by detaching the flippers from the basic
6T2A chassis and replacing them with wheels. This results in an all-wheel-drive (4W)
chassis with front wheel drives, in which torque is transmitted to the rear wheels by means
of two main tracks (2T).

As Figure 3 shows, the MMR transport system structure is a sequential chain of links
“power source–motors–gearboxes–undercarriage (chassis) in interaction with the support-
ing surface”. A specialty of this structure diagram is that its electromechanical system
branches through a power distribution device (PDD) into two relatively independent drive
subsystems: a subsystem of i-tractive drives and a subsystem of j-drives of CGV.
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As can be seen from Figure 3, the subsystem for controlling the executive drives of
the transport system is conditionally separated from it, since the transport system, as
mentioned earlier, is considered only as an electromechanical component of the MMR.
Thus, the control actions on the transport system drives (the levels of supply voltages on
the motors) are considered as known and are taken into account as the initial analysis
data [34]. In this case, the drive motors are considered to be connected directly to the
power source PS through the simplest switching device (PDD in Figure 3) that connects the
necessary motor to the power source PS at the right time.

2.3. Structural Composition of the MMR Transport System

Each of the i-drives and j-drives from the drive subsystem (I) in Figure 3 is represented
by an electric motor and a set of mechanical transmission devices, the composition of which
is determined, among other things, from the design and layout solutions of the entire MMR.
It is important to note that, considering the small size of the mini-robot, the layout of
all its parts as a whole can significantly affect the composition of the transport system
components and should be carried out initially at the first stages of its design development
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in order to check the principal feasibility of the scheme solutions developed in Section 2.2,
taking into account previously defined geometric parameters [37].

Figure A1 of Appendix A shows one of the possible variants of the structural–
kinematic scheme of the transport system, and Figure A2 of Appendix A shows the layout
diagram of the MMR corresponding to this design variant.

3. Materials and Methods

This section is structured as follows: (1) A dynamic analysis scheme is presented
and a brief mathematical description of the components of the MMR transport system is
given, indicating the identified features that are essential for small-sized electromechanical
components of transport systems for these mobile robots. (2) The methods and results of
experimental identification of the parameters of the MMR transport system components
are described. (3) The proposed method for constructing a complete computer model of
the MMR transport system is described and a brief description of its characteristics given.
(4) A description of the methods for conducting simulation and experimental studies of the
MMR transport system moving on an inclined surface is given.

3.1. Dynamic Analysis Scheme of the MMR Transport System

Figure 4 shows the dynamic analysis diagram of the transport system during the
MMR rectilinear motion along a surface with a slope angle α. Only the drive branch of the
left side is shown for simplicity.
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Since this article describes the locomotion subsystem (i.e., the subsystem of tractive
drives), only that aspect is discussed in more detail below.

Figure 4 illustrates the process of sequential conversion of energy in the MMR trans-
port system from the block designated as “Power supply” to the block “Chassis” in inter-
action with the “Surface”. The following designations are adopted here: Pe is the power
delivered by the power source; Nd is the motor output mechanical power; Nr is the gear
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output power; Nt is the power transmitted from the movers (i.e., tracks, wheels) to the
surface; ηd is the motor efficiency; ηr is the gear efficiency; and ηch is the chassis efficiency.

Figure 4 also gives an idea of the design implementation of the MMR chassis. In
the version presented, the design of the running gear is simplified as much as possible to
reduce weight. The MMR track mover is a toothed belt transmission based on polyurethane
reinforced belts with grousers welded on the outer surface. There are two toothed pulleys,
along the edges of the track contour, which play the role of support rollers of the chassis,
one of which (front) is a drive. Rigid supporting and guiding elements are used that are
indicated in Figure 4 as follows: 1—lower supporting guide of the main track; 2—upper
guide of the main track (damper–tensioner); and 3—supporting guides of additional tracks
on the flippers.

The interaction of the movers with the surface is characterized by the relation of
traction forces Pt, cohesive forces Fϕ, motion resistance forces Ff , as well as gravity G, and
normal reactions Rz acting from the supporting surface.

The differential equation of steady-state motion of the robot in the direction of the
x-axis, taking into account the assumption that the loads acting on each side are identical,
has the form [34]:

..
xmiδi = Pti − Ff i −mig sin α, (1)

where x is the coordinate of the center of mass of the robot along the axis of motion; mi is
the conventional part of the MMR mass interacting with the i-th tractive drive; δi is the
mass factor (i.e., the coefficient of rotating masses); Pti is the traction force developed by
the movers of the i-th tractive drive; Ff i is the motion resistance force of i-th mass; g is
gravitational acceleration; α is surface slope angle (x-axis coincides with the direction of
the largest elevation angle). Ii in Figure 4 is the inertial force acting on the i-th mass.

The mass factor δi in the absence of longitudinal sliding of the movers is found as [39]:

δi =
J′eq i

mir2
k

, (2)

where J′eq i is the equivalent moment of inertia, defined as:

J′eq i = mir2
k + Jdi · i2riηri + Jki (3)

where rk is the radius of the wheels (pulleys); Jdi is the rotor inertia of the motor; iri is the
total gear ratio; ηri is the total gear efficiency; Jki is the inertia of the drive wheels (pulleys)
and their associated rotating parts.

Traction force is:
Pti =

Mdi · iriηri
rk

− Fti, (4)

where Mdi is the motor torque and Fti is the total internal resistance force in the tracks of
the i-th side.

Motion resistance force is
Ff i = f mig cos α, (5)

where f is the rolling resistance coefficient.
The possibility of the propulsion force realization is determined by the adhesion

condition [10–12,40], compiled for the machine as a whole in the form:

∑ Pti ≤ ϕMg cos α, (6)

or individually for each board:
Pti ≤ ϕRzi, (7)

where ϕ is the coefficient of the mover to the surface adhesion; M is the robot total mass;
Rzi is the normal force on the i-th track (wheel).
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3.2. Features of the Mathematical Description of the MMR Transport System

A series of preliminary experimental tests of the components of the MMR transport
system showed that for these MMRs it is necessary to take into account, in addition to
the force-loading mode, also the speed-loading mode. It was established that the internal
resistance in all mechanical components of the transport system significantly depends on
speed. Ignoring this leads to significant computation errors that are unacceptable from a
practical point of view, which is explained and confirmed in Section 5 of this article.

A brief mathematical description of the components comprising the MMR transport
system according to Figure 4 is introduced below. Experimental identification of the
parameters included in the characteristics presented below was also carried out in this part
of the study (see Section 3.3).

3.2.1. Power Source

Considered in the first place, the “Power source” block (PSB) is designed to simulate
the operating mode of the on-board power supply. The output signal of this block is the
on-board supply voltage Ue, which is then supplied to the drives of the transport system
through the “Power Distribution” unit (not shown in Figure 4).

Depending on the selected mode, the output branch of the “Power source” block
is connected either to the on-board battery with a voltage of Ub (Source Mode 1) or to
an external power supply with a fixed voltage US (Source Mode 2). The second mode is
necessary for the study of various speed-loading modes of the transport system obtained
by variation the supply voltage Ue.

Thus, the setting of the operating modes of the PSB is described as follows:

Ue =

{
Ub, i f Source Mode = 1
US, i f Source Mode = 2.

(8)

The “Battery” block simulates an on-board MMR battery, consisting of eight Li–Po
accumulator elements (i.e., battery cells) connected in series and named as “Akkum_1”...
“Akkum_8” so that the output voltage of the entire battery is:

Ub = ∑ Ubi (9)

where Ub is the battery cell voltage and i = 1...8 is the battery cell number.
The values of the battery total load current Ib and the accumulated degree of discharge

of the battery Cb are determined as follows:

Ib = Is + Ip, (10)

Cb =
∫

Ib dt, (11)

where Is is the total current of all the motors (i.e., the sum of the motor currents Id) of the
transport system and Ip is the total current of all other MMR consumers not related to the
transport system.

The calculation of the output voltage Ubi on the battery cells is accounted for by the
following expressions:

Ubi = Ub0 i − IbRbi, (12)

Ub0 i = A · C2
b + B · Cb + U′bo i, (13)

where Ub0 i is a battery cell no-load voltage; Rbi is the self-electric resistance of a battery
cell; A and B are experimental statistical coefficients (defined in Section 3.3.1); U′bo i is an
initial no-load battery cell voltage.

Therefore, when calculating the on-board battery voltage Ub, the voltage drop in the
battery is taken into account under the action of the total current load from all consumers
of the MMR and the accumulated discharge capacity.
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3.2.2. Motors

The “Motor” blocks are models of electric motors of the locomotion subsystem (i.e.,
the subsystem of tractive drives). Their construction is based on well-known mathematical
models that describe the dynamics of DC motors [41–43]. However, a distinctive feature of
the suggested model is the introduction of the torque of internal resistance forces of the
motor Md f in a form that includes a dependence on the rotational speed of the motor shaft
and has the form

Md f = Md f 0 · sign
( .

ϕd
)
+ K f d ·

.
ϕd, (14)

where Md f 0 is the motor dry friction torque (i.e., Coulomb friction); ϕd is the rotation angle
of the motor shaft; K f d is the coefficient of viscous friction.

The motor model, in addition to Equation (14), is represented as follows:

Ue = E + IdRrot + Ld
dId
dt

, (15)

E = CE
.
ϕd, (16)

Mde = Cm Id, (17)

Md = Mde −Md f , (18)

where E is the back-electromotive force; Id is the motor current; Rrot is the motor terminal
resistance; Ld is the motor terminal inductance; CE is the motor speed constant; Mde
is the motor electromagnetic torque; Cm is the motor torque constant; Md is the motor
mechanical torque.

The model presented does not take into account the inertia of rotating masses acceler-
ated by electric motors, because the equivalent moments of inertia are taken into account
in the model of the executive subsystem of the MMR transport system (Section 3.4.3).

3.2.3. Gears

The “Gear” blocks simulate the reduction gear units of the transport system.
A distinctive feature of the model presented is that it takes into account the variability

of the torque of internal losses and the gear efficiency, as well as the dependence of the
internal friction in the gearbox on speed.

When calculating and modeling large vehicles and mobile robots, losses in mechan-
ical transmissions are traditionally taken into account as constant values calculated for
certain nominal values of the external load [8–19,34,42,44]. This is permissible when con-
sidering operating modes of reduction gears at loads equal to or greater than nominal.
However, strictly speaking, when a mobile robot moves, the loads on the mechanical gears
change within a much wider range, which requires a more accurate consideration of the
characteristics of mechanical losses in reduction gears under partial load conditions.

It is known that the internal losses of the gearbox are composed of no-load losses and
losses proportional to the external load, and can be described as [20,45]:

ηr =

(
1−

Mr f _idle

Md

)
ηrm =

Mr

Md ir
, (19)

where ηr is the gearbox efficiency; Mr f _idle is idle loss torque of the gearbox reduced to the
input shaft; Md is the torque on the input shaft of the gearbox (output shaft of the motor);
ηrm is the efficiency taking into account losses proportional to an external load (maximum
value); Mr is the torque on the output shaft of the gearbox; ir is the gear ratio.

The efficiency characteristics of the gearboxes depending on the output torque Mr,
constructed according to (19), have the form shown in Figure 5. The shape form of these
dependencies is widely known from the theory of machine parts design [34], and their
quantitative description is in good agreement with the results of experimental studies on
gears used in the transport system under consideration.
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Experimental studies of the elements of small-sized MMR transport systems have
shown that the torque of the gear idle loss Mr f _idle has a significant effect on the total value
of internal losses and is described by the dependence

Mr f _idle = Mr f 0 · sign
.
ϕd + K f r ·

.
ϕd, (20)

where Mr f 0 is the gear Coulomb friction torque measured on the gear’s input shaft; ϕd is
the rotation angle of the gear input shaft; K f r is the coefficient of viscous friction.

The total torque of internal resistance in the reduction gear expressed at the output
shaft is defined as

Mr f = Md ir(1− ηr) (21)

Then from (21), taking into account (19), we have:

Mr f = Mdir(1− ηrm) + Mr f _idle ir ηrm. (22)

Equation (22) represents losses in the gearbox as the sum of losses proportional to the
load torque (first term) and idle losses (second term).

The torque on the output of the gearbox unit is as follows:

Mr = Mdir −Mr f . (23)

3.2.4. Chassis

A significant part of the internal losses of the transport system occurs in the chassis
elements. The value and reasons for the occurrence of losses in the chassis unit are largely
determined by its constructive design, the diagram of which is shown in Figure 4.

In general, losses in the chassis of the MMR are associated with the following factors:

1. Coulomb friction of the tracks on the guiding elements of the body (or rolling friction
when using track rollers);

2. Impact interaction and friction of the engaged elements of the “track – drive wheel”
subsystem;

3. Resistance to track bending;
4. The impact interaction of the support elements of the track when they come into

contact with the surface.

It should be kept in mind that the dependences characterizing the factors noted are
periodic in nature, caused by both the periodic structure of the track itself and its oscillations.
Moreover, the dynamics of these oscillatory processes are associated with the speed of the
track. An increase in speed causes an increase in the frequency of vibrational disturbances,
which, according to the theory of oscillations of nonlinear mechanical systems [46], leads
to the appearance of the pseudo transformation of dry friction forces into viscous friction
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forces, i.e., the dependence of friction forces on speed. In this case, the generalized torque
of internal resistance forces in the track is represented as

Mt = Mt0 · sign
.
ϕk + K f t ·

.
ϕk, (24)

where Mt0 is the initial (static) torque of the internal friction forces of the track; ϕk is the
rotation angle of the drive wheel (pulley); K f t is the coefficient of pseudo viscous friction.

The diagram for constructing a design model for the interaction of a chassis track
with a solid non-deformable base and robot body elements, drawn in accordance with the
design of the tracked mover described in Section 3.1, is shown in Figure 6.
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To simulate a chassis track as a flexible body, it is represented in the form of a sequential
chain of typical links of three types: a rectangular support element 1, a working tooth 2
of a trapezoidal shape mounted on a support element of a track, and a grouser 3 of the
rectangular form, rigidly fixed to element 2 on the outside of the track. The working teeth
of the track (element 2) follow with a pitch St equal to 5 mm, the grousers follow with a
pitch Sg of 35 mm. Links 1 and 2 are connected by conventional joints with one DoF.

During its operation, the track is in contact with the following elements:

• Driving and driven pulleys through the engagement of the teeth 2 of the track with
the teeth of the pulleys (not shown in Figure 6);

• A support base (i.e., with a flat surface in the example of Figure 6) through the grousers 3;
• A supporting surface through elements 1, 2, and 3 when driving over obstacles on an

uneven surface (see point E in Figure 4);
• The MMR body (through the lower and upper guides, shown respectively under

position 4 in Figure 6 and position 2 in Figure 4).

Figure 6 shows a diagram of the forces acting on the support section of the track.
Indices designate: i is the serial number of the side of the chassis (i = 1 ... 2); j is the serial
number of the grouser (j = 1 ... 24 for the main track, and j = 1 ... 16 for additional tracks of
the flippers); k is the serial number of the working tooth of the track (k = 1 ... 168 for the
main track, and k = 1 ... 112 for additional tracks).

In accordance with the diagram presented, the following forces act on the track:

• Weight force Rgi (part of the robot’s weight acting on its i-th side through guide 4);
• Friction forces F′t ik of the k-th working tooth on the guide 4;
• Normal reactions of the supporting surface Rz ij;
• Adhesion forces Rϕ ij of j-th grousers with the surface.

The track itself, in addition to the forces indicated in Figure 6, is under the action of
the traction force Pti, the centrifugal force Pcti, and the pre-tensioning force of the track
P0i [47]. In addition, when the traction force Pti exceeds the total adhesion force Rϕ ij, the
track slips relative to the surface.
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In this case, the contact interaction of the main track with the surface is characterized
by the friction of the grousers against it with a total force

Ftgi =
p

∑
j=1

Ftgij = µg

p

∑
j=1

Rzij , p = 1 . . . 24, (25)

where µg is the grousers–surface friction coefficient and p is the number of grousers of
the track.

Similar to the last expression, the total friction force of the track on the body guides is

F′ti
=

s

∑
k=1

F′tik
= µt

s

∑
k=1

Rgik , s = 1 . . . 168, (26)

where µt is the track–body friction coefficient and s is the number of working teeth of
the track.

Equations (25) and (26) correspond to the description of the Coulomb friction model [25].
The current values of the friction coefficients µt and µg are determined by the instantaneous
mode of operation of the friction pair, which is calculated in accordance with the friction
model shown in Figure 7 [48,49].
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Figure 7. The friction model.

Under this model, the interaction of two rubbing bodies is determined by the relative
speed of motion V and is described by three modes:

1. Static friction, acting at speeds from zero to the maximum speed of the static friction
mode Vs, the friction coefficient increases from zero to the static friction coefficient µs;

2. Transitional mode between static and dynamic friction at the speed range from Vs to Vd
with a decrease of the friction coefficient from µs to µd;

3. Dynamic friction mode at speeds greater than Vd with a dynamic friction coefficient µd.

The description of contact interactions is carried out following the model shown in
Figure 8.
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3.3. Experimental Identification of the Models Parameters 

This section describes the results of experimental studies carried out to determine the 

parameters of the MMR transport system component models described in Section 3.2. 

Experimental identification of the parameters of the on-board battery, motors, gearboxes, 

and chassis was performed. 

Figure 8. The contact interaction model.
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Under this model, the contact force Fc is determined as a function of the value h of
mutual penetration of two bodies by the formula [48]:

Fc =

{
0, i f q ≥ q0,
che − bmax

.
q · step(q, q0, d), i f q < q0,

(27)

where c is the stiffness coefficient; e is an empirical coefficient; bmax is the damping factor; q
is the distance between bodies;

.
q is the body’s approach speed.

Wherein:
h = q0 − q, (28)

q0 = r1 + r2, (29)

where r1 and r2 are radius vectors to surfaces of bodies 1 and 2 along the line of their interaction.
The step function in Formula (27) is a step function of the form shown in Figure 9a.

It can be seen from the graph that the characteristic of this function is determined by the
values of the parameters q0 and d, where d is the depth of interpenetration of the two
bodies, at which the damping value changes from zero to the value bmax. The exponent e in
Formula (27) determines the nature of the change in Fc in the static (i.e., steady-state) mode
(at

.
q = 0), as illustrated in Figure 9b, setting either the case of “hard” interaction (e > 1) or

more “soft” interaction (e < 1).
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3.3. Experimental Identification of the Models Parameters

This section describes the results of experimental studies carried out to determine
the parameters of the MMR transport system component models described in Section 3.2.
Experimental identification of the parameters of the on-board battery, motors, gearboxes,
and chassis was performed.

3.3.1. On-Board Battery

When the battery is discharged, the current value of Ub0 is in the range between
some minimum and maximum values, which are determined based on the electrochem-
ical system, the number and connection diagram of the primary battery cells, and the
degree of battery discharge. Figure 10a shows the results of experiments to determine
the load capacity of a fully charged (Ub0 = 4.2 V) lithium–polymer (Li–Po) battery cell.
The character of the experimental dependence is in good agreement with the calculation
by Equation (12). Therefore, the battery cell self-electric resistance Rbi was determined as
0.049 Ohm. Figure 10b shows the results of an experimental study of the dependences of
the no-load voltage Ub0 of Li–Po battery cells on the degree of their discharge, characterized
by the value of the accumulated discharge capacity Cb. In Figure 10b, triangular markers
indicate the results obtained on XP2200SL battery cells used in MMR; round markers
indicate results for another battery cell model XP3700GT selected for comparison. As
can be seen, these dependencies for both models of batteries are similar in shape and are
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approximated by a polynomial curve of the form determined by the Equation (13). The
experimentally determined values of curve parameters and self-electric resistance of the
battery cell used in the on-board battery of the transport system are shown in Table 1.
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Table 1. Battery cell experimental parameters.

Parameter A B U’b0 Rbi

Units V/(mah)2 V/(mah) V Ohm
Value 7 × 10−8 −5 × 10−4 4.17 0.049

3.3.2. Motor and Gears

In order to determine the parameters of the characteristic of the torque of internal
resistance forces of the motor Md f (Equation (14)), a number of tests were undertaken to
measure the no–load currents Id f at different speeds of rotation of the motor shaft (i.e.,
the motor supply voltage). Figure 11 shows graphs of the friction torques Md f of several
samples of the Maxon RE30 №310007 motor of the MMR transport system, obtained by
recalculating the experimentally determined consumption currents Id f in accordance with
the expression

Md f = Cm Id f , (30)

where Cm is the motor torque constant.
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Similar tests were undertaken to identify the parameters of the characteristic of the
torque of gearbox internal losses Mr f _idle (Equation (20)). For this, a series of tests carried
out to study the no-load currents of the gear-motor assembly (Maxon RE30 motor + Maxon
GP32C gear). Taking into account the fact that Equation (20) uses the moments reduced
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to the gear’s input shaft (i.e., corresponding to the output shaft of the motor), a similar
method was applied for determining the torques through currents Id using Formula (30)
adjusted for the values of previously determined motor friction torques Md f .

To determine the characteristics of the gearbox efficiency, the gear–motor assembly
was tested on a dynamometer stand, which allows setting the values of the load moments
using a load motor. The measurement of the output torque of the geared motor was carried
out by a torque sensor. The results of experimental studies of the Maxon GP32C gearbox
were presented earlier in Figure 5a.

The values of the experimentally determined parameters of the motor and gearbox
models included in Equations (14), (20), and (22) are given in Table 2.

Table 2. Motor and gear experimental parameters.

Parameter Mdf0 Kfd Mrf0 Kfr ηrm

Units mNm mNm·s mNm mNm·s –
Value 2.7 5.5 × 10−4 0.3 1.4 × 10−3 0.74

3.3.3. Chassis

The purpose of the experimental studies of the chassis was to determine the parameters
of the characteristics of internal losses in the tracks (Equation (24)), and the parameters
involved in the description of the interaction of the tracks with the surface of the robot
locomotion and in the description of the interaction of the tracks with the elements of the
robot body.

The determination of the parameters of the characteristics of internal friction in the
components of the chassis was carried out by measuring the current consumption of the
motors at the idle speed of the chassis. The results of identifying the parameters of the
characteristics of the torques of internal losses in the tracked movers (Equation (24)) are
given in Table 3. The parameters related to one main track are designated as Mt01 and
K f t1. Parameters related to a total of three tracks on one chassis side are designated as
Mt03 and K f t3.

Table 3. Experimental parameters of the tracks.

Parameter Mt01 Kft1 Mt03 Kft3

Units mNm mNm·s mNm mNm·s
Value 70 3 350 16

The small size and design features of the MMR running gear do not allow using the
well-known values of the coefficients f and ϕ [9–11,21] from the theory of ground transport
vehicles for various typical road conditions. In this regard, it was required to conduct
separate experimental studies. For this, a very simplified mock-up of the MMR chassis was
used to exclude the influence on the measurements of internal friction in bearings, tracks,
etc. Fragments of such studies, following the methods from [12], are shown in Figure 12.

The values of the experimentally determined coefficients of rolling resistance, as
well as the coefficient of friction µt of the track along the guide of the robot body for the
friction-pair polyurethane track–aluminum guide are given in Table 4. The values of the
experimentally determined coefficients of longitudinal adhesion ϕx and coefficients of
lateral adhesion ϕy for various types of surfaces are given in Table 5.
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Figure 12. Fragments of experimental studies to determine the coefficients f and ϕ on the simplified
mock-up of the MMR running gear: (a) determination of the rolling resistance coefficient ft of the
tracked chassis; (b) determination of the rolling resistance coefficient fw of the wheeled chassis;
(c) determination of the lateral adhesion coefficient ϕy of the tracked chassis.

Table 4. Chassis experimental parameters.

Parameter ft fw µt

Value 0.06 0.03 0.20

Table 5. Experimental values of adhesion coefficients on various surface types.

№ Surface Type
Tracked Chassis Wheeled Chassis

ϕx ϕy ϕx ϕy

1 Linoleum 0.42 0.55 0.52 0.56
2 Smooth self-leveling concrete floor 0.45 0.55 0.60 0.62
3 Lacquered wood 0.32 0.38 0.38 0.43
4 Asphalt 0.68 0.70 0.60 0.62
5 Concrete 0.76 0.78 0.72 0.75

3.4. Computer Model Composition
3.4.1. Basic Conditions

To conduct virtual studies of the transport system at various force and speed-loading
modes, a computer (i.e., simulating) model of the transport system in both tracked and
wheeled configurations was developed in accordance with the diagrams in Figures 3 and 4.
A feature of the model created is its division into two parts interacting with each other,
schematically indicated in Figure 3 as the drive subsystem (I) and the executive subsystem (II).

The structure of the computer model taking into account this feature is shown in
Figure 13.
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The first of these parts take the form of “power source–motors–gearboxes” and is
characterized by a single DoF for each of the i-th or j-th drives. A model for this subsystem
was built in Simulink. The second part has the form of “chassis–surface” and, in terms of
the control theory, is a control object [42], characterized by a complex interaction with the
external environment (surface). This part of the model can be most conveniently built in
the software package for simulation of the dynamics of complex mechanical systems. MSC
ADAMS, Universal Mechanism, Euler, and Simcenter Motion are among these software
packages. The interaction between the two parts of the transport system model is carried
out through an external DLL. The external loading conditions (type and geometry of the
surface), as well as all the parameters of the model and the control actions, are set in this
model of the executive subsystem of the MMR transport system.

The advantages of the method presented for constructing a computer model include:

• Demonstrativeness of the results and visualization of the simulations;
• Ability to analyze any of the kinematic or dynamic characteristics of the model elements;
• Ability to simulate general cases of motion;
• Automatic accounting of the geometric configuration of the transport system that

changes during the movement and the corresponding inertial characteristics;
• Ability to quickly set the geometry of the supporting surface.

The following assumptions are established for model construction:

1. The parameters of drives of the same type within each electromechanical subsystem
have the same values;

2. Only solid non-deformable surfaces are considered for interaction with the trans-
port system;

3. The parameters and the characteristics describing the operation and interaction with
the supporting surface of both sides of the chassis are the same.

3.4.2. Drive Subsystem Model

Figure 14 shows the general block diagram of the drive part of the computer model of
the MMR transport system.

Since this article considers only the study of the rectilinear locomotion of the MMR
with a fixed chassis geometric configuration (i.e., CGV drives are not involved), Figure 14
shows only that part of the model that refers to tractive drives. The model of the drive part
of the CGV subsystem has a similar form to that of the tractive drives. Figure 14 shows
only the input actions to the CGV drives, designated as Ue3 and Ue4, as well as feedback
signals with the values of the motor currents of the front (Id3) and rear (Id4) CGV drives.

The Simulink block diagrams of the models that make up the complete diagram in
Figure 14 are shown in Figures A3–A7 of Appendix B. These diagrams were developed
following the mathematical description presented earlier in Section 3.2. The distinctive
features of these models discussed above are highlighted with dotted frames in the figures.
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3.4.3. Executive Subsystem Model

Figure 15 shows the appearance of the simulation computer model of the executive
part of the MMR transport system. The model includes the following components:
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• The body;
• Two toothed belt drives with grousers, simulating the main tracks of the MMR;
• Four levers (flippers);
• Four toothed belt drives with grousers, simulating additional MMR tracks on the

levers in the 6T2A tracked configuration;
• Four wheels simulating the supporting elements in the 4W2T wheeled configuration.

Geometric parameters and relationships between the components of the model corre-
spond to the parameters determined in [37] as a result of the parametric synthesis of the
chassis structural–kinematic scheme, based on optimization according to the criterion of
minimizing the chassis dimensions while maintaining the specified parameters of geomet-
ric traversability (while locomotion on an uneven surface). Figure 16 demonstrates the
geometric characteristics of the MMR transport system.
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Figure 16. Geometric diagram of the MMR transport system.

The main geometric parameters of the transport system model are shown in Table 6.

Table 6. Geometric parameters of the MMR transport system model (in mm).

Parameter Designation Value

Overall length in transport position LT 390
Overall height in transport position HT 87.4

Chassis width measured over the tracks BT 278
Wheel base Lb 300

Lever length lp 205
Maximum length of the chassis supporting surface Lb max 705

Nominal diameter along the middle line of the tracks:
main and additional pulleys D 87.4

guide rollers d 27

Wheel diameter Dw 100
Body height Hb 76
Body width Bb 208

Ground clearance in the configuration:
6T2A hgt 10.7
4W2T hgw 17

The mass–inertial parameters of the model components are set based on the results
of the design study in the CAD soft. Determination of the total moment of inertia of the
rotating masses Jd

S , reduced to the axis of the drive wheel (pulley), is made according to the
equation [39]

Jd
S = Jdi2r ηr + Jw, (31)

where Jd is the inertia of the parts rotating at the same speed as the motor shaft and Jw is
the inertia of the parts rotating at the same speed as the drive wheel (pulley).
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Table 7 shows the calculated values of the mass–inertial parameters of the model in the
form of masses m of individual components and inertias Jz relative to the axis of rotation
(the z-axis that is shown in Figure 15).

Table 7. Mass–inertial parameters of the model.

Parameter Quantity
m
[g]

Jz
[kg·mm2]

Applicability

6T2A 4W2T

Main track pulley 2 82 75 + +
Additional pulley 2 104 140 + +

Additional rotating parts related to
the driving wheel (pulley) 2 0 * 5760 + +

Wheel 4 86 152 – +
Lever 4 470 1470 + –

Main track 2 40 1.59 + +
Additional track 4 25 1.00 + –

Body 1 10.3 × 103 1.19 × 105 + +
Robot in the 6T2A configuration 1 13.1 × 103 2.51 × 105 + –
Robot in the 4W2T configuration 1 11.5 × 103 1.45 × 105 – +

* Component weights are taken into account in the body weight.

3.4.4. Model of the Chassis Tracked Mover

The essential and most complex part of the model is the model of the track as the
flexible body. The construction of the model of the track and the entire tracked mover,
following the provisions given in Section 3.2.4, is done in ADAMS. The appearance of the
simulation model of the MMR tracked mover is shown in Figure 17.
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where 𝐽𝑑 is the inertia of the parts rotating at the same speed as the motor shaft and 𝐽𝑤  is 

the inertia of the parts rotating at the same speed as the drive wheel (pulley). 

Table 7 shows the calculated values of the mass–inertial parameters of the model in 

the form of masses 𝑚 of individual components and inertias Jz relative to the axis of 

rotation (the z-axis that is shown in Figure 15). 

Table 7. Mass–inertial parameters of the model. 

Parameter Quantity 
m  

[g] 

Jz  

[kg·mm2] 

Applicability 

6T2A 4W2T 

Main track pulley 2 82 75 + + 

Additional pulley 2 104 140 + + 

Additional rotating parts related to the 

driving wheel (pulley) 
2 0 * 5760 + + 

Wheel 4 86 152 – + 

Lever 4 470 1470 + – 

Main track 2 40 1.59 + + 

Additional track 4 25 1.00 + – 

Body 1 10.3 × 103 1.19 × 105 + + 

Robot in the 6T2A configuration 1 13.1 × 103 2.51 × 105 + – 

Robot in the 4W2T configuration 1 11.5 × 103 1.45 × 105 – + 

* Component weights are taken into account in the body weight. 
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Figure 17. Tracked mover simulation model: 1—track; 2—drive pulley; 3—driven pulley; 4—
tensioner pulley; 5—track working tooth; 6—track grouser.

The chassis tracked mover unit is a belt drive with a toothed belt, driving and driven
pulleys, and a tensioner. The main track model in accordance with the diagram of Figure 6
comprises 168 teeth (track elements) and 24 grousers. The additional flippers track model
comprises 112 teeth and 16 grousers.

Figure 18 shows the results of comparing the simulated and experimental dependences
of the drive motor current in the belt drive on the speed of the drive pulley when rotating
at idle. The results of determining the values of the torque of internal resistance Mti
in the belt drive confirmed the presence of dependence on speed. This dependence, as
shown in Figure 18, is well approximated by a linear characteristic. The reliability of
the approximation obtained is characterized by the R2 factor equal to 0.995, calculated
according to Appendix C.

The high convergence of the results for calculations and experiments demonstrates
the adequacy of the belt drive (i.e., tracked mover) model developed, which is the basis for
the model of the MMR transport system.



Machines 2021, 9, 8 21 of 35

Machines 2021, 9, x FOR PEER REVIEW 21 of 36 
 

 

Figure 6 comprises 168 teeth (track elements) and 24 grousers. The additional flippers 

track model comprises 112 teeth and 16 grousers. 

Figure 18 shows the results of comparing the simulated and experimental 

dependences of the drive motor current in the belt drive on the speed of the drive pulley 

when rotating at idle. The results of determining the values of the torque of internal 

resistance 𝑀𝑡𝑖  in the belt drive confirmed the presence of dependence on speed. This 

dependence, as shown in Figure 18, is well approximated by a linear characteristic. The 

reliability of the approximation obtained is characterized by the R2 factor equal to 0.995, 

calculated according to Appendix C. 

 
Figure 18. Simulation and experimental results comparison of the drive motor current on pulley 

speed dependence in chassis tracked mover on idle. 

The high convergence of the results for calculations and experiments demonstrates 

the adequacy of the belt drive (i.e., tracked mover) model developed, which is the basis 

for the model of the MMR transport system. 

3.4.5. Complete Model of the MMR Transport System 

The complete computer (simulating) model combines all the model blocks described 

above. The simulation itself is carried out in ADAMS, which allows for visualizing the 

locomotion of the robot and analyzing the characteristics of any components of its 

transport system. 

The complete model of the MMR transport system allows for simulating the general 

case of the robot's locomotion, including investigating the power, kinematic, and energy 

characteristics of the drives when traction drives and CGV drives work together during 

the dynamic overcoming of obstacles. The most difficult thing, in this case, is simulating 

the interaction of the chassis of the transport system with the supporting surface and with 

the body elements of the MMR. The complete model of the chassis in the 6T2A 

configuration includes a description of 1680 contact interactions. 

At the same time, for the particular case of locomotion on a flat surface considered in 

this article, the complete model can be significantly simplified. The simplified model with 

excluded unused contacts includes 720 active models of contact interactions of the main 

tracks with the surface and with the robot body (Figure 6).  

The study results of this model are reported further. 

3.5. Simulation Experimental Setup 

A series of simulation tests were undertaken for the rectilinear locomotion on 

inclined surfaces of the MMR with a fixed chassis geometric configuration to study the 

locomotion subsystem of the MMR transport system (i.e., the subsystem of tractive 
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3.4.5. Complete Model of the MMR Transport System

The complete computer (simulating) model combines all the model blocks described
above. The simulation itself is carried out in ADAMS, which allows for visualizing the
locomotion of the robot and analyzing the characteristics of any components of its
transport system.

The complete model of the MMR transport system allows for simulating the general
case of the robot’s locomotion, including investigating the power, kinematic, and energy
characteristics of the drives when traction drives and CGV drives work together during the
dynamic overcoming of obstacles. The most difficult thing, in this case, is simulating the
interaction of the chassis of the transport system with the supporting surface and with the
body elements of the MMR. The complete model of the chassis in the 6T2A configuration
includes a description of 1680 contact interactions.

At the same time, for the particular case of locomotion on a flat surface considered in
this article, the complete model can be significantly simplified. The simplified model with
excluded unused contacts includes 720 active models of contact interactions of the main
tracks with the surface and with the robot body (Figure 6).

The study results of this model are reported further.

3.5. Simulation Experimental Setup

A series of simulation tests were undertaken for the rectilinear locomotion on inclined
surfaces of the MMR with a fixed chassis geometric configuration to study the locomotion
subsystem of the MMR transport system (i.e., the subsystem of tractive drives). The simu-
lation setup diagram can be seen in Figure 4. Both configurations of the MMR transport
system were simulated during these tests: tracked 6T2A and wheeled 4W2T.

The loading mode of the transport system was set by varying three parameters:

• A surface slope angle α;
• MMR mass (imitating the installation of additional weights on MMR platform with

the mass of mc);
• Supply voltage of traction motors Ue (i.e., speed-loading mode of the transport system).

The values of the varied parameters are given in Table 8.

Table 8. The values of the variable parameters in simulations and experimental studies.

Parameter Slope Angle Additional Load Mass Supply Voltage

Designation α mc Ue
Units Degree kg V

Set of values 0, 5, 10, 15, 20 0, 1.5, 3, 5, 6.5, 8 15, 24, 33
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3.6. Physical Experimental Setup

To check the reliability of the simulations, a set of experimental studies was carried
out on the MMR mock-up with geometric and mass–inertial parameters corresponding to
the computer model developed and by a method similar to virtual experiments.

The force-loading mode of the transport system was set, as shown in Figure 19, by
changing the angle of inclination of the surface and installing loads of different mass on
the MMR. The speed-loading mode of the transport system was set by setting the required
voltage value Us on the external power source (see Figure A3 of Appendix B).
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Figure 19. Test bench and methods of the loading mode set-up of the MMR transport system: (a) changing the surface slope
angle, the tracked MMR option is shown; (b) changing MMR mass by using additional weights, the wheeled MMR option
is shown.

In order to study the transport system as an electromechanical unit described in
Section 2.1, the elements of the MMR on-board control system (OBC) were disconnected
from the drives. In this case, the power supply of the electric drives themselves was carried
out from an external stabilized power source (EPS), which made it possible to set various
voltage values (i.e., to set up speed-loading modes) and control energy consumption
directly on the motors. Figure 20 shows a diagram of connecting measuring devices to the
experimental MMR, and Figure 21 shows the appearance of the connected equipment.

The motor rotational speed measurement was carried out using the programmer of the
56F800E family controllers, which was used to read the readings directly from the encoders
of the motors through the JTAG interface available on the OBC board. The programmer
was fixed on the MMR and connected to a portable PC via a USB interface.

The measurement of the MMR actual linear speed was carried out by measuring the
time between sequential interruptions of optical beams from three laser pointers, installed
along the test bench at certain distances from each other, by two rods mounted on the robot
in front and rear. The schematic of such measurements is shown in Figure 22. Therefore, the
robot motion is accompanied by a six-fold interruption of the laser beams. From the known
distances between the laser pointers and between the rods on the robot body, it becomes
possible to determine the actual average speed of the robot. To exclude the influence on
the result of the stage of acceleration, the MMR was installed so that the acceleration was
completed by the time of the first laser beam was crossed. The robot path length during
the steady-state motion was 2 m. Video recording of the MMR locomotion was carried out
during all tests.
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Figure 20. Diagram of test bench equipment connection to the experimental MMR: A—ammeter; Bat—battery; Enc—motor
encoders; EPS—external power source; FGM—front motor of the chassis geometry variation (CGV) subsystem; JTAG—
IEEE 1149 standard interface; LM—left tractive drive motor; OBC—on-board MMR controller; PC—personal computer;
PRM—programmer device; RGM—rear motor of the CGV subsystem; RM—right tractive drive motor; S1–S4—WRC mode
switches; WRC—simplest wired remote control.

Machines 2021, 9, x FOR PEER REVIEW 23 of 36 
 

 

 

Figure 20. Diagram of test bench equipment connection to the experimental MMR: A—ammeter; Bat—battery; Enc—

motor encoders; EPS—external power source; FGM—front motor of the chassis geometry variation (CGV) subsystem; 

JTAG—IEEE 1149 standard interface; LM—left tractive drive motor; OBC—on-board MMR controller; PC—personal 

computer; PRM—programmer device; RGM—rear motor of the CGV subsystem; RM—right tractive drive motor; S1–S4—

WRC mode switches; WRC—simplest wired remote control. 

 

Figure 21. Measuring equipment connected to experimental MMR: 1—MMR; 2—external power 

source; 3—programmer device; 4—ammeter; 5—simplest wired remote control; 6—portable PC. 

The motor rotational speed measurement was carried out using the programmer of 

the 56F800E family controllers, which was used to read the readings directly from the 

encoders of the motors through the JTAG interface available on the OBC board. The 

programmer was fixed on the MMR and connected to a portable PC via a USB interface. 

The measurement of the MMR actual linear speed was carried out by measuring the 

time between sequential interruptions of optical beams from three laser pointers, installed 

along the test bench at certain distances from each other, by two rods mounted on the 

robot in front and rear. The schematic of such measurements is shown in Figure 22. 

Therefore, the robot motion is accompanied by a six-fold interruption of the laser beams. 

From the known distances between the laser pointers and between the rods on the robot 

body, it becomes possible to determine the actual average speed of the robot. To exclude 

the influence on the result of the stage of acceleration, the MMR was installed so that the 

acceleration was completed by the time of the first laser beam was crossed. The robot path 

length during the steady-state motion was 2 m. Video recording of the MMR locomotion 

was carried out during all tests. 

Figure 21. Measuring equipment connected to experimental MMR: 1—MMR; 2—external power
source; 3—programmer device; 4—ammeter; 5—simplest wired remote control; 6—portable PC.

Machines 2021, 9, x FOR PEER REVIEW 24 of 36 
 

 

 
Figure 22. Schematic of the measurement of the linear robot speed. 

The test surface of the test bench corresponds to the surface of “type 3” by Table 5, 
characterized by a low value of the adhesion coefficient 𝜑𝜑𝑚𝑚, which makes it possible to 
study the robot slipping effects during its locomotion on the inclines. 

During the experimental studies, the following characteristics were directly 
measured: 
• Total motor consumption 𝐼𝐼𝛴𝛴   (using ammeter, see Figure 20); 
• Frequency of rotation of electric motor speed 𝑠𝑠𝑑𝑑𝑖𝑖  (using the programmer device, see 

Figure 20); 
• Actual linear speed 𝑉𝑉𝑚𝑚  (using the method described above). 

The theoretical robot speed 𝑉𝑉𝑚𝑚_𝑡𝑡𝑒𝑒𝑏𝑏𝑟𝑟  and energy consumption in each of the MMR 
transport system components were indirectly determined. 

Thus, the experimental procedure of the rectilinear motion study of the MMR 
transport system was as follows: 
1. Connect the measuring equipment to the MMR following Figure 20 (if necessary); 
2. Set the required value of the surface slope angle (following Table 8); 
3. Set on the MMR required additional load mass (following Table 8); 
4. Set the required voltage value on the external power source (following Table 8); 
5. Set the MMR to the starting position; 
6. Check the required current measurement range of the ammeter; 
7. Turn on the recording by PC of the motor rotation frequencies (see Figure 20); 
8. Enable video recording of the MMR locomotion; 
9. Set the forward movement of the MMR by turning on switches S1 and S4 of the WRC 

(see Figure 20); 
10. Turn off switch S4 when the MMR reaches the endpoint of the path; 
11. Stop recording the motor rotation frequency and video recording; 
12. Enter in the experimental data log information about the test mode (voltage, slope 

angle, additional load mass) and the corresponding file names; 
13. Repeat measurements following points 5 to 12 at least three times; 
14. Analyze the files received. The measurement results of the total energy consumption, 

the average rotational frequencies of the motors, and the average speed of the MMR 
at steady-state stage are averaged by the number of attempts and entered in the table 
of research results. 

  

Figure 22. Schematic of the measurement of the linear robot speed.



Machines 2021, 9, 8 24 of 35

The test surface of the test bench corresponds to the surface of “type 3” by Table 5,
characterized by a low value of the adhesion coefficient ϕx, which makes it possible to
study the robot slipping effects during its locomotion on the inclines.

During the experimental studies, the following characteristics were directly measured:

• Total motor consumption IΣ (using ammeter, see Figure 20);
• Frequencies of rotation of the motors ndi (using the programmer device, see Figure

20);
• Actual linear speed Vx (using the method described above).

The theoretical robot speed Vx_teor and energy consumption in each of the MMR
transport system components were indirectly determined.

Thus, the experimental procedure of the rectilinear motion study of the MMR transport
system was as follows:

1. Connect the measuring equipment to the MMR following Figure 20 (if necessary);
2. Set the required value of the surface slope angle (following Table 8);
3. Set on the MMR required additional load mass (following Table 8);
4. Set the required voltage value on the external power source (following Table 8);
5. Set the MMR to the starting position;
6. Check the required current measurement range of the ammeter;
7. Turn on the recording by PC of the motor rotation frequencies (see Figure 20);
8. Enable video recording of the MMR locomotion;
9. Set the forward movement of the MMR by turning on switches S1 and S4 of the WRC

(see Figure 20);
10. Turn off switch S4 when the MMR reaches the endpoint of the path;
11. Stop recording the motor rotation frequency and video recording;
12. Enter in the experimental data log information about the test mode (voltage, slope

angle, additional load mass) and the corresponding file names;
13. Repeat measurements following points 5 to 12 at least three times;
14. Analyze the files received. The measurement results of the total energy consumption,

the average rotational frequencies of the motors, and the average speed of the MMR
at steady-state stage are averaged by the number of attempts and entered in the table
of research results.

4. Results
4.1. Simulation Study

This article considers the results of simulation of a particular case of the MMR trans-
port system locomotion, namely, locomotion on surfaces with different angles of inclination.
This mode is a traditional widespread analytical case in the theory of transport vehicle de-
sign [10–12,14,17,19,20,34,35,40], allowing for the study of the traction–adhesion properties
of the terrain-vehicle system in various drive conditions.

The purpose of the transport system simulation is to study the processes of acceleration
and steady-state locomotion at various loading modes, and to determine the effective values
of the loads on the transport system elements and its energy consumption for movement,
as well as to determine the nature of the influence on these values by the current angle of
inclination of the surface and the total weight of the robot, i.e., to estimate the carrying
capacity of the MMR transport system.

The specified test conditions include the angle of inclination of the surface, the mass of
the additional load (i.e., the total mass of the robot, taking into account the additional load),
the speed-loading mode (the drives supply voltage), and the type of locomotion surface.

As the surface in this study, a test surface with relatively low adhesion properties was
used (a surface type 3 according to Table 5, with adhesion coefficient equal to about 0.32 to
0.35), which made it possible to study, among other things, the modes of locomotion with
slipping (skidding) of the transport system movers.
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A universal characteristic of the energy consumption of drives is the total consumed
current IΣ of the motors. Figure 23 shows typical graphs of the total current for two
transport system options: six-track 6T2A and four-wheeled 4W2T. These graphs were
obtained for the case of the transport system locomotion on a horizontal surface with a
power supply voltage of 33 V. The graphs obtained under other simulated conditions (other
voltage, different angles of inclination of the surface, the presence of a payload) have a
similar appearance.
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Figure 23. Typical total current of motors.

Three zones are clearly distinguishable on the graphs, which characterize the following
stages of locomotion: I—starting, II—acceleration with slipping, and III—uniform (steady-
state) of the locomotion. The slippage presence is indicated by increased consumption in
zone II, i.e., the presence of additional energy losses, as well as a comparison of the graphs
of the real (actual) robot speed Vx and its theoretical speed Vx_teor, determined by the wheel
speed in accordance with the equation

Vx_teor =
∑n

i=1
.
ϕki

n
rk, (32)

where ϕk is the wheel rotation angle of the i-th drive; rk is the wheel/pulley rolling radius;
n is the supporting wheels/pulleys number.

A comparison of the Vx and Vx_teor graphs obtained for the same test conditions as the
graphs in Figure 23 is shown in Figure 24.
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Figure 24. Typical graphs of theoretical and actual linear speeds of MMR: 1—Vx; 2—Vx teor; t′—acceleration time.

The degree of slipping over the time interval t′ is determined by the slippage [10,19,34,40,50]:

s = 1−Vx/Vx teor (33)

The graphs of IΣ, Vx, and Vx_teor at steady-state are characterized by significant fluctu-
ations, especially explicit for the 6T2A tracked option (these fluctuations are not noticeable
for the 4W2T option on the scale of Figures 23 and 24 since they have an order of magni-
tude smaller amplitude). The graphs of the total energy consumption during steady-state
according to Figure 23 are enlarged in Figure 25.
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Figure 25. Enlarged graphs of the motor total current during the steady-state locomotion of the transport system.

The analysis of the simulation results for the 6T2A option shows that these fluctuations
are caused by the uneven movement of the tracks, and their period exactly matches the
pitch Sg of the grousers (see Figure 6), and is determined by the equation

Tsi =
Sg

.
ϕkirk

. (34)

Equation (34) is also valid for the 4W2T option if the pitch of the working teeth St is
inserted instead of Sg.

The reason for more significant fluctuations for the tracked option 6T2A is in the
nature of the interaction of the mover with the surface. The pattern of this interaction is
different for tracked and wheeled chassis. For the wheeled chassis option, the interaction
of the movers with the surface occurs through four supporting points and the main tracks
play the role of only transmission mechanisms, not loaded with normal reactions. For
the tracked chassis option, each track, as shown in Figure 26, interacts with the surface
through the grousers, further transferring these loads to the front and rear pulleys and
lower guides. At the same time, the joint analysis of animations and graphs obtained
during the simulation (Figure 26) shows that the peaks of current fluctuation occur at
the moments of impacts of the grousers that are currently incoming into contact with
the surface (highlighted in Figure 26 with the red circle). The oscillations of the wheel
speeds and the robot linear speed are also associated with this. However, as a result of the
assessment, it is found that the amplitude of these fluctuations does not exceed 2%.
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Figure 26. Track–surface interaction analysis.

The described nature of the interaction is confirmed by the graphs of normal reactions
on one side of the chassis, as shown in Figure 27. For the 6T2A option, there are significant
fluctuations in the total reaction associated with the interaction of the grousers with the
surface and the working teeth of the track with the lower guide. The entry and exit of each
grouser from engagement with the surface is accompanied by a peak of normal reaction.
For the 4W2T option, the oscillations are much less explicit and their amplitude is more
than two orders of magnitude smaller.
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Figure 27. Typical graphs of the normal reactions on the one chassis side: 1—total normal reaction on the chassis track;
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one side.

4.2. Experimental Studies and Model Verification

To verify the reliability of the computer simulation results, a set of experimental
studies was performed on the MMR mock-up with geometric and mass inertia parameters
corresponding to the computer model developed and using a technique similar to the
virtual experiments performed.

Figure 28 shows the results of measurements of the total motor consumption IΣ at
various loading modes of the transport system.
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Figure 28. Experimental dependences of the total motor current on the loading mode of the MMR transport system during
the rectilinear steady-state locomotion: the markers indicate the experimental points and the dashed lines indicate the
results of their approximation. Loading modes: 1—mc = 0 kg, Ue = 15 V; 2—mc = 0 kg, Ue = 33 V; 3—mc = 5 kg, Ue = 33 V;
4—mc = 8 kg, Ue = 33 V.

As is shown in Figure 28, the experimental data are well approximated by linear
dependencies that are confirmed by the corresponding R2 values calculated according to
Appendix C.

Tables A1 and A2 of Appendix D show the experimentally determined values of IΣ,
ndi, and Vx, obtained during the rectilinear steady-state locomotion of the MMR transport
system in configurations 6T2A and 4W2T for two loading modes. The first mode is the
mode of conditionally minimum load characterized by a supply voltage Ue of 15 V and
zero payload mc. The second mode is the conditionally maximum load characterized by a
supply voltage Ue of 33 V and a maximum payload mc of 8 kg.

The identity of the virtual and physical experiments performed allows for comparing
their results. In the course of this comparison, the discrepancies between the simulated and
experimental data, δCV (i.e., simulating error), for those parameters that were determined
directly (IΣ, ndi, Vx) were estimated using the equation

δCV =
CV − EV

CV
·100%, (35)

where δCV is the calculated error of the CV; CV is the simulated value; EV is the experi-
mental value.
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These simulation errors are also presented in Tables A1 and A2 of Appendix D.
Comparison of experimental and simulated data showed their close convergence in the

range of δCV discrepancies not exceeding 5 to 7%, which allows for confirming the validity
of the approaches proposed in the construction of the computer model and the adequacy
of the MMR’s transport system model, which has a fairly accurate correspondence to its
physical prototype.

5. Discussion

The computer model developed for the MMR transport system was compared with
simplified models that do not take into account the features of the mathematical descrip-
tion given in Section 3.2. This was necessary to assess the significance of the proposed
approaches. Figure 29 shows the comparative analysis results of three model options: the
proposed model (PM) and two versions of simplified models (SM-1 and SM-2).
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Figure 29. The comparison of modeling errors obtained on the proposed model (PM) and simplified models (SM-1, SM-2).

In comparison with the detailed PM-model, the simplified SM-models are distin-
guished by the use of constant values of the internal friction characteristics of motors
and reduction gears. The difference between SM-1 and SM-2 is the different value of the
internal resistance in the tracks, which also does not depend on speed in simplified mod-
els. A brief description and the main parameters of the compared models are presented
in Tables A3 and A4 of Appendix D.

Figure 29 shows the simulation results of the rectilinear locomotion of the MMR in the
6T2A chassis configuration up inclined surfaces as the test scenario. In order to assess the
effect of various loading options (speed- and force-loading modes) in greater detail, the
simulations were performed in two distinctive modes, which contingently corresponded
to the minimum and maximum loads: (1) at a supply voltage Ue of 15 V and zero payload
mass mc and (2) at Ue = 33 V and mc = 8 kg. The case of supplying from an on-board power
source was also studied (see curves 4 and 7 in Figure 29).

The calculation errors of the total current consumption of the drives δIΣ (Figure 29,
left side) and the linear speed δVx (Figure 29, right side), defined by Equation (35), were
accepted as the estimated parameters for comparison. In addition to the payload mass mc,
the force-loading mode was also set by changing the slope angle α, which is an independent
axis in the graphs shown in Figure 29.

The data of Figure 29 show that the errors obtained using simplified models (curves 1–4)
significantly exceed the errors obtained using the proposed detailed model (curves 5–7).

An evaluation of the convergences of the experimental data and the simulated data
obtained using the PM-model and the simplified SM-models shows that the proposed
approaches to computer model development can increase the accuracy of simulations (as a
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difference in the calculated errors) by 10 to 25% at maximum loading modes, and up to
30 to 70% at low and medium loading modes.

6. Conclusions and Future Work

This work is devoted to the study of electromechanical systems of locomotion of
small-sized (portable-type) mobile robots. As shown in the study, taking into account
internal losses (i.e., friction) in all components plays a significant role for these robots.
Another important point is the relatively high mobility (as locomotion speeds) of these
robots. Therefore, it is important to take into account not only the force-loading mode, but
also the speed-loading mode (i.e., a significant dependence of the friction forces on speed)
when simulating transport systems of such high-speed and small-sized mobile robots.

The proposed simulation method includes the following items and features described
in the corresponding sections of this article:

1. Use of models of internal resistances in the form of dependences on speed for all
mechanical components of the transport system: motors in the form (14), gearboxes
in the form (20) and (22), and tracks in the form (24);

2. Use of the battery model, taking into account the total current load from all consumers
within the robot and the current state of charge of the battery in the forms of Equations
(11)–(13);

3. Use of the track model in accordance with Figure 6 to simulate it as a flexible part that
is a source of oscillations during a robot motion;

4. Use of models of contact interactions described in Section 3.2.4;
5. Use of experimentally determined parameters from the above models (Tables 1–5);
6. Use of geometrical and mass–inertial parameters of MMR corresponding to its physi-

cal model (Tables 6 and 7);
7. Structural and functional division of the computer model into two interacting parts

following Figure 13—a model of the drive subsystem and a model of the executive
subsystem, which allows for simulating not only the simplest case of locomotion on
inclined flat surfaces considered in this article, but also for more complex scenarios,
including overcoming obstacles.

The article shows what the computation errors can be when applying the approaches
used in automobile and tractor design theory, as well as in larger robot design, to small-
sized transport systems of portable-type mobile robots. Thus, the results of the comparative
simulation show that when simplifying the models, the calculated errors can reach up to
25% at maximum (i.e., nominal) load modes, and up to 70% at partial load modes. This
shows that neglecting the proposed approaches to simulating the transport systems of the
MMRs leads to results that are not applicable from a practical point of view. At the same
time, the article shows the attainable level of computation error obtained, which in this
study was no more than 7% in the entire range of load modes.

The main contribution of this article is aimed to an increase in the efficiency of design
work on the development of highly mobile small-sized ground robots, due to increasing
the accuracy of dynamic calculations of their locomotion subsystems.

The approaches proposed in this article make it possible to create a simulating model
of the MMR transport system with a high degree of adequacy to the experimental model.
The results of the study can be used to build computer models of small-sized mobile robots
to study their operating modes, both at the stage of robot development and at the stage of
assessing the characteristics and critical operating modes of an existing robot.

The authors connect the further development of this work with the following key areas:

• Development and experimental verification of a complete computer model of a small-
sized mobile robot on basis of proposed approaches for the composition of the trans-
port system model, with the addition of a model of a control system for mobile robot
executive subsystems, i.e., a transport subsystem and a functional subsystem (i.e.,
manipulators, technological equipment, etc.).
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• Research and study ways to create an adaptive control system for a mobile robot that
can increase its stability of motion at high speeds, as well as timely detect and fend off
critical situations that can lead to robot malfunction or breakdown.
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Figure A1. Structural-kinematic scheme of the MMR transport system: 1—tractive drive motor; 2—tractive drive planetary
gearbox; 3—tractive drive toothed belt transmission; 4—front main pulley; 5—rear main pulley; 6—main track; 7—additional
pulley; 8—front wheel; 9—rear wheel; 10—on-board belt transmission; 11—CGV drive motor; 12—CGV planetary gear;
13—CGV drive worm gear; 14—CGV mechanism shaft; 15—CGV lever (flipper); 16—guide roller; 17—additional track;
18—on-board battery.
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Appendix C

The approximation certainty factor R2 is the coefficient that can take values from
0 to 1 and shows the degree of approximation of the experimental dependence to the
approximating function. R2 is calculated in accordance with [51] as

R2 = 1− ∑ (yi −Yi)
2

∑ Y2
i − (∑ Yi)

2/n
(A1)

where Yi are experimental values; i is a serial number of the point (i = 1 . . . n); yi are values
of the approximating function corresponding Yi; n is a number of points.

Appendix D

Table A1. Experimental and simulated data obtained during rectilinear locomotion of the 6T2A option.

Test Conditions Experimental Data Simulating Data Data Discrepancies

Ue
[V]

M *

[kg]
mc

[kg]
α

[◦]
IΣ

[A]
ndi

[rpm]
Vx

[mm/s]
Is

Σ
[A]

nd
s

[rpm]
Vx

s

[mm/s]
δIΣ

%
δnd
%

δVx
%

15 13.1 0

0 2.30 4930 420 2.22 5170 431 –3.6 +4.6 +2.6
5 2.75 4800 400 2.67 5100 422 –3.0 +5.9 +5.2
10 3.00 4745 390 3.10 5030 413 +3.3 +5.7 +5.6
15 3.45 4625 375 3.55 4960 402 +2.8 +6.8 +6.7
20 3.85 4560 360 3.92 4880 385 +1.8 +6.5 +6.5

33 21.1 8

0 3.20 11,590 970 3.01 11,830 985 –6.3 +2.0 +1.5
5 4.00 11,340 920 3.76 11,640 961 –6.4 +2.6 +4.3
10 4.60 11,170 900 4.50 11,670 951 –2.2 +4.3 +5.4
15 5.25 11,070 860 5.09 11,490 899 –3.1 +3.7 +4.3
20 5.85 10,900 780 5.95 11,410 829 +1.7 +4.5 +5.9

* M is the robot mass.

Table A2. Experimental and simulated data obtained during rectilinear locomotion of the 4W2T option.

Test Conditions Experimental Data Simulating Data Data Discrepancies

Ue
[V]

M *

[kg]
mc

[kg]
α

[◦]
IΣ

[A]
ndi

[rpm]
Vx

[mm/s]
Is

Σ
[A]

nd
s

[rpm]
Vx

s

[mm/s]
δIΣ

%
δnd
%

δVx
%

15 13.1 0

0 0.66 5410 590 0.66 5455 595 +0.5 +0.8 +0.8
5 1.14 5090 550 1.18 5398 587 +3.4 +5.7 +6.3
10 1.60 5000 550 1.71 5339 579 +6.4 +6.3 +5.0
15 2.10 4970 540 2.20 5274 571 +4.5 +5.8 +5.4
20 2.55 4810 520 2.72 5128 552 +6.3 +6.2 +5.8
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Table A2. Cont.

Test Conditions Experimental Data Simulating Data Data Discrepancies

Ue
[V]

M *

[kg]
mc

[kg]
α

[◦]
IΣ

[A]
ndi

[rpm]
Vx

[mm/s]
Is

Σ
[A]

nd
s

[rpm]
Vx

s

[mm/s]
δIΣ

%
δnd
%

δVx
%

33 21.1 8

0 0.84 12,270 1340 0.81 12,075 1318 –3.7 –1.6 –1.7
5 1.76 11,920 1295 1.67 11,978 1305 –5.4 +0.5 +0.8
10 2.44 11,730 1270 2.56 11,880 1289 +4.7 +1.3 +1.5
15 3.40 11,490 1220 3.44 11,778 1267 +1.2 +2.4 +3.7
20 4.20 11,230 1180 4.29 11,685 1241 +2.1 +3.9 +4.9

* M is the robot mass.

Table A3. Brief description of the compared models.

Characteristics Proposed Model (PM) Simplified Model 1 (SM-1) Simplified Model 2 (SM-2)

Torque of internal resistance forces of
the motor Md f

Md f = f
( .

ϕd
)

see (14) Mr f = const
( .

ϕd
)

Mr f = const
( .

ϕd
)

Total torque of gear internal
resistance Mr f

Mr f = f
(

Md,
.
ϕd
)

see (20),(22)
Mr f = f (Md)

see (21)
Mr f = f (Md)

see (21)

Gear efficiency ηr
ηr = f

(
Mr,

.
ϕr
)

see (19),(20)
ηr = const ηr = const

Torque of internal resistance forces in
the track Mt

Mt = f
( .

ϕk
)
,

see (24)
Mt = const

Mt ≈ 1/3 ·Mt0

Mt = const
Mt ≈ Mt0

External power supply voltage Us
(Us = Ue) Us = const Us = const Us = const

On-board battery voltage Ub
Ub = f

(
Is, Ip, Ub0

)
see (10)–(13) Ub = Ub0 = const Ub = Ub0 = const

Table A4. Main parameters values of the compared models.

Parameter Designation Unit PM SM-1 SM-2

Static motor friction torque Md f 0 mNm 2.7 4.2 4.2
Motor viscous friction coefficient K f d mNm·s 5.5 × 10−4 – –

Gear friction torque measured on the
gear’s input shaft Mr f 0 mNm 0.3 – –

Gear coefficient of viscous friction K f r mNm·s 1.4 × 10−3 – –
Gear efficiency ηr – see (19) 0.75 0.75

Static torque of the internal friction
forces of the tracked unit of the one

side of chassis (three tracks)
Mt0 mNm 350 108 300

Coefficient of pseudo viscous friction in
the tracked unit of the one side of

chassis (three tracks)
K f t mNm·s 16 – –

Friction coefficient of the track along
the guide of the robot body µt – 0.20 0.20 0.20

Coefficient of motion resistance
(tracked chassis) ft – 0.06 0.06 0.06

Coefficients of longitudinal adhesion
(chassis mover-surface) ϕx – according to

Table 5
according to

Table 5
according to

Table 5
No-load battery voltage Ub0 V 33.4 33.6 33.6

Total current from all other MMR
consumers, not related to the

transport system
Ip A 1.5 – –

Battery total self-electric resistance Rb Ohm 0.4 – –

Battery cell experimental parameters A – 7 × 10−8 – –
B – –5 × 10−4 – –
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